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Coherence:

A system is coherent if every feedback loop is positive.
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A coherent system ẋ = F (x) in X ⊂ Rn is transformed, by
permuting and changing signs of variables, to
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is invariant under F .

The fibre system ż = H(z , p), z ∈ Rn−m is coherent.
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attractor.

Attractors in applications

The ODEs that model interacting species, chemical reactions, or
dissipative mechanical systems, usually have global attractors,
but volume preserving systems have no attractors.



Coherent systems are nonchaotic

Theorem —Angeli-Hirsch-Sontag

In a coherent system:

every orbit is nowhere dense,



Coherent systems are nonchaotic

Theorem —Angeli-Hirsch-Sontag

In a coherent system:

every orbit is nowhere dense,

no orbit is dense in an attracting set



Coherent systems are nonchaotic

Theorem —Angeli-Hirsch-Sontag

In a coherent system:

every orbit is nowhere dense,

no orbit is dense in an attracting set

if a global attracting set contains a unique equilibrium p, then
p is globally asymptotically stable.



Coherent systems are nonchaotic

Theorem —Angeli-Hirsch-Sontag

In a coherent system:

every orbit is nowhere dense,

no orbit is dense in an attracting set

if a global attracting set contains a unique equilibrium p, then
p is globally asymptotically stable.

This is proved first for cooperative systems, which includes all
1-dimensional systems.



Coherent systems are nonchaotic

Theorem —Angeli-Hirsch-Sontag

In a coherent system:

every orbit is nowhere dense,

no orbit is dense in an attracting set

if a global attracting set contains a unique equilibrium p, then
p is globally asymptotically stable.

This is proved first for cooperative systems, which includes all
1-dimensional systems.

For coherent systems one proceeds by induction on dimension,
exploiting the Cascade Decomposition Theorem.
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Theorem (Resonance in monotone systems)

Assume Φ is monotone and p ∈ Pλ. Then there is a neighborhood
U of p such that:

If q ∈ Pµ ∩ U and q ≥ p or q ≤ p, then µ
λ

is rational.
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Theorem

Assume F : X → Rn is coherent.

If periodic points are dense in an open set W ⊂ X , there is a dense
open subset V ⊂ W such that F is globally periodic in each
component of V .

Corollary

If F is analytic and not globally periodic, then P is nowhere dense.

The same conclusions hold for monotone maps f : X → X.

Proofs:

(1) For monotone maps: Lattice properties of Rn

(2) For cooperative systems: Resonance.
(3) For coherent systems: Cascade Decomposition and induction

on dimension.
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