LIE BRACKETS AND STABILITY OF SWITCHED SYSTEMS

Daniel Liberzon

Coordinated Science Laboratory and Dept. of Electrical & Computer Eng., Univ. of Illinois at Urbana-Champaign

SWITCHED SYSTEMS

Switched system:

$$\dot{x} = f_{\sigma}(x)$$

- $\dot{x} = f_p(x), \ p \in \mathcal{P}$ is a family of systems
- $\sigma:[0,\infty)
 ightarrow \mathcal{P}$ is a switching signal

Switching can be:

- State-dependent or time-dependent
- Autonomous or controlled

Details of discrete behavior are "abstracted away"

Discrete dynamics \rightarrow classes of switching signals

Properties of the continuous state x: stability

STABILITY ISSUE

Asymptotic stability of each subsystem is not sufficient for stability

GLOBAL UNIFORM ASYMPTOTIC STABILITY

GUAS is Lyapunov stability

$$\forall \varepsilon \ \exists \delta \ |x(0)| \leq \delta \Rightarrow |x(t)| \leq \varepsilon \ \forall t \geq 0, \forall \sigma$$

plus asymptotic convergence

$$\forall \varepsilon, \delta \exists T | x(0) | \leq \delta \Rightarrow | x(t) | \leq \varepsilon \forall t \geq T, \forall \sigma$$

GUES: $|x(t)| \leq ce^{-\lambda t} |x(0)| \quad \forall t \geq 0, \forall \sigma$

COMMUTING STABLE MATRICES => GUES

 $\mathcal{P} = \{1, 2\}, \ A_1 A_2 = A_2 A_1$

(commuting Hurwitz matrices)

For > 2 subsystems – similarly

COMMUTING STABLE MATRICES => GUES

Alternative proof:

∃ quadratic common Lyapunov function [Narendra–Balakrishnan '94]

$$P_{1}A_{1} + A_{1}^{T}P_{1} = -I$$

$$P_{2}A_{2} + A_{2}^{T}P_{2} = -P_{1}$$

$$\vdots$$

$$P_{m}A_{m} + A_{m}^{T}P_{m} = -P_{m-1}$$

 $x^T P_m x$ is a common Lyapunov function

LIE ALGEBRAS and STABILITY Lie algebra: $\mathfrak{g} = \{A_p : p \in \mathcal{P}\}_{LA}$ Lie bracket: $[A_1, A_2] = A_1A_2 - A_2A_1$

Nilpotent means suff. high-order Lie brackets are 0 e.g. $[A_1, [A_1, A_2]] = [A_2, [A_1, A_2]] = 0$

Nilpotent \Rightarrow GUES [Gurvits '95]

SOLVABLE LIE ALGEBRA => GUES Lie's Theorem: g is solvable \Rightarrow triangular form

$$A_p = \begin{pmatrix} \lambda_1 & \cdots & * \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}$$

Example:

$$A_1 = \begin{pmatrix} -a_1 & b_1 \\ 0 & -c_1 \end{pmatrix}, \ A_2 = \begin{pmatrix} -a_2 & b_2 \\ 0 & -c_2 \end{pmatrix}$$

$$\dot{x}_{2} = -c_{\sigma}x_{2} \Rightarrow x_{2} \to 0 \text{ exponentially fast}$$
$$\dot{x}_{1} = -a_{\sigma}x_{1} + b_{\sigma}x_{2} \Rightarrow x_{1} \to 0 \text{ exp fast}$$
$$\downarrow 0$$

 \exists quadratic common Lyap fcn $x^T D x$, D diagonal [L–Hespanha–Morse '99], see also [Kutepov '82]

MORE GENERAL LIE ALGEBRAS

Levi decomposition: $\mathfrak{g} = \mathfrak{r} \oplus \mathfrak{s}$ \uparrow radical (max solvable ideal)

- \mathfrak{s} is compact (purely imaginary eigenvalues) \Rightarrow GUES, quadratic common Lyap fcn
- \mathfrak{s} is not compact \Rightarrow not enough info in Lie algebra:

There exists one set of stable generators for \mathfrak{g} which gives rise to a GUES switched system, and another which gives an unstable one

[Agrachev–L '01]

SUMMARY: LINEAR CASE

Lie algebra $\{A_p, p \in \mathcal{P}\}_{LA}$ w.r.t. $[A_1, A_2] = A_1A_2 - A_2A_1$

Assuming GES of all modes, GUES is guaranteed for:

- commuting subsystems: $[A_p, A_q] = 0 \ \forall p, q \in \mathcal{P}$
- nilpotent Lie algebras (suff. high-order Lie brackets are 0) $\bigcap \qquad e.g. \quad [A_1, [A_1, A_2]] = [A_2, [A_1, A_2]] = 0$
- solvable Lie algebras (triangular up to coord. transf.)
- solvable + compact (purely imaginary eigenvalues)

Quadratic common Lyapunov function exists in all these cases Extension based only on the Lie algebra is not possible

