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Eduardo’s research: where’s the impact?

The impact is extensive
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firther Facts about Input to State Stabilization 

EDUARDO D. SONTAG 

Abstruct- Previous results about input to state stabilizability are 
shown to hold even for systems which are not linear in controls, pro- 
vided that a more general type of feedback be allowed. Applications 
to certain stabilization problems and coprime factorizations, as well as 
comparisons to other results on input to state stability, are also briefly 
discussed. 

I. INTRODUCTION 
In a previous paper [3] we studied the problem of when a system on 

(1) 

withfand the entries of the n x m matrix G being smooth, can be made 
input to state stable (ISS) in a rather strong sense to be reviewed below. 
Our main result there was that this system is smoothly input to state 
stabilizable, that is, there exists a smooth (i.e., infinitely differentiable) 
map K: R” + Bm with K ( 0 )  = 0 and such that under the control law 
U = K ( x )  + U the new system 

B” , 
x = f ( x )  + G ( x ) u  

x = ( f ( x )  + G ( x ) K ( x ) )  + G(x)u  

is ISS, if and only if the system (1) is smoothly stabilizable, that is, 
there exists an (in general different) K so that 

x = f ( x )  + G ( x ) K ( x )  

is globally asymptotically stable (GAS). The necessity is a trivial con- 
sequence of our definition of ISS, which implies GAS, but the converse 
is somewhat harder to establish. (It is based essentially on using a new 
feedback U = K ( x )  - (VI/  .G)’  + U ,  where V is a suitably chosen 
Lyapunov function.) 

It is natural to ask if the same result can be proved for the more general 
system 

x = f ( x ,  U) (2) 

which is not necessarily linear in U. More precisely, we assume that 
x(r)  E R n ,  u( t )  E R m ,  that f is a differentiable (much less is needed) 
function from Rnfm into R” , and that 0 is an equilibrium point for the 
system, f ( 0 ,  0) = 0. Unfortunately, the result does not generalize. As a 
counterexample, let m = n = 1 and consider the system 

x = -x + u2x2. 

x = -x + ( K ( x )  + uyx2 

We claim that, for no possible feedback law K, can there hold for 

(3) 
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that: a) for U 1 and initial condi- 
tion x(0)  = 4 the solution remains bounded. Indeed, property a) implies 
that )K(x)I < I / &  for all x > 0, but then this implies that the right- 
hand side of (3) is positive for all x > 4, so the solution with x(0)  = 4 
diverges to +ca. So not even a very weak notion of input to state stability 
can be obtained for this example. 

However, if one allows instead more general feedback laws, of the 
type 

(4) 
where G is an n x n matrix of smooth functions invertible for all x ,  not 
necessarily the identity, then the theorem can be proved for the larger 
class of systems. This more general class of feedback laws is of some 
interest-for instance, it is the class used in most modern “geometric” 
nonlinear control-although it is not appropriate for solving the type of 
problem (Bezout-type coprime factorizations) that was of interest in [3]. 
One may weaken the concept of coprimeness, however, and then the 
generalized theorem becomes applicable in this area as well; this will be 
discussed later. 

In this note we establish the generalized result, for (2) under feedback 
laws (4). As an application, we give an alternative proof of a “folk” fact 
about dynamic extensions and a result which shows that GAS by itself 
is sufficient to guarantee a notion of ISS with “small controls.” Appli- 
cations to coprime factorizations and the local stabilization of cascaded 
systems are also given. As a corollary we show, using only elementary 
techniques, that any cascade of locally asymptotically stable systems is 
again asymptotically stable; no assumptions need to be made, as would be 
the case with center-manifold type of arguments. See [8] for a Lyapunov- 
theoretic proof of this, and [5] for a global version as well as further 
results. 

It should be remarked that global smoothness of control laws is in 
general a restrictive requirement; see [4] for a discussion of this point 
and references to the literature. 

