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Discontinuous Feedback in Nonlinear Control

STABILIZATION

DIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 4/24



Linear Control Systems: “Output Regulation”

Linear system
ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

x(t) - state vector, u(t) - input (control) vector

system is controllable system is stabilizable

Namely, ∃ linear feedback control u = Kx such that

closed-loop system ẋ = Ax+BKx is stable
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Linear Control Systems: “Output Regulation”

Linear system
ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

system is controllable system is stabilizable

Namely, ∃ linear feedback control u = Kx such that

closed-loop system ẋ = Ax+BKx is stable

Only output y(t) = Cx(t) is available for measurement

input/output system is observable ∃ dynamic observer

ż = (A− LC)z +Bu(t) + Ly(t)

dynamic observer with output injection tracks x(t)
z(t)− x(t)→ 0
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Linear Control Systems: “Output Regulation”

MAIN CONCLUSION:
Let linear control system

ẋ = Ax+Bu, y(t) = Cx(t)

be controllable and observable
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Linear Control Systems: “Output Regulation”

MAIN CONCLUSION:
Let linear control system

ẋ = Ax+Bu, y(t) = Cx(t)

be controllable and observable then ∃ dynamic observer with
output injection

ż = (A− LC)z +Bu(t) + Ly(t)

(REMINDER: z(t) tracks x(t) as t→ +∞)
and dynamic feedback control u(t) = Kz(t) such that

ẋ = Ax+BKz(t), ż = (A− LC)z +BKz(t) + Ly(t)

is asymptotically stable
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Nonlinear Control Systems: “Output Regulation” Program

For linear control system

ẋ = Ax+Bu, y(t) = Cx(t)

controllability+observability ∃ stabilizing dynamic feedback

For nonlinear control system

ẋ = f(x, u), y(t) = h(x(t))

QUESTION:
controllability+observability ∃ stabilizing dynamic feedback
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Nonlinear Control Systems: “Output Regulation” Program

For nonlinear control system

ẋ = f(x, u), y(t) = h(x(t))

QUESTION:

controllability+observability ∃ stabilizing dynamic feedback

REMINDER: Dynamic feedback controller
Dynamic observer with output injection

ż = g(z, y(t)), y(t) = h(x(t))

Closed-loop system
ẋ = f(x, k(z, y(t)))

for feedback u(t) = k(z(t), y(t)) such that
x(t)→ S as t→ +∞
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Nonlinear Control Systems: “Output Regulation” Program

Nonlinear control system under persistent disturbances
ẋ = f(x, u, d), y(t) = h(x(t))

d(t) ∈ D - persistent disturbance
QUESTION:

controllability+observability ∃ stabilizing dynamic feedback

Dynamic observer with output injection
ż = g(z, y(t)), y(t) = h(x(t))

Closed-loop system
ẋ = f(x, k(z, y(t)), d(t))

for feedback u(t) = k(z(t), y(t)) such that
x(t)→ S as t→ +∞
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Nonlinear Control Systems: “Output Regulation” Program

ẋ = f(x, u, d), y(t) = h(x(t))

controllability+observability ∃ stabilizing dynamic feedback

Dynamic observer with output injection
ż = g(z, y(t