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Eduardos research: wheres the impact?
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Eduardo introduced me to nonlinear
robustness margins

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35, NO. 4, APRIL 1990

Farther Facts about Input to State Stabilization

EDUARDO D. SONTAG

Abstract — Previous results about input to state stabilizability are
shown to hold even for systems which are not linear in controls, pro-
vided that a more general type of feedback be allowed. Applications
to certain stabilization problems and coprime factorizations, as well as
comparisons to other results on input to state stability, are also briefly
discussed. |

(VV(x),f(x,0)) <0 X £
(VV(x),f(x,d)) <O V(x,d): |d| < o(|x]|)
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Eduardo introduced me to nonlinear
robustness margins

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35, NO. 4, APRIL 19%0

Further Facts about Input to State Stabilization

(VV(x),f(x,0)) <O Vx #0

EDUARDO D. SONTAG

Abstract—Previous results about input to state stabilizability are

shown to hold even for systems which are not linear in controls, pro-
(VV(X), f(X, d)) < O V(X’ d) i |d| < O'( |X|) vided tlfat a l{lf)l'e .general type of feedbf.u:k be all(?we(_l. Applicguons
to certain stabilization problems and coprime factorizations, as well as

comparisons to other results on input to state stability, are also briefly
discussed.

b(Ix[)y(Ix]) = o(|x])
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Eduardo led the renaissance of converse
Lyapunov theorems

SIAM J. CONTROL AND OPTIMIZATION (©) 1996 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 124-160, January 1996 006

A SMOOTH CONVERSE LYAPUNOV THEOREM FOR ROBUST
STABILITY*

YUANDAN LINT, EDUARDO D. SONTAG!, AND YUAN WANGS

Abstract. This paper presents a converse Lyapunov function theorem motivated by robust
control analysis and design. Our result is based upon, but generalizes, various aspects of well-
known classical theorems. In a unified and natural manner, it (1) allows arbitrary bounded time-
varying parameters in the system description, (2) deals with global asymptotic stability, (3) results
in smooth (infinitely differentiable) Lyapunov functions, and (4) applies to stability with respect to
not necessarily compact invariant sets.

THEOREM 2.9. Let A C R" be a nonempty, compact, invariant subset for the
system (1). Then, (1) is UGAS with respect to A if and only if there exists a smooth
Lyapunov function V with respect to A.

(1) xeFl)=%v:v—jlx @) e K}
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Eduardo has an uncanny knack for
anticipating what we will need later

SYSTEMS
€& CONTROL
LETTERS

Systems & Control Letters 34 (1998) 93-100

Comments on integral variants of ISS !

Eduardo D. Sontag *

Although not needed here, it is worth stating the
“exponential” version of the above lemma:

Corollary 10. For each y € A there exist o, and
oy in K~ so that

1(rs) s a1(r)aa(s)

B(s,t)<01(0a(s)e ) Vs=0, t=0. (11) B for all r,s 0.

Proposition 7. Assume that p ¢ A" ¥. Then, there ex-
ist 0,0, € X so that

w t@&. cCDC v



The jump from nonlinear X € F(X)

to hybrid systems Xx € F(x) xe€C
Xt € G(x) xeD

Wheres the impact?

And, along the way, we see Eduardos impact.
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A compact model takes us from nonlinear to hybrid

@ The state

physical variables timers logic states  counters

L = (5777Q7€7“'

@ Continuous change

where

how e F(x)

@ Instantaneous change

where

zt ¢ G(z)
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Hybrid systems appear in nature, & control

Mechanical systems

w/ impacts \ d ‘

Digital control
systems

nonlinear
system

algorithm

Sample-and-hold control

PLANT

Actuator Sensor

_ L

NETWORK

||
-

Controller
node

N

vy ,"_'«’.
A

pn, " Networked control
alking robots

systems

Automated traffic systems
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Under weak regularity conditions, asymptotic
stability has nonzero robustness margins o o

C C.o= {XTih JAC % O
F(x) F (x) = coF ((x + )NC)+
D D = {x: (6GE ) (V£ O}
G(x) G (X)=G((x+ )ND)+

Robustness margins accommodate many corollaries

@ Linearization principle @ Singular perturbations
@ Reduction principle @ Small perturbations
@ Averaging theory @ Converse Lyapunov theorems

(also uses Proposition 7)

UCSB s#%#s ccDC 11



Lyapunov functions are natural for hybrid systems

If the compact set A is GAS then

there exists a (exponentially decreasing)
smooth, global Lyapunov function.

Cai/Goebel/T. IEEE TAC 2008

3041,&2 c Kuo :
ar(|z|a) < V(x) < as(lz|la) Vo eR"

(VV(z), f) < =V (x) Ve C, f e F(x)

Vig) <exp(—1)V(x) Vre D, g€ G(x)

UCSB sgmesccDC ’



Like for classical systems, the invariance principle
can be used as the basis for stability analysis

The compact set A is GAS if
1) there exists a weak, global Lyapunov function and

2) no solution with a unbounded domain makes the
Lyapunov function remain at a positive constant.

