Towards a Unified View of Communication and Control

Sanjoy K. Mitter MIT

Talk on the occasion of the Sontagfest May 24, 2011

Sanjoy K. Mitter

May, 2011

Slides courtesy of Sekhar Tatikonda

Tatikonda, S. and Mitter, S.K., "The Capacity of Channels with Feedback," *IEEE Trans. on Info. Theory*, Vol. 55, January 2009 Agarwal, M., Sahai, A. and Mitter, S.K., "Coding into a source: a direct inverse rate-distortion theorem," Allerton Conference Proceedings 2006, full journal version is in preparation, 2008.

Borkar, V.S., Mitter, S.K. and Venkatesh, S.R., "Variations on a theme by Neyman and Pearson," *Sankhya*, Volume 66, Part 2, pp. 292-305, May 2004.

Borkar, V.S., Konda, V.R. and Mitter, S.K., "On De finetti Coherence and Kolmogorov Probability," Stat. Prob. Lett. 66 (2004) pp. 417-421.

Borkar, V.S., Tatikonda, S. and Mitter, S.K., "Markov Control Problems Under Communication Constraints," *Comm. Inf. Sys.* Vol. 1., No. 1., pp. 15-32

Borkar, V.S., Mitter, S.K., Sahai, A. and Tatikonda, S., "Sequential Source Coding: An Optimization Viewpoint," in IEEE Conference Proceedings, CDC-ECC 2005, Seville, Spain.

Mitter, S.K., "Control with Limited Information," Eur. Jrn. Control, Vol. 7, pp. 122-131, December 2000.

Mitter, S.K. and Newton, N., "Variational Bayes and a Problem of Reliable Communication I: Finite Systems," *Comm. in Inf. and Sys.*, Vol. 10, No. 3, pp. 155-182, 2010.

Mitter, S.K. and Newton, N., "Variational Bayes and a Problem of Reliable Communication II: Infinite Systems," submitted to Annals of Applied *Probability*, 2010.

Mitter, S.K. and Newton, N., "A Variational Approach to Nonlinear Estimation," SIAM Jrn. on Control, Volume 42, Number 5 (2004), pp. 1813-1833.

Mitter, S.K. and Newton, N.J., "Information and Entropy Flow in the Kalman-Bucy Filter," J. of Stat. Phys., Vol. 118, Nos. 1/2, January 2005.

Mitter, S.K., and Tatikonda, S., "Control over Noisy Channels," *IEEE Trans. on Auto. Control*, Vol. 49, July 2004, pp. 1196-1201.

Mitter, S.K., and Tatikonda, S., "Control under Communication Constraints," IEEE Trans. on Auto. Control, Vol. 49, July 2004, pp. 1056-1068.

Sahai, A. and Mitter, S.K., "The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link, Part I: Scalar Systems," *IEEE Trans. on Inf. Theory*, Vol. 52, No. 8, pp. 3369-3395, August 2006.

Sahai, A. and Mitter, S.K., "The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link, Part II: Vector Systems," under revision, *IEEE Trans. on Inf. Theory*, April 2007.

Tatikonda, S. and Mitter, S.K. "The Capacity of Channels with Feedback," *IEEE Trans. on Info. Theory*, Vol. 55, p. 323-349, January 2009.

Tatikonda, S., Sahai, A. and Mitter, S.K., "Stochastic Linear Control Over a Communication Channel," *IEEE Trans. on Auto Control,* Special Issue on Networked Control Systems, Vol.49, Sept. 2004, pp. 1549-1561.

May, 2011

Shannon Picture

Source Encoder: Compression Channel Encoder: Expansive Map

- Source Coding Theorem
- Noisy Channel Coding Theorem
- Source Channel Separation
- Can recover message with probability of error going to zero (block length $\longrightarrow \infty$), provided

R < C, C = capacity

- R > C, cannot recover message with probability of error $\rightarrow 0$
- Separation architecture

Feedback Communication Problems

- Feedback from output of the channel to input of the channel encoder
- Causality
- Can we use the language and machinery of ergodic partially observed stochastic control to understand fundamental limitations of feedback communication problems?

