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RAM analogue of Garbled circuits 
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If the running time of the program 𝑃 is 𝑇 
then the corresponding circuit is of size 𝑇3. 

Communication complexity and 
computational complexity of both 

parties grows with 𝑇3. 



More Ambitious: Garbled RAM 
[LO13,GHLORW14] 
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Garbled circuits lead to a solution where the 
communication and computational cost per 
program grows with database size. 

• Size of garbled database is 𝑂 𝐷  
• Communication and computation cost grows in 𝑂 𝑇𝑖  



More Ambitious: Garbled RAM 
[LO13,GHLORW14] 
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Garbled circuits lead to a solution where the 
communication and computational cost per 
program grows with database size. 

• Full-security: Server learns nothing but the output 
• Unprotected Memory Access (UMA): Server learns 

access pattern.   

ORAM [Goldreich-Ostrovsky] 



Putting in context – Secure 
Computation 
• Traditional protocols – have large round complexity 

• Linear in running time [OS97, GKKKMR12 …] 

 

• Seeking an analogue of Yao’s garbled circuits 
• Non-interactive 



Landscape: Garbled RAM 

• Heuristic construction from OWFs [LO13] 

• Circularity Issue 

• Fixed using IBE [GHLORS14] 

• Construction from OWFs [GLOS15] 

• Using only black-box use of OWFs[GLO15] 

• OWF can’t be modeled as a random oracle 

 

• Not talk about succinct constructions based on iO 
[CHJV14, BGT14, LP14, KLW15, CH15, CCCLLZ15...] 

 
 



Outline of the rest of the talk 

• RAM model 

• LO13 approach 

• Technical bottleneck in realizing black-box 
construction 

• High level idea of black-box construction [GLO15] 

• Extensions [GMP15,GM15,GGMP15,GP15] 

 



RAM Model 
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Writes require additional work but let’s ignore that! 



LO13 approach 
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Use garbled circuits! 



LO13 approach 
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How do reads work? 

Access pattern is revealed! 

1) Somehow encrypt memory 
2) translate table  



LO13 approach 
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STEP 1: garbling/encrypting of 

the memory 

 PRF key K to garble 
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LO13 approach 

CPU 

 step 1 

 

CPU 

 step 2 

 

CPU 

  step 3 

 

read 1 
next 
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STEP 2: translate table 

 PRF key K to garble 

K K K 
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𝑖 𝑃𝑅𝐹𝐾(𝑖, 𝑏𝑖) 
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𝐸𝑛𝑐(𝑃𝑅𝐹𝐾 𝑗, 0 , 𝑠0) 

𝐸𝑛𝑐(𝑃𝑅𝐹𝐾 𝑗, 1 , 𝑠1) 



Technical Bottleneck in Black-Box 

• The data needs to be encrypted so that the server 
doesn’t learn it! 

 

• CPU step garbled circuits need to decrypt the read 
values internally 

• Need of black-box use of cryptography seems 
inherent  

 

 



GLO15 high level idea 

• Garbled memory comprises of a collection of 
garbled circuits with data values hardwired in them  

 

• Read implemented by a sub-routine call 

• Control flow is passed to memory circuits 



GLO15 – for one read only 
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GLO15 – for one read only 

𝑏1 𝑏2 

𝑗, 𝑠0, 𝑠1 
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Say 𝑗 =  2 

Outputs 𝑠𝑏2
 

Memory no 
longer useful! 



……… ……… 

……… ……… 

GLO15 – for 𝑚 reads only 

𝑏1 𝑏2 

𝑗, 𝑠0, 𝑠1 

……… 

Say 𝑗 =  2 

Outputs 𝑠𝑏2
 

……… 

How many 
backups? How 
do we connect 

them? 

Assume uniform 
memory accesses.  



Conclusion and Open Problems 

• Secure Computation for RAM programs 

 Round Efficient 

 And Black Box 

• Important for crypto for big data 

• Theoretically practical secure computation.  

 



Thanks! 