Sanfelice/Goebel /T. IEEE TAC 2007

A weak, global Lyapunov function has
weakened decrease conditions:

UCSB ;¥ ccDC 13



Converse Lyapunov theorems motivate

Lyapunov-based hybrid feedback algorithms

Goal: regulate q+ = —(

X — ge{-1,1}

(x—qz) " =X=(—qiU" = %"=

(x—qz)"=-x—-(-q)z=—-(x—q2)

UCSB s#%#s ccDC
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0=f(6,0)+T

Forni/Zaccarian/T.
IEEE CDC 2011 (s)

V(g, ,x)=W(x—

@ W a CLF for
double integrator

@ W(e)=W(-e)

\_

)
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This hybrid feedback approach to
tracking extends to billiard systems

First note that the naive, non-hybrid tracking
approach fails miserably ...




Lyapunov-based hybrid strategy has no difficulty

UCSBR 423U
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Backstepping of Lyapunov-based hybrid

feedbacks is often possible

.. including global stabilization for systems
evolving on compact manifolds.

Rigid body
dynamics

3D pendulum X
: _\
ESAIM: Control, Optimisation and Calculus of Variations October 1999, Vol. 4, p. 537-557
URL: http://www.ezath.fr/cocv/

CLOCKS AND INSENSITIVITY TO SMALL MEASUREMENT ERRORS*

EDUARDO D. SONTAG!

Abstract. This paper deals with the problem of stabilizing a system in the presence of small measure-
ment errors. It is known that, for general stabilizable systems, there may be no possible memoryless
state feedback which is robust with respect to such errors. In contrast, a precise result is given here,
showing that, if a (continuous-time, finite-dimensional) system is stabilizable in any way whatsoever
(even by means of a dynamic, time varying, discontinuous, feedback) then it can also be semiglobally
and practically stabilized in a way which is insensitive to small measurement errors, by means of a
hybrid strategy based on the idea of sampling at a “slow enough” rate.

UCSB w5 ccDC 17



Algorithms based on “synergistic potentials”
PrOVide an illus.l-ra'l-ion Mayhew/Sanfelice/T. ACC 2011

. i s )
\27=L/:l(2)v - (Zz,v)eM x R e.g.,M=5",50(3),...

Synergy condition on a family of potfential functions:

W(2)'VVqe(2)=0, (q,2) ¢ A =
Hv(q,z) :=Vq(z) —minVs(z) >6>0

Q
\ =

“synergy gap”

UCSB s#%#s ccDC 18



Synergy condition on a family of potential functions:

W(2)'VVe(2)=0, (q,2) ¢ A =

Hv(q,z) :=Vg(z) —minVs(z) > 6> 0
seq

Vq(cos(8),sin()) vs. 6
UCSB s#%fe: ccDC 19
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ol )
fk_:({jl(z)v + (z,v)eMxRT  _“eg.,M=S",50(3)....
y

Synergy condition on a family of potential functions:

$(2) VVe(2)=0, (g, 2) eA—>

Hv(q,z) :=Vg(z) —minVs(z) >56>0
seq

Hybrid controller (no backstepping)
Voir —‘IJ(Z)TVVq(Z)

C={(9,2)€eQxM:uy(q,z)<é}
D=1(q,.2) €eQxM:uy(q,z) =6}
Gc(z)={s€Q:puy(s,z)=0}

Lyapunov function: W(q, z) = Vq(Z)
UCSB ;¥ ccDC 20



ol )
fk_:({jl(z)v + (z,v)eMxRT  _“eg.,M=S",50(3)....
y

Synergy condition on a family of potential functions:

W(2)'VV4e(2)=0, (g, 2) ¢ A =
Hv(q,z) :=Vg(z) —minVs(z) >56>0

seq
Hybrid controller (backstepping)

u=-y(2)'vy(z) - v

C={(q.2)€0xM:puy(q,z) <6} x R"

D={(q,2)€eQxM:puy(q,2) =6} x R”
Gc(z)={s€Q:puy(s,z)=0}

Lyapunov/LaSalle function: W(q, z) =Vq(Z) + O v
UCSB ;¥ ccDC 21
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Liveness/safety via asymptotic

tability and robustness.

--Hybrid relaxes synchronicity

assumptions.

Even nonstandard
problems fit into a

Lyapunov/LaSalle

framework

e

.....

e

- e = =

!
i L A A B e S S

".'""r"""*""'.':"'-"'

1

1

1

1




{

The jump from nonlinear
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to hybrid systems: ’. e .o_\"
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@ We can systematically approach problems
that we could not touch before, using tool
with which we are very familiar.

@ Full-scale systems, products, $$, ... 227

b(Ixy(Ix]) = a(lx])

What is much clearer is Eduardo’s
impact on the recent developments
in the field, which is extensive. OB e ot s thar e e

Bs,0)<0:1(0:(s)e") Vs=0, 120 (11)

THEOREM 2.9. Let A C R"™ be a nonempty, compact, invariant subset for the
system (1). Then, (1) is UGAS with respect to A if and only if there exists a smooth

U C S B t@&«_ welelp]e Lyapunov function V' with respect to A.
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