0 the system is GAS, and b) for U 

U = K ( x )  + G(x)u 

11. DEFINITIONS AND STATEMENT OF RESULTS 
We recall the basic terminology from [3]. The function y: B>, + R>o 

is of class X if it is continuous strictly increasing and satisfiesy(0) =-0; 
it is of class X, if in addition y(s) + ca as s -+ ca. If y is of class 
X then the inverse function y-I is well defined and is again of class 
X,. A function (3: B>, x B>, + R>, is of class Xd: if for each fixed 
t the mapping (3( , t)% of c&s X acd for each fixed s it is decreasing 
to zero on t as t -+ ca. We use single bars 151 to denote Euclidean 
norm of states and controls, and use ))uII :=ess.sup. { lu( t ) l ,  t 2 0 )  for 
measurable essentially bounded controls. 

The system (2) is globally asymptotically stable (GAS)  if there exists 
a function b(s, t )  of class Xd: such that, with the control U 0, given 
any initial state 50 the solution exists for all t 2 0 and it satisfies the 
estimate 

Ix(t)l 5 P(lbl, 0 .  
The system is input to state stable ( I S S )  if there is a function (? of 
class Xd: and there exists a function y of class X such that for each 
measurable essentially bounded control U( . ) and each initial state 5 0 ,  
the solution exists for each t > 0 and furthermore it satisfies 

Ix(t)l 5 P(1501, t )  +r(llull). ( 5 )  
Since y(0) = 0, an ISS system is necessarily GAS; the latter is equiv- 

alent to the usual notion of asymptotic stability (‘‘E - 6” stability plus 
attractivity). The former says basically that for bounded initial state and 
control, a bounded trajectory results, and further (since (3 decays) that 
eventually the state is bounded by a function of the control alone (and 
this bound is small if the control is small). This is much stronger that 
asking GAS plus “bounded-point bounded-state” stability. To see this, 
take the system 

x = (sin2 U - I)X. 

This is “BIBS,” and with control U = 0 one has x = -x which is 
globally stable. However, with U 7r/2 trajectories do not become ulti- 
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that: a) for U 1 and initial condi- 
tion x(0)  = 4 the solution remains bounded. Indeed, property a) implies 
that )K(x)I < I / &  for all x > 0, but then this implies that the right- 
hand side of (3) is positive for all x > 4, so the solution with x(0)  = 4 
diverges to +ca. So not even a very weak notion of input to state stability 
can be obtained for this example. 

However, if one allows instead more general feedback laws, of the 
type 

(4) 
where G is an n x n matrix of smooth functions invertible for all x ,  not 
necessarily the identity, then the theorem can be proved for the larger 
class of systems. This more general class of feedback laws is of some 
interest-for instance, it is the class used in most modern “geometric” 
nonlinear control-although it is not appropriate for solving the type of 
problem (Bezout-type coprime factorizations) that was of interest in [3]. 
One may weaken the concept of coprimeness, however, and then the 
generalized theorem becomes applicable in this area as well; this will be 
discussed later. 

In this note we establish the generalized result, for (2) under feedback 
laws (4). As an application, we give an alternative proof of a “folk” fact 
about dynamic extensions and a result which shows that GAS by itself 
is sufficient to guarantee a notion of ISS with “small controls.” Appli- 
cations to coprime factorizations and the local stabilization of cascaded 
systems are also given. As a corollary we show, using only elementary 
techniques, that any cascade of locally asymptotically stable systems is 
again asymptotically stable; no assumptions need to be made, as would be 
the case with center-manifold type of arguments. See [8] for a Lyapunov- 
theoretic proof of this, and [5] for a global version as well as further 
results. 

It should be remarked that global smoothness of control laws is in 
general a restrictive requirement; see [4] for a discussion of this point 
and references to the literature. 
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Ix(t)l 5 P(1501, t )  +r(llull). ( 5 )  
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alent to the usual notion of asymptotic stability (‘‘E - 6” stability plus 
attractivity). The former says basically that for bounded initial state and 
control, a bounded trajectory results, and further (since (3 decays) that 
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that: a) for U 1 and initial condi- 
tion x(0)  = 4 the solution remains bounded. Indeed, property a) implies 
that )K(x)I < I / &  for all x > 0, but then this implies that the right- 
hand side of (3) is positive for all x > 4, so the solution with x(0)  = 4 
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However, if one allows instead more general feedback laws, of the 
type 

(4) 
where G is an n x n matrix of smooth functions invertible for all x ,  not 
necessarily the identity, then the theorem can be proved for the larger 
class of systems. This more general class of feedback laws is of some 
interest-for instance, it is the class used in most modern “geometric” 
nonlinear control-although it is not appropriate for solving the type of 
problem (Bezout-type coprime factorizations) that was of interest in [3]. 
One may weaken the concept of coprimeness, however, and then the 
generalized theorem becomes applicable in this area as well; this will be 
discussed later. 