SWITCHED NONLINEAR SYSTEMS

Lie bracket of nonlinear vector fields:

$$[f_1, f_2] := \frac{\partial f_2}{\partial x} f_1 - \frac{\partial f_1}{\partial x} f_2$$

Reduces to earlier notion for linear vector fields (modulo the sign)

SWITCHED NONLINEAR SYSTEMS

• Commuting systems

$$[f_p, f_q] = 0 \Rightarrow \text{GUAS}$$

Can prove by trajectory analysis [Mancilla-Aguilar '00] or common Lyapunov function [Shim et al. '98, Vu–L '05]

Linearization (Lyapunov's indirect method)

$$A_p = \frac{\partial f_p}{\partial x}(0), \ p \in \mathcal{P}$$

• Global results beyond commuting case – ?

[Unsolved Problems in Math. Systems and Control Theory, '04]

SPECIAL CASE

 f_1, f_2 globally asymptotically stable

$$[f_1, [f_1, f_2]] = [f_2, [f_1, f_2]] = 0$$

Want to show:
$$\dot{x} = f_{\sigma}(x), \ \sigma \in \{1,2\}$$
 is GUAS

Will show: differential inclusion

$$\dot{x} \in \operatorname{co}\{f_1(x), f_2(x)\}$$

is GAS

OPTIMAL CONTROL APPROACH

Associated control system:

$$\dot{x} = f(x) + g(x)u$$

where
$$f := f_1$$
, $g := f_2 - f_1$, $u \in [0, 1]$

(original switched system $\leftrightarrow u \in \{0, 1\}$)

Worst-case control law [Pyatnitskiy, Rapoport, Boscain, Margaliot]:

fix x_0 and small enough t_f

$$|x(t_f)|^2 \to \max_u$$

MAXIMUM PRINCIPLE

$$H(x, u, \lambda) = \lambda^T f(x) + \underbrace{\lambda^T g(x)}_{\varphi} u$$
(along optimal trajectory)

Optimal control:

u(t) = 0 if $\varphi(t) < 0$, u(t) = 1 if $\varphi(t) > 0$ $\dot{\varphi} = \lambda^T [f, g], \quad \ddot{\varphi} = \lambda^T [f, [f, g]] + \lambda^T [g, [f, g]] u = 0$ \downarrow φ is linear in t $\downarrow \downarrow$ (unless $\varphi \equiv 0$) at most 1 switch GAS

GENERAL CASE

$$\dot{x} = f(x) + \sum_{k=1}^{m} g_k(x)u_k$$
$$\varphi_{ij} := \lambda^T (g_i(x) - g_j(x))$$

Want: φ_{ij} polynomial of degree < r

 \Downarrow (proof – by induction on m)

bang-bang with
$$(r+1)^m - 1$$
 switches
 $\downarrow \downarrow$
GAS

See [Margaliot-L'06] for details; also [Sharon-Margaliot'07]

REMARKS on LIE-ALGEBRAIC CRITERIA

- Checkable conditions

Independent of representation

• Not robust to small perturbations

In any neighborhood of any pair of $n \times n$ matrices there exists a pair of matrices generating the entire Lie algebra $gl(n, \mathbb{R})$ [Agrachev–L'01]

How to capture closeness to a "nice" Lie algebra?

ROBUST CONDITIONS[Agrachev-Baryshnikov-L'10] $\dot{x}(t) = A_{\sigma(t)}x(t)$ $\{A_p : p \in \mathcal{P}\}$ compact set of Hurwitz matricesGUES:Lie algebra: $|x(t)| \le ce^{-\lambda t} |x_0| \quad \forall t, x_0, \sigma(\cdot)$ $\mathfrak{g} := \{A_p : p \in \mathcal{P}\}_{LA}$

Levi decomposition: $\mathfrak{g} = \mathfrak{r} \oplus \mathfrak{s}$ (\mathfrak{r} solvable, \mathfrak{s} semisimple)

$$A_p = R_p + S_p, \quad R_p \in \mathfrak{r}, \quad S_p \in \mathfrak{s} \quad \forall \, p \in \mathcal{P}$$

Switched transition matrix splits as $\Phi(t) = \Phi_S(t)\Phi_R(t)$ where $\dot{\Phi}_S(t) = S_{\sigma(t)}\Phi_S(t)$ and $\dot{\Phi}_R(t) = \left(\Phi_S^{-1}(t)R_{\sigma(t)}\Phi_S(t)\right)\Phi_R(t)$

Let $\bar{\lambda}_R := \max_{p \in \mathcal{P}} \operatorname{Re} \lambda(R_p)$ and $\lambda_S^* := \limsup_{t \to \infty} \frac{1}{t} \log \|\Phi_S(t)\|$

$$\bar{\lambda}_R + \lambda_S^* < \mathbf{0} \implies \mathsf{GUES}$$

robust condition but not constructive

ROBUST CONDITIONS[Agrachev-Baryshnikov-L '10] $\dot{x}(t) = A_{\sigma(t)}x(t)$ $\{A_p : p \in \mathcal{P}\}$ compact set of Hurwitz matricesGUES:Lie algebra: $|x(t)| \leq ce^{-\lambda t} |x_0| \quad \forall t, x_0, \sigma(\cdot)$ $\mathfrak{g} := \{A_p : p \in \mathcal{P}\}_{LA}$