• Objective: maximize number of messages subject to small error probability: $P(m \neq \hat{m})$

- Shannon's theorem: C = max_{P(X)}I(X; Y)
 single letter characterization
- If no memory (or state) then feedback does not increase capacity

May, 2011

- With feedback one can adapt the channel input symbol. Use code-functions: $X_t = F_t(Y^{t-1})$
- Time order of event. non-causal: M, X₁, X₂, ..., X_T, Y₁, Y₂, ..., Y_T, M causal: M, X₁, Y₁, X₂, Y₂, ..., X_T, Y_T, M
- Every message is assigned a sequence of code-functions $F_1, F_2, ..., F_T$ (as opposed to a codeword.)

May, 2011

- A general *causal* channel has the form: $P(Y_t | X^t, Y^{t-1})$
- $P(Y_t | F^t, Y^{t-1}) = P(Y_t | X_1 = F_1, X_2 = F_2(Y_1), ..., X_t = F_t(Y^{t-1}), Y^{t-1})$
- The "F Y" channel has no feedback

With feedback: C = $\lim_{T \to \infty} \max_{P(F^T)} 1/T I(F^T; Y^T)$ (both modulo information stability issues)

• Difficult optimization which does not give us much insight

May, 2011

- $I(X^T; Y^T) = H(Y^T) \sum_t H(Y_t \mid X^T, Y^{t-1}) = \sum_t I(X^T; Y_t \mid Y^{t-1})$
 - note dependence on future X's
 - Massey: "statistical dependence, unlike causality, has no inherent directivity."
- Massey's directed information, further developed by Kramer:

 $I(X^{\mathsf{T}} \rightarrow Y^{\mathsf{T}}) = H(Y^{\mathsf{T}}) - \sum_{t} H(Y_t \mid X^{t}, Y^{t-1}) = \sum_{t} I(X^{t}; Y_t \mid Y^{t-1})$

- $I(X^T \rightarrow Y^T) = H(Y^T) \sum_t H(Y_t \mid X^t, Y^{t-1})$
- Consider example from before: $P(Y_t | X_t) = P(Y_t)$ with feedback coding $X_t = Y_{t-1}$ then $I(X^T \rightarrow Y^T) = H(Y^T) - \sum_t H(Y_t | X^t, Y^{t-1})$ $= H(Y^T) - \sum_t H(Y_t)$ = 0
- By DPI: $I(M; Y^T) = I(F^T; Y^T) \le I(X^T; Y^T)$ Message is not in one-to-one relation with X^T

- I(X^T; Y^T) = I(X^T \rightarrow Y^T) + I(Y^T \rightarrow X^T) conservation of information
- I(X^T; Y^T) \geq I(X^T \rightarrow T^T) with equality if and only if there is no feedback
- Directed information preserves causality, it is not symmetric

• Coding theorem [Tat00] (based on Verdu/Han):

 $C = \sup_{\{P(X_t \mid X^{t-1}, Y^{t-1})\}} \text{ limit in prob } 1/T i(X^T \rightarrow Y^T)$

• Full-fledged coding theorem: both direct and converse; explicit construction of code-function distribution; and error exponent analysis. Can allow for arbitrary causal, deterministic feedback.

- How to compute!
- Two problems:
 - not information stable
 - not a single-letter characterization
- [Tat00] proposed an approach that *simultaneously* insured information stability and a single-letter characterization.
- Idea: Formulate optimization as an infinite horizon average cost Markov decision control problem.