In this note we establish the generalized result, for (2) under feedback 
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about dynamic extensions and a result which shows that GAS by itself 
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systems are also given. As a corollary we show, using only elementary 
techniques, that any cascade of locally asymptotically stable systems is 
again asymptotically stable; no assumptions need to be made, as would be 
the case with center-manifold type of arguments. See [8] for a Lyapunov- 
theoretic proof of this, and [5] for a global version as well as further 
results. 
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It should be remarked that global smoothness of control laws is in 
general a restrictive requirement; see [4] for a discussion of this point 
and references to the literature. 

0 the system is GAS, and b) for U 

U = K ( x )  + G(x)u 

11. DEFINITIONS AND STATEMENT OF RESULTS 
We recall the basic terminology from [3]. The function y: B>, + R>o 

is of class X if it is continuous strictly increasing and satisfiesy(0) =-0; 
it is of class X, if in addition y(s) + ca as s -+ ca. If y is of class 
X then the inverse function y-I is well defined and is again of class 
X,. A function (3: B>, x B>, + R>, is of class Xd: if for each fixed 
t the mapping (3( , t)% of c&s X acd for each fixed s it is decreasing 
to zero on t as t -+ ca. We use single bars 151 to denote Euclidean 
norm of states and controls, and use ))uII :=ess.sup. { lu( t ) l ,  t 2 0 )  for 
measurable essentially bounded controls. 

The system (2) is globally asymptotically stable (GAS)  if there exists 
a function b(s, t )  of class Xd: such that, with the control U 0, given 
any initial state 50 the solution exists for all t 2 0 and it satisfies the 
estimate 

Ix(t)l 5 P(lbl, 0 .  
The system is input to state stable ( I S S )  if there is a function (? of 
class Xd: and there exists a function y of class X such that for each 
measurable essentially bounded control U( . ) and each initial state 5 0 ,  
the solution exists for each t > 0 and furthermore it satisfies 

Ix(t)l 5 P(1501, t )  +r(llull). ( 5 )  
Since y(0) = 0, an ISS system is necessarily GAS; the latter is equiv- 

alent to the usual notion of asymptotic stability (‘‘E - 6” stability plus 
attractivity). The former says basically that for bounded initial state and 
control, a bounded trajectory results, and further (since (3 decays) that 
eventually the state is bounded by a function of the control alone (and 
this bound is small if the control is small). This is much stronger that 
asking GAS plus “bounded-point bounded-state” stability. To see this, 
take the system 

x = (sin2 U - I)X. 

This is “BIBS,” and with control U = 0 one has x = -x which is 
globally stable. However, with U 7r/2 trajectories do not become ulti- 

0018-9286/90/0400-0473$O1 .OO 0 1990 IEEE 

Eduardo introduced me to nonlinear 
robustness margins
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A SMOOTH CONVERSE LYAPUNOV THEOREM FOR ROBUST
STABILITY*

YUANDAN LINt, EDUARDO D. SONTAG$, AND YUAN WANG
Abstract. This paper presents a converse Lyapunov function theorem motivated by robust

control analysis and design. Our result is based upon, but generalizes, various aspects of well-
known classical theorems. In a unified and natural manner, it (1) allows arbitrary bounded time-
varying parameters in the system description, (2) deals with global asymptotic stability, (3) results
in smooth (infinitely differentiable) Lyapunov functions, and (4) applies to stability with respect to
not necessarily compact invariant sets.