Levi decomposition: $\mathfrak{g} = \mathfrak{r} \oplus \mathfrak{s}$ (\mathfrak{r} solvable, \mathfrak{s} semisimple)

$$A_p = R_p + S_p, \quad R_p \in \mathfrak{r}, \quad S_p \in \mathfrak{s} \quad \forall \, p \in \mathcal{P}$$

Switched transition matrix splits as $\Phi(t) = \Phi_S(t)\Phi_R(t)$ where $\dot{\Phi}_S(t) = S_{\sigma(t)}\Phi_S(t)$ and $\dot{\Phi}_R(t) = \left(\Phi_S^{-1}(t)R_{\sigma(t)}\Phi_S(t)\right)\Phi_R(t)$

Let $\overline{\lambda}_R := \max_{p \in \mathcal{P}} \operatorname{Re} \lambda(R_p)$ and $\widehat{\lambda}_S := \max\{\|S_p\| : p \in \mathcal{P}\}$

$$ar{\lambda}_R + \hat{\lambda}_S < 0 \implies \text{GUES}$$

more conservative but easier to verify

There are also intermediate conditions

ROBUST CONDITIONS [Agrachev–Baryshnikov–L '10] Levi decomposition:

 $A_p = R_p + S_p, \quad R_p \in \mathfrak{r}, \quad S_p \in \mathfrak{s} \quad \forall p \in \mathcal{P}$ Switched transition matrix splits as $\Phi(t) = \Phi_S(t)\Phi_R(t)$ Previous slide: $||S_p||$ small \implies GUES But we also know: \mathfrak{s} compact Lie algebra (not nec. small) \Longrightarrow GUES Cartan decomposition: $\mathfrak{s} = \mathfrak{k} \oplus \mathfrak{p}$ (\mathfrak{k} compact subalgebra) $S_p = K_p + P_p, \quad K_p \in \mathfrak{k}, \quad P_p \in \mathfrak{p} \quad \forall p \in \mathcal{P}$ Transition matrix Φ_S further splits: $\Phi_S(t) = \Phi_K(t) \Phi_P(t)$ where $\dot{\Phi}_K(t) = K_{\sigma(t)} \Phi_K(t)$ and $\dot{\Phi}_P(t) = \left(\Phi_K^{-1}(t) P_{\sigma(t)} \Phi_K(t)\right) \Phi_P(t)$ Let $\hat{\lambda}_P := \max\left\{ \left\| e^{-K} P_p e^K \right\| : K \in \mathfrak{k}, \ p \in \mathcal{P} \right\}$ $\bar{\lambda}_{R} + \hat{\lambda}_{P} < 0 \implies \text{GUES}$

20 of 22

ROBUST CONDITIONS [Agrachev–Baryshnikov–L '10] Levi decomposition: $A_p = R_p + S_p, \quad R_p \in \mathfrak{r}, \quad S_p \in \mathfrak{s}$ Cartan decomposition: $S_p = K_p + P_p, \quad K_p \in \mathfrak{k}, \quad P_p \in \mathfrak{p}$ $\bar{\lambda}_R = \max_{p \in \mathcal{P}} \operatorname{Re} \lambda(R_p), \ \hat{\lambda}_P = \max\left\{ \left\| e^{-K} P_p e^K \right\| \colon K \in \mathfrak{k}, \ p \in \mathcal{P} \right\}$ $\bar{\lambda}_R + \hat{\lambda}_P < 0 \implies \text{GUES}$ Example: $A_p = \begin{pmatrix} \lambda_p & \alpha_p + \delta_p \\ -\alpha_n + \delta_n & \lambda_n \end{pmatrix}, \quad \lambda_p < 0$ $\mathfrak{g} = gl(2), \ \mathfrak{r} = \mathbb{R}I_{2\times 2}, \ \mathfrak{s} = sl(2), \ \mathfrak{k} = so(2)$ $R_p = \begin{pmatrix} \lambda_p & 0\\ 0 & \lambda_p \end{pmatrix}, \ K_p = \begin{pmatrix} 0 & \alpha_p\\ -\alpha_p & 0 \end{pmatrix}, \ P_p = \begin{pmatrix} 0 & \delta_p\\ \delta_p & 0 \end{pmatrix}$ $\bar{\lambda}_R = \max_{p \in \mathcal{P}} \lambda_p, \quad \hat{\lambda}_P = \max_{p \in \mathcal{P}} |\delta_p|$ 21 of 22

CONCLUSIONS

- Discussed a link between Lie algebra structure and stability under arbitrary switching
- Linear story is rather complete, nonlinear results are still preliminary
- Focus of current work is on stability conditions robust to perturbations of system data