
New Advances in Secure
RAM Computation

Sanjam Garg

University of California, Berkeley

Based on joint works with

Steve Lu, Payman Mohassel, Charalampos
Papamanthou, Rafail Ostrovsky and Alessandra

Scafuro

Yao’s garbled circuits

User

Server

𝐶

𝐶

𝐶(𝑥) 𝑥

𝑥

RAM analogue of Garbled circuits

User

Server

𝑃, 𝑥

𝑃, 𝑥

𝑃(𝑥)

If the running time of the program 𝑃 is 𝑇
then the corresponding circuit is of size 𝑇3.

Communication complexity and
computational complexity of both

parties grows with 𝑇3.

More Ambitious: Garbled RAM
[LO13,GHLORW14]

User

Server

𝑃𝑖 , 𝑥𝑖
𝑃𝑖 , 𝑥𝑖 𝑃𝑖(𝑥𝑖)

Garbled circuits lead to a solution where the
communication and computational cost per
program grows with database size.

• Size of garbled database is 𝑂 𝐷
• Communication and computation cost grows in 𝑂 𝑇𝑖

More Ambitious: Garbled RAM
[LO13,GHLORW14]

User

Server

𝑃𝑖 , 𝑥𝑖
𝑃𝑖 , 𝑥𝑖 𝑃𝑖(𝑥𝑖)

Garbled circuits lead to a solution where the
communication and computational cost per
program grows with database size.

• Full-security: Server learns nothing but the output
• Unprotected Memory Access (UMA): Server learns

access pattern.

ORAM [Goldreich-Ostrovsky]

Putting in context – Secure
Computation
• Traditional protocols – have large round complexity

• Linear in running time [OS97, GKKKMR12 …]

• Seeking an analogue of Yao’s garbled circuits
• Non-interactive

Landscape: Garbled RAM

• Heuristic construction from OWFs [LO13]

• Circularity Issue

• Fixed using IBE [GHLORS14]

• Construction from OWFs [GLOS15]

• Using only black-box use of OWFs[GLO15]

• OWF can’t be modeled as a random oracle

• Not talk about succinct constructions based on iO
[CHJV14, BGT14, LP14, KLW15, CH15, CCCLLZ15...]

Outline of the rest of the talk

• RAM model

• LO13 approach

• Technical bottleneck in realizing black-box
construction

• High level idea of black-box construction [GLO15]

• Extensions [GMP15,GM15,GGMP15,GP15]

RAM Model

CPU

 step 1

CPU

 step 2

CPU

 step 3

read 1
next

index read 2
next

index read 3
next

index

Writes require additional work but let’s ignore that!

LO13 approach

CPU

 step 1

CPU

 step 2

CPU

 step 3

read 1
next

index read 2
next

index read 3
next

index

Use garbled circuits!

LO13 approach

CPU

 step 1

CPU

 step 2

CPU

 step 3

read 1
next

index read 2
next

index read 3
next

index

How do reads work?

Access pattern is revealed!

1) Somehow encrypt memory
2) translate table

LO13 approach

CPU

 step 1

CPU

 step 2

CPU

 step 3

read 1
next

index read 2
next

index read 3
next

index

STEP 1: garbling/encrypting of

the memory

 PRF key K to garble

𝑏𝑖

𝑖 𝑃𝑅𝐹𝐾(𝑖, 𝑏𝑖)

LO13 approach

CPU

 step 1

CPU

 step 2

CPU

 step 3

read 1
next

index read 2
next

index read 3
next

index

STEP 2: translate table

 PRF key K to garble

K K K

𝑏𝑖

𝑖 𝑃𝑅𝐹𝐾(𝑖, 𝑏𝑖)
𝑗

𝑠0, 𝑠1

𝐸𝑛𝑐(𝑃𝑅𝐹𝐾 𝑗, 0 , 𝑠0)

𝐸𝑛𝑐(𝑃𝑅𝐹𝐾 𝑗, 1 , 𝑠1)

Technical Bottleneck in Black-Box

• The data needs to be encrypted so that the server
doesn’t learn it!

• CPU step garbled circuits need to decrypt the read
values internally

• Need of black-box use of cryptography seems
inherent

GLO15 high level idea

• Garbled memory comprises of a collection of
garbled circuits with data values hardwired in them

• Read implemented by a sub-routine call

• Control flow is passed to memory circuits

GLO15 – for one read only

𝑏1 𝑏2

𝑗, 𝑠0, 𝑠1

………

GLO15 – for one read only

𝑏1 𝑏2

𝑗, 𝑠0, 𝑠1

………

Say 𝑗 = 2

Outputs 𝑠𝑏2

Memory no
longer useful!

……… ………

……… ………

GLO15 – for 𝑚 reads only

𝑏1 𝑏2

𝑗, 𝑠0, 𝑠1

………

Say 𝑗 = 2

Outputs 𝑠𝑏2

………

How many
backups? How
do we connect

them?

Assume uniform
memory accesses.

Conclusion and Open Problems

• Secure Computation for RAM programs

 Round Efficient

 And Black Box

• Important for crypto for big data

• Theoretically practical secure computation.

Thanks!

