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SWITCHED SYSTEMS

Switched system:

r = fo(x)

« x = fp(cv), p € P is afamily of systems

e 0. [0,00) — P is a switching signal

Switching can be:
» State-dependent or time-dependent
e Autonomous or controlled

Details of discrete behavior are “abstracted away”

Discrete dynamics — classes of switching signals

Properties of the continuous state x: stability
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STABILITY [ISSUE

z = f1(z) z = fa(x) = fo(x)
=N B
N
unstable

Asymptotic stability of each subsystem is

not sufficient for stability
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GLOBAL UNIFORM ASYMPTOTIC STABILITY

GUAS is Lyapunov stability

Ve 36 [2z(0)| <d=|x(t)| <e Vt>0,VYo

plus asymptotic convergence

Ve, 3T |x(0)| <d = |z(t)| <e Vt>T,Vo
GUES: |z(t)] < ce™*|z(0)| ¥Vt >0, Vo
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COMMUTING STABLE MATRICES => GUES

P ={1,2}, A1A> = AxA;

(commuting Hurwitz matrices)

— eAQ(tk_l_"'"l'tl)eAl(Sk_l'"'_l'sl)gj(()) -0

For > 2 subsystems — similarly
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COMMUTING STABLE MATRICES => GUES

Alternative proof:

1 quadratic common Lyapunov function

[Narendra—Balakrishnan '94]

P1A; + Al P =1

PoAs+ AP, = —P

Pm)Am + AL P,

—Im-—-1

z! Ppx is a common Lyapunov function
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LIE ALGEBRAS and STABILITY
Lie algebra: g = {Ap :p € P}LA
Lie bracket: [A1,Ap] = A1A4A> — ArA4q

gl=g, g"*1=[g,g"] Cg* gisnilpotentif Ik s.t. gF=

U U

gD =g, gkt =[gk) ¢()]cgk) gis solvable if T& s.t. g(k):O

Nilpotent means suff. high-order Lie brackets are O
e.g. [A1,[A1,A2]]=[A2,[A1,As]]=0

Nilpotent = GUES [Gurvits '95]
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SOLVABLE LIE ALGEBRA => GUES

Lie’s Theorem: g is solvable = triangular form

A - %
Ap — : P :
O -+ An
Example:

_(—a1 b1 _ [—ax b2
Al_( 0 —Cl)’ AQ_( 0 —C2>

To = —cCgTo> = x> — O exponentially fast
r1 = —agx1 + boxo = 1 — 0 exp fast
0

d quadratic common Lyap fcn ! Dz, D diagonal
[L-Hespanha—Morse '99], see also [Kutepov '82]
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MORE GENERAL LIE ALGEBRAS

Levi decomposition: g=tDs

T

radical (max solvable ideal)

* 5 IS compact (purely imaginary eigenvalues) = GUES,
guadratic common Lyap fcn

* 5 Is not compact = not enough info in Lie algebra:

There exists one set of stable generators for g which
gives rise to a GUES switched system, and another
which gives an unstable one

[Agrachev-L '01]
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SUMMARY: LINEAR CASE
Lie algebra {Ap,p € PrLa wrt. [A1, As]=A1A>—As A,

Assuming GES of all modes, GUES is guaranteed for:

e commuting subsystems: [Ap, Aq] =0 Vp,q € P

M
* nilpotent Lie algebras (suff. high-order Lie brackets are 0)
M e.g. [A1,[A1,A2]]=[A2,[A1,A5]]=0

 solvable Lie algebras (triangular up to coord. transf.)

M

 solvable + compact (purely imaginary eigenvalues)

Quadratic common Lyapunov function exists in all these cases

Extension based only on the Lie algebra is not possible
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SWITCHED NONLINEAR SYSTEMS

Lie bracket of nonlinear vector fields:

[f1. fo] = 8f2 8f1f2

Reduces to earlier notion for linear vector fields
(modulo the sign)

e[ f1, f2]
f\/ £fq

. f — [
Ezqsfz

—ef1
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SWITCHED NONLINEAR SYSTEMS

« Commuting systems
[fpafq] = 0 = GUAS

Can prove by trajectory analysis [Mancilla-Aguilar '00]
or common Lyapunov function [Shim et al. ‘98, Vu—L '05]

e Linearization (Lyapunov’s indirect method)

o,
Ap:a—‘];f(O), peP

 Global results beyond commuting case — ?