May, 2011

- How to model memory in channels?
- General causal channel: P(Y_t | X^t, Y^{t-1})
- Need a compact representation
- Need stationarity (if we hope to calculate anything)

• A Markov Channel consists of: $P(S_1)$

(1) state transition: $P(S_{t+1} | S_t, X_t)$

(2) channel output: $P(Y_t | S_t, X_t)$

- If $P(S_{t+1} | S_t, X_t)$ is independent of X_t then non-ISI channel
- Assume time invariant (stationary)
- Time order: M, S₁, X₁, Y₁, S₂, X₂, Y₂, ..., S_T, X_T, Y_T, M

- •Time order: M, S₁, X₁, Y₁, S₂, X₂, Y₂, ..., S_T, X_T, Y_T, M
- Information pattern:
 - Tx: subset of (S^t, X^{t-1}, Y^{t-1})
 - Rx: subset of (S^t, Y^{t-1})
 - Nested information patterns
- Code-functions: X_t = f_t(S^t, Y^{t-1}) (don' t need X^{t-1})
- What is the difference between side-information and feedback?

A Quick Review of Dynamic Programming

- Sequential optimization.
 - State: S_t
 - Action: U_t
 - Dynamics: P(S_{t+1} | S_t, U_t)
 - Action:
 - Policy: $S_t \mapsto U_t$
 - Running cost: $c(S_t, U_t)$
- Infinite horizon average cost problem: sup liminf 1/T E[$\sum_t c(S_t, U_t)$]
- ACOE: Find J and w(s) that solve:

$$J + w(s) = max_u c(s, u) + \sum_{s+} P(s_+ | s, u) w(s_+)$$

then J is optimal cost and $u^*(s)$ is optimal policy.

Dynamic Programming Formulation

- ISI Markov Channel: $P(S_1)$, $P(S_{t+1} | S_t, X_t)$, $P(Y_t | S_t, X_t)$
- I(X^T \rightarrow Y^T, S^T) = \sum_{t} I(X_t; Y_t, S_{t+1} | S_t)
- $I(X_t; Y_t, S_{t+1} | S_t) = I(X_t; Y_t | S_t) + I(X_t; S_{t+1} | Y_t, S_t)$
- Dynamic programming framework:
 - state: S_t
 - action: $P(X_t)$
 - policy: $S_t \mapsto P(X_t)$, i.e. $P(X_t \mid S_t)$
 - running cost: $I(X_t; Y_t, S_{t+1} | S_t = s_t) = c(P(X_t), s_t)$
- Infinite horizon average cost problem:

```
sup liminf 1/T E[ \sum_{t} c(P(X_t), S_t)]
```

DP Formulation – Part 2

- Markov Channel: $P(S_1)$, $P(S_{t+1} | S_t, X_t)$, $P(Y_t | S_t, X_t)$
- Running cost: c($P(X_t)$, s_t) = $I(X_t; Y_t, S_{t+1} | S_t = s_t)$
- Infinite horizon average cost problem:

sup liminf 1/T E[$\sum_{t} c(P(X_t), S_t)$]

• ACOE [Tat00]: If there exists a C and a w(S) such that \forall s:

 $C + w(s) = \max_{P(X)} \{ I(X; Y, S_+ | s) + \sum_{x,s_+} w(s_+) P(s_+ | x, s) P(x) \}$

then C is the capacity of the ISI Markov channel. P(X|S) optimal input distribution.

- Remarks:
 - Implicit single-letter characterization
 - If no ISI, ACOE becomes trivial
 - Multiplex between different codebooks indexed by S

DP Formulation – Part 3

- C + w(s) = max_{P(X)}{ I(X; Y, S₊ | s) + $\sum_{x,s_+} w(s_+) P(s_+ | x, s) P(x | s)$ }
- When does a solution to the ACOE exist? We need to insure ergodicity under the optimal policy.
- One sufficient condition is: || $P(S_+ | S=s_1, X=x_1) - P(S_+ | S=s_2, X=x_2) ||_{TV} < 1 \quad \forall s_1, s_2, x_1, x_2$

• example:
$$P(s_{+}|s, x) > 0 \quad \forall s, x, s_{+}$$

• Related to Gallager's indecomposability: $\exists t s.t. \parallel P(S_{t+1} \mid X^t=x^t, S_1=a) - P(S_{t+1} \mid X^t=x^t, S_1=b) \parallel_{TV} < 1 \forall x^t, a, b$

(in our setting this depends on the policy)