Key words, nonlinear stability, stability with respect to sets, Lyapunov function techniques,
robust stability

AMS subject classifications. 93D05, 93D09, 93D20, 34D20

1. Introduction. This work is motivated by problems of robust nonlinear sta-
bilization. One of our main contributions is to provide a statement and proof of
a converse Lyapunov function theorem in a form particularly useful for the study of
such feedback control analysis and design problems. We provide a single (and natural)
unified result that

1. applies to stability with respect to not necessarily compact invariant sets;
2. deals with global (as opposed to merely local) asymptotic stability;
3. results in smooth (infinitely differentiable) Lyapunov functions;
4. most importantly, applies to stability in the presence of bounded time-varying

parameters in the system.
(This last property is sometimes called "total stability" and it is equivalent to the
stability of an associated differential inclusion.)

The interest in stability with respect to possibly noncompact sets is motivated by
applications to areas such as output control (one needs to stabilize with respect to the
zero set of the output variables) and Luenberger-type observer design ("detectability"
corresponds to stability with respect to the diagonal set {(x, x)}, as a subset of the
composite state/observer system). Such applications and others are explored in [16,
Chap. 5].

Smooth Lyapunov functions, as opposed to merely continuous or once-
differentiable ones, are required in order to apply "backstepping" techniques in which
a feedback law is built by successively taking directional derivatives of feedback laws
obtained for a simplified system. (See for instance [9] for more on backstepping de-
sign.)

Finally, the effect of parameter uncertainty and the study of associated Lyapunov
functions are topics of interest in robust control theory. An application of the result

Received by the editors December 9, 1993; accepted for publication (in revised form) August 6,
1994.
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Our main results will be two converse Lyapunov theorems. The first one is for
general closed, invariant sets and assumes completeness of the system.

THEOREM 2.8. Assume that the system (1) is complete. Let ,4 C_ IRn be a
nonempty, closed, invariant subset for this system. Then, (1) is UGAS with respect
to 4 if and only if there exists a smooth Lyapunov function V with respect to

The following result does not assume completeness but instead applies only to
compact A.

THEOREM 2.9. Let Jt C_ IR be a nonempty, compact, invariant subset for the
system (1). Then, (1) is UGAS with respect to Jt if and only if there exists a smooth
Lyapunov function V with respect to

3. Some preliminaries about UGAS. It will be useful to have a restatement
of the second condition in the definition of UGAS stated in terms of uniform attraction
times.

LEMMA 3.1. The uniform attraction property defined in Definition 2.2 is equiva-
lent to the following: there exists a family of mappings {Tr}r>0 with

for each fixed r > O, Tr lR>o ]R>o is continuous and is strictly decreas-
ing;
for each fixed > O, T(s) is (strictly) increasing as r increases and
lim__, T() ;

such that, for each d

(9) [x(t, xo, d)[A < whenever [xo[A < r and t >_ Tr().
Proof. Sufficiency is clear. Now we show the necessity part. For any r, > 0, let

Ar, e
def__ {T _> 0" V Ix0IA < T, Vt _> T, Vd M, Ix(t, x0, d)lA < } C_ lR>0._

(10)
Then from the assumptions, A, - 0 for any r, > 0. Moreover,

Ar,l C_ A,2 if 1 _< 2, and A2,
Now define r() dej inf A,. Then () < , for any r, > 0, and it satisfies

=’r(l) r(2), if 1 2, and r() =r2(), if ?1

_
?2.

So we can define for any r, > 0,

(11) () def 2

Since (.) is decreasing, (.)is well defined and is locally absolutely continuous.
Also

(12) r() >_ _2 (s) ds
c/2

Furthermore,

ds

(3)

Eduardo led the renaissance of converse 
Lyapunov theorems 



7

Eduardo has an uncanny knack for 
anticipating what we will need later



�̇ ∈ F(�)

�̇ ∈ F(�) � ∈ C
�+ ∈ G(�) � ∈ D

8

The jump from nonlinear

to hybrid systems

Where’s the impact?  
And, along the way, we see Eduardo’s impact.



x = (ξ, q, �, τ, . . .) ∈x = (ξ, q, �, τ, . . .) ∈ Rn

x = (ξ, q, �, τ, . . .) ∈ Rn

x = (ξ, q, �, τ, . . .) ∈ Rn

x = (ξ, q, �, τ, . . .) ∈ Rn

A compact model takes us from nonlinear to hybrid

9

physical variables timers logic states counters

 The state

 Continuous change

 Instantaneous change
how

how

where

where

x = (ξ, τ, q, �, . . .) ∈ Rn

x ∈ C

x ∈ D

ẋ ∈ F (x)

x+ ∈ G(x) x1

x2 ẋ = f(x)

x+ = g(x)