[Unsolved Problems in Math. Systems and Control Theory, '04]
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SPECIAL CASE

f1, f2 globally asymptotically stable

[f1. Lf1, f2ll = [f2. [f1, f2ll = 0O

Want to show: = = fs(x), o € {1,2} is GUAS

Will show: differential inclusion

z € co{f1(x), fa(x)}

IS GAS
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OPTIMAL CONTROL APPROACH

Associated control system:
r= f(z) + g(x)u

where f:= f1, ¢g:= fo— f1, u € [0,1]

(original switched system < u € {0,1})

Worst-case control law [Pyatnitskiy, Rapoport, Boscain, Margaliot]:

fix zo and small enough %

2
[z(tp)]” — max
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MAXIMUM PRINCIPLE
H(z,u,\) = M f(z) + M g(z)u

@ (along optimal trajectory)

Optimal control:
w(t) =0 if () <0, u(t) =1 if p(t) >0

o =M1t 9, ¢=M11f 911+ Mg, [f, 9]lu=0

Y

@ islinearin t
| (unless ¢ =0)

at most 1 switch

Y

GAS
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GENERAL CASE
= f(z)+ ) g(@)ug
k=1

pij = M (gi(x) — g;(2))
Want: ©;; polynomial of degree < r

|} (proof — by induction on m)

bang-bang with (»+1)"*—1 switches

Y

GAS

See [Margaliot—L '06] for details; also [Sharon—Margaliot '07]
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REMARKS on LIEFALGEBRAIC CRITERIA

@ ©§§ * Checkable conditions
@ ©€§ * In terms of the original data

@ @@  Independent of representation

-~

{s=<: *Notrobustto small perturbations

In any neighborhood of any pair of n X n matrices
there exists a pair of matrices generating the entire

Lie algebra gl(n,R) [Agrachev-L '01]

How to capture closeness to a “nice” Lie algebra?
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ROBUST CONDITIONS [Agrachev—-Baryshnikov—L '10]
x(t) = Aa(t)ac(t) {Ap : p € P} compact set of Hurwitz matrices
GUES: Lie algebra:

()| < ceM|zg| Vi, zg,0() g:={Ap:peEP}rA
Levi decomposition: g =t @ s (v solvable, s semisimple)
Ap=Rp+Sp, Rpcr, Spcs VpcP
Switched transition matrix splits as ®(t) = P g(t)P p(t) where
Pg(t) =S, Ps(t) and dp(t)=(P5 (1) Ry Ps(t)) Pr(t)

Let A\p 1= r;ea% ReA(Rp) and g := In;n sup ¢ Liog||®g(d)|

robust condition but

EY k —_
)\R + )‘S <0 => GUES not constructive
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ROBUST CONDITIONS [Agrachev—-Baryshnikov—L '10]
x(t) = Aa(t)ac(t) {Ap : p € P} compact set of Hurwitz matrices
GUES: Lie algebra:

()| < ceM|zg| Vi, zg,0() g:={Ap:peEP}rA
Levi decomposition: g =t @ s (v solvable, s semisimple)
Ap=Rp+Sp, Rpcr, Spcs VpcP
Switched transition matrix splits as ®(t) = P g(t)P p(t) where
Pg(t) =S, Ps(t) and dp(t)=(P5 (1) Ry Ps(t)) Pr(t)

Let \p 1= max ReA(Rp) and Ag := max{||Sy|| : p € P}
P

more conservative but

AR T Ag <0 => GUES easier to verify

There are also intermediate conditions
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ROBUST CONDITIONS [Agrachev—-Baryshnikov—L '10]

Levi decomposition:

Ap=Rp+Sp, Rpcr, Spcs VpcP
Switched transition matrix splits as ®(t) = Pg(t) D p(t)
Previous slide: ||Sp|| small =—> GUES
But we also know: s compact Lie algebra (not nec. small) = GUES

Cartan decomposition: s = €@ p (€ compact subalgebra)
Sp=Kp+PFp, Kpct PFP,cp VpcP
Transition matrix ® g further splits: ® ¢(t) = P (t)P p(t) where
S (1) = K,y Pr(t) and ®p(t) = (7 (1) Py Pk (1)) p (1)

Let Xp e max{He_KPpeKH K et pe 77}

Ap+Ap <0 => GUES
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ROBUST CONDITIONS [Agrachev—-Baryshnikov—L '10]
Levi decomposition: Ap = Ry, + Sy, Rp€r, SpcCs

Cartan decomposition: Sp = Kp+ FPp, Kpe€t, PFPycp

Ap = max ReA(Rp), Ap = max{He_KPpeKH: Keck pe 7?}

Ap+Ap <0 => GUES

Example: W Ap ap + &y N

g=gl(2), t=Rloxo, 5s=3:l(2), t=s0(2)
. )\p O . 0 Clp . O 5p
= (0 Ap) A= (—O‘p O) P (529 O)

Ap = MaxAp, Ap = max|&p|
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CONCLUSIONS

 Discussed a link between Lie algebra structure and
stability under arbitrary switching

e Linear story is rather complete, nonlinear results are
still preliminary

e Focus of current work is on stability conditions robust
to perturbations of system data
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