• Our sufficient condition insures that under any P(X|S) the closed loop dynamic has a unique ergodic measure.

$$P(S_{t+1} | S_t) = \sum_{x} P(S_{t+1} | S_t, x) P(x | S_t)$$

May, 2011

Markov Channel with Output Feedback

- Markov channel: $P(S_1)$, $P(S_{t+1} | S_t, X_t)$, $P(Y_t | S_t, X_t)$.
- Now assume the state is not observed by either Tx or Rx. There is only output feedback. (Recall if state is known output feedback will not increase capacity.)
- At the beginning of the *t*-th epoch the

Tx knows (X^{t-1}, Y^{t-1}) and Rx knows Y^{t-1}

Note that the Rx's information pattern is nested in the Tx's information pattern. Find sufficient statistics (before it was S_{t} .)

• Input distribution has the form: $P(X_t | X^{t-1}, Y^{t-1})$

May, 2011

• Use output feedback to estimate state at the encoder:

 $\Pi_{t}[X^{t-1}, Y^{t-1}] = \mathsf{P}(\mathsf{S}_{t} \mid X^{t-1}, Y^{t-1})$

- There exists a policy independent function Φ_{Π} such that

$$\Pi_{t+1} = \Phi_{\Pi}(\Pi_t, X_t, Y_t).$$

This can be computed recursively at the Tx.

- Note that the statistic Π depends on information from both the Tx and the Rx

- Think of the pair (X_t, Π_t) as the input. The Rx does not know Π_t .
- Issue of dual effect. Even if underlying channel, $P(S_{t+1} | S_t)$, does not have ISI it is generically the case that the corresponding Π_t process *does* depend on the inputs:

$$\mathsf{P}(\Pi_{t+1} | \Pi_t, X_t) = \sum_{s,y} \{ \Pi_{t+1} = \Phi_{\Pi}(\Pi_t, X_t, y) \} \mathsf{P}(y | s, X_t) \Pi_t(s)$$

May, 2011

• Tx: (X^{t-1}, Y^{t-1}, Π_t), Rx: Y^{t-1}

- Goal: supremize 1/T $\sum_{t} I(X_t, \Pi_t; Y_t \mid Y^{t-1})$
- Rx needs estimate of Tx's estimate of the state:

$$\Gamma_{t}[\mathsf{Y}^{t-1}] = \mathsf{P}(\Pi_{t} \mid \mathsf{Y}^{t-1})$$

- note: not P(S_t | Y^{t-1})
- There exists a policy independent function Φ_{Γ} such that

$$\Gamma_{t+1} = \Phi_{\Gamma}(\Gamma_t, \Upsilon_t).$$

This can be computed at both the Tx and Rx.

May, 2011

• Before: Tx: (X^{t-1}, Y^{t-1}), Rx: Y^{t-1}

Now: Tx: (Π_t, Γ_t) , Rx: Γ_t

• Before: supremize $1/T \sum_{t} I(X^{t}; Y_{t} | Y^{t-1})$ Now: supremize $1/T \sum_{t} I(X_{t}, \Pi_{t}; Y_{t} | \Gamma_{t})$

• Separation structure between estimation and coding. Great simplification (though still complicated....)

• Theorem [Tat05]: If there exists a bounded number C, a bounded function w: $\Gamma \mapsto R$, and a policy achieving the supremum for each $\Gamma = \gamma$ in the following ACOE:

$$\begin{array}{l} \mathsf{C} + \mathsf{w}(\gamma) = \\ \sup_{\mathsf{P}(\mathsf{X}, \Pi)} \left(\mathsf{I}(\mathsf{X}, \Pi; \mathsf{Y} \mid \gamma) + \int \mathsf{w}(\Gamma_{+}) \mathsf{P}(\mathsf{d}\Gamma_{+} \mid \gamma, \mathsf{P}(\mathsf{X}, \Pi)) \right) \end{array}$$

Then C is the capacity.

Verification Theorem

In control problems with extensive sensing (vision sensor in feedback loop), control needs to act on "information" instead of signals.

Natural role for coding and decoding.