Mechanisms for Noise Attenuation in Molecular Biology Signaling Pathways

Liming Wang Department of Mathematics, University of California, Irvine

May 25, 2011 On the occasion of Eduardo's 60th birthday

Feedback and noise in biological systems

• "Redundantly" many positive or negative feedback loops

Feedback and noise in biological systems

• "Redundantly" many positive or negative feedback loops

• noise (transcription, thermal fluctuation, volume changing, etc.)

noisy gene expressions

• positive feedback amplifies noise and negative feedback attenuates noise (A. Becskei and L. Serrano, 2000; U. Alon, 2007)

• positive feedback amplifies noise and negative feedback attenuates noise (A. Becskei and L. Serrano, 2000; U. Alon, 2007)

• positive feedback attenuates noise (O. Brandman, 2005; G. Hornung and N. Barkai, 2008)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

5/32

• positive feedback amplifies noise and negative feedback attenuates noise (A. Becskei and L. Serrano, 2000; U. Alon, 2007)

• positive feedback attenuates noise (O. Brandman, 2005; G. Hornung and N. Barkai, 2008)

• no strong correlations between the sign of feedbacks and their noise properties (S. Hooshangi and R. Weiss, 2006)

• positive feedback amplifies noise and negative feedback attenuates noise (A. Becskei and L. Serrano, 2000; U. Alon, 2007)

• positive feedback attenuates noise (O. Brandman, 2005; G. Hornung and N. Barkai, 2008)

• no strong correlations between the sign of feedbacks and their noise properties (S. Hooshangi and R. Weiss, 2006)

is there a quantity (rather than the sign of FD) to unify these results?

One-loop and two-loop systems

one-loop system

$$c' = k_1 b(1 - c) - k_2 c + k_3$$

b' = (k_c s(t) c(1 - b) - b + k_4) \tau_b

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

One-loop and two-loop systems

one-loop system

$$c' = k_1 b(1 - c) - k_2 c + k_3$$

b' = (k_c s(t) c(1 - b) - b + k_4) \tau_b

two-loop system

$$c' = k_1(b+a)(1-c) - k_2c + k_3$$

$$b' = (k_c s(t)c(1-b) - b + k_4)\tau_b$$

$$a' = (k_c s(t)c(1-a) - a + k_4)\tau_a$$

<ロ > < 部 > < 言 > < 言 > 差 の Q (や 9/32

Dynamical and noise properties

Dynamical and noise properties

O. Brandman et al., Science, 2005

system's intrinsic time scales are crucial to noise attenuation

A conjecture

define activation and deactivation time scales.

< □ > < 部 > < 書 > < 書 > 書 の Q (~ 12/32

A conjecture

define activation and deactivation time scales.

..... guess: at the "on" state,

 $t_{1
ightarrow 0} \gg 1/\omega, t_{0
ightarrow 1} \ll 1/\omega ~~\Rightarrow~$ better noise attenuation

 ω : the frequency of the input noise.

define noise amplification rate: $r_2 = \frac{\text{std(output)}/\langle \text{output} \rangle}{\text{std(input)}/\langle \text{input} \rangle}$

G. Hornung and N. Barkai, PLoS Comp. Bio., 2008

testing in the one-loop system:

 $t_{1
ightarrow 0} \gg 1/\omega \Rightarrow$ better noise attenuation

in the two-loop system:

 $t_{1
ightarrow 0} \gg 1/\omega \Rightarrow$ better noise attenuation

15 / 32

why is τ_b inconsistent?

why is τ_b inconsistent?

is there a simple way to take into account both changes?