C ∩D

C

D

ẋ ∈ F (x)

x+∈G(x)



NETWORK

PLANT

DAC ADC

Controller
node

Sensor
node

Actuator
node

Networked control 
systems 

10

Networks of impulsive biological oscillators 

Sample-and-hold control 

Automated traffic systems

Billiards

Walking robots

Mechanical systems 
w/ impacts

Hybrid systems appear in nature & control
Digital control 

systems



C

F(�)

D

G(�)

Dσ = {� : (�+ σ(�)B) ∩D �= ∅}

Gσ(�) = G ((�+ σ(�)B) ∩D) + σ(�)B

Fσ(�) = coF ((�+ σ(�)B) ∩ C) + σ(�)B

11

Under weak regularity conditions, asymptotic 
stability has nonzero robustness margins

Robustness margins accommodate many corollaries

 Linearization principle
 Reduction principle
 Averaging theory

 Singular perturbations
 Small perturbations
 Converse Lyapunov theorems

(also uses Proposition 7)

Cσ = {� : (�+ σ(�)B) ∩ C �= ∅}

Goebel/T. 
Automatica 2006



�∇V (x), f� ≤ −V (x) ∀x ∈ C , f ∈ F (x)

V (g) ≤ exp(−1)V (x) ∀x ∈ D , g ∈ G(x)

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ Rn

∃α1, α2 ∈ K∞ :

If the compact set A is GAS then
there exists a (exponentially decreasing)
smooth, global Lyapunov function.

12

Lyapunov functions are natural for hybrid systems

Cai/Goebel/T. IEEE TAC 2008



The compact set A is GAS if
1) there exists a weak, global Lyapunov function and
2) no solution with a unbounded domain makes the
Lyapunov function remain at a positive constant.

13

Like for classical systems, the invariance principle 
can be used as the basis for stability analysis

�∇V (x), f� ≤ 0 x ∈ C , f ∈ F (x)

V (g)− V (x) ≤ 0 x ∈ D , g ∈ G(x)

A weak, global Lyapunov function has 
weakened decrease conditions:

Sanfelice/Goebel/T. IEEE TAC 2007



�+ = −�
� =
�
θ
θ̇

�
z =
�
θ
θ̇

�

z+ = −z

(�− qz)+ = −�− (−q)z = −(�− qz)
(�− qz)+ = �− (−q)(−z) = �− qz

θ̈ = ƒ (θ, θ̇) + τθ̈ = ƒ (θ, θ̇)

θθ

14

Converse Lyapunov theorems motivate 
Lyapunov-based hybrid feedback algorithms 

V(q, z,�) =W(�− qz)

W(e) =W(−e)

W a CLF for 
double integrator

 

 

q+ = −q
q ∈ {−1,1}�− qz

Goal: regulate

Forni/Zaccarian/T. 
IEEE CDC 2011 (s)
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This hybrid feedback approach to 
tracking extends to billiard systems

First note that the naive, non-hybrid tracking 
approach fails miserably ...
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Lyapunov-based hybrid strategy has no difficulty



17

3D pendulum

Rigid body 
dynamics

Backstepping of Lyapunov-based hybrid 
feedbacks is often possible

... including global stabilization for systems 
evolving on compact manifolds.



ż = ψ(z)�
�̇ = �

�
(z,�) ∈ M×Rm e.g.,M = Sn, SO(3), ...

18

Algorithms based on ``synergistic potentials’’ 
provide an illustration

�V(q, z) := Vq(z)−min
s∈Q

Vs(z) > δ > 0

Synergy condition on a family of potential functions:

ψ(z)T∇Vq(z) = 0, (q, z) /∈ A =⇒

Mayhew/Sanfelice/T. ACC 2011 

“synergy gap”
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M = S1

Vq(cos(θ), sin(θ)) vs. θ

ψ(z) =
�

z2
−z1

�

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

�V(q, z) := Vq(z)−min
s∈Q

Vs(z) > δ > 0

Synergy condition on a family of potential functions:

ψ(z)T∇Vq(z) = 0, (q, z) /∈ A =⇒



ż = ψ(z)�
�̇ = �

�
(z,�) ∈ M×Rm e.g.,M = Sn, SO(3), ...