17 / 32

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A critical quantity: signed activation time

- signed activation time (SAT) = $t_{1\rightarrow 0} t_{0\rightarrow 1}$
- SAT has a negative relation with the noise amplification rate

18 / 32

Analytical studies using the Fluctuation Dissipation Thm

$$r_2^2 \approx \frac{\tau_b/\omega}{\langle s \rangle (k_1 k_c/k_2 - 1)(k_1/k_2 + 1) \frac{k_c}{k_c + 1}}$$

key observation:

• r_2 negatively depends on k_c and k_1/k_2 .

linear analysis of the noise-free ODE:

• SAT positively depends on k_c and k_1/k_2

 \Rightarrow r₂ negatively depends on SAT= $t_{1\rightarrow0} - t_{0\rightarrow1}$

Analytical studies - two-time-scale analysis

$$c' = k_1 b(1 - c) - k_2 c + k_3$$

 $b' = (k_c s(t) c(1 - b) - b + k_4) \tau_b$

When $\varepsilon := \tau_b \ll k_2$, \exists two time scales: $t_f = t$ and $t_s = \varepsilon t$,

$$c = c_0(t_s, t_f) + \varepsilon c_1(t_s, t_f) + \varepsilon^2 c_2(t_s, t_f) + \cdots$$
$$b = b_0(t_s, t_f) + \varepsilon b_1(t_s, t_f) + \varepsilon^2 b_2(t_s, t_f) + \cdots$$

s(t) varies on the time scale of t_f ⇒ noise is filtered out in c₀.
s(t) varies on the time scale of t_s ⇒ noise persists in c₀.

SAT in one-loop systems

r₂ decreases in SAT

SAT in two-loop systems

r₂ decreases in SAT

How to achieve large SAT?

• linear stability analysis

	single	slow-slow	fast-slow
activation	$\frac{k_c+1}{(K_a+1)k_c}$	$\frac{k_c+1}{(2K_a+1)^2k_c}$	$\frac{k_c+1}{2(2K_a+1)^2k_c}$
deactivation	$\frac{(K_a+1)k_c}{1+k_c}$	$\frac{\frac{(2K_a+1)k_c}{1+k_c}}{1+k_c}$	$\frac{(K_a+1/2)k_c}{1+k_c}$

 \Rightarrow large k_c and $K_a := k_1/k_2$

simulations

Why multiple loops?

faster activation

	single	slow-slow	fast-slow
activation	$\frac{k_c+1}{(K_a+1)k_c}$	$\frac{k_c+1}{(2K_a+1)^2k_c}$	$\frac{k_c+1}{2(2K_a+1)^2k_c}$

• more robust (w.r.t. parameter changes)

$k_c \in (0.5,10)$	single	slow-slow	fast-slow	
activation	(8.2, 89.9)	(0.8, 3.9)	(4.5, 43.7)	

$k_1 \in (1,10)$	single	slow-slow	fast-slow	
activation	(15.6, 158.2)	(0.9, 8.4)	(8.9, 75)	

Does SAT apply to negative feedback systems?

r₂ decreases in SAT

to achieve large SAT:

The yeast polarization system

A non-spatial model, simplied from C.S. Chou et al., 2008

SAT in the yeast cell polarization system

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

SAT in a Polymyxin B resistence model

13 parameters are varied in ± 3 range.

◆ロ → < □ → < Ξ → < Ξ → < Ξ → ○ Q (~ 28/32

SAT in connector-mediated models

A.Y.Mitrophanov and E.A. Groisman, 2010

	RP	RA	KS	PI
activation	30.1	30.4	4.5	62.4
deactivation	45.2	37.2	5.9	6.4
SAT	0.76	0.34	0.07	-2.8
<i>r</i> ₂	0.14	0.34	0.5	0.85

Summary and future work

- proposed a new quantity $SAT = t_{1 \rightarrow 0} t_{0 \rightarrow 1}$
- at ON state, r_2 (noise amplification rate) decreases in SAT.
- SAT is the intrinsic time scale determined by network structure and parameters
- additional positive feedback drastically reduces the activation time and makes the system more robust to parameter variations
- what is the prediction for OFF state? bistable system? PDE?

Qing Nie (Dept. of Mathematics, UCI)

Jack Xin (Dept. of Mathematics, UCI)

Tau-Mu Yi (Dept. of Developmental and Cell Biology, UCI)

Congratulations on your achievements!

Happy Birthday!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

32 / 32