20

� = −ψ(z)T∇Vq(z)
C = {(q, z) ∈ Q×M : �V(q, z) ≤ δ}
D = {(q, z) ∈ Q×M : �V(q, z) ≥ δ}

Gc(z) = {s ∈ Q : �V(s, z) = 0}

W(q, z) = Vq(z)

Hybrid controller (no backstepping)

Lyapunov function:

�V(q, z) := Vq(z)−min
s∈Q

Vs(z) > δ > 0

Synergy condition on a family of potential functions:

ψ(z)T∇Vq(z) = 0, (q, z) /∈ A =⇒



ż = ψ(z)�
�̇ = �

�
(z,�) ∈ M×Rm e.g.,M = Sn, SO(3), ...

21

Gc(z) = {s ∈ Q : �V(s, z) = 0}

W(q, z) = Vq(z) + 0.5�T�

� = −ψ(z)T∇Vq(z)− �

D = {(q, z) ∈ Q×M : �V(q, z) ≥ δ}×Rm

C = {(q, z) ∈ Q×M : �V(q, z) ≤ δ}×Rm

Hybrid controller (backstepping)

Lyapunov/LaSalle function:

�V(q, z) := Vq(z)−min
s∈Q

Vs(z) > δ > 0

Synergy condition on a family of potential functions:

ψ(z)T∇Vq(z) = 0, (q, z) /∈ A =⇒
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Even nonstandard 
problems fit into a 
Lyapunov/LaSalle 

framework

Liveness/safety via asymptotic 
stability and robustness.

Hybrid relaxes synchronicity 
assumptions.
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The jump from nonlinear 
to hybrid systems:

 where’s the impact?

We can systematically approach problems 
that we could not touch before, using tool 
with which we are very familiar.

Full-scale systems, products, $$, ...  ???

What is much clearer is Eduardo’s 
impact on the recent developments 
in the field, which is extensive.

0

b(|�|)γ(|�|) = σ(|�|)
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Our main results will be two converse Lyapunov theorems. The first one is for
general closed, invariant sets and assumes completeness of the system.

THEOREM 2.8. Assume that the system (1) is complete. Let ,4 C_ IRn be a
nonempty, closed, invariant subset for this system. Then, (1) is UGAS with respect
to 4 if and only if there exists a smooth Lyapunov function V with respect to

The following result does not assume completeness but instead applies only to
compact A.

THEOREM 2.9. Let Jt C_ IR be a nonempty, compact, invariant subset for the
system (1). Then, (1) is UGAS with respect to Jt if and only if there exists a smooth
Lyapunov function V with respect to

3. Some preliminaries about UGAS. It will be useful to have a restatement
of the second condition in the definition of UGAS stated in terms of uniform attraction
times.

LEMMA 3.1. The uniform attraction property defined in Definition 2.2 is equiva-
lent to the following: there exists a family of mappings {Tr}r>0 with

for each fixed r > O, Tr lR>o ]R>o is continuous and is strictly decreas-
ing;
for each fixed > O, T(s) is (strictly) increasing as r increases and
lim__, T() ;

such that, for each d

(9) [x(t, xo, d)[A < whenever [xo[A < r and t >_ Tr().
Proof. Sufficiency is clear. Now we show the necessity part. For any r, > 0, let

Ar, e
def__ {T _> 0" V Ix0IA < T, Vt _> T, Vd M, Ix(t, x0, d)lA < } C_ lR>0._

(10)
Then from the assumptions, A, - 0 for any r, > 0. Moreover,

Ar,l C_ A,2 if 1 _< 2, and A2,
Now define r() dej inf A,. Then () < , for any r, > 0, and it satisfies

=’r(l) r(2), if 1 2, and r() =r2(), if ?1

_
?2.

So we can define for any r, > 0,

(11) () def 2

Since (.) is decreasing, (.)is well defined and is locally absolutely continuous.
Also

(12) r() >_ _2 (s) ds
c/2

Furthermore,

ds

(3)

 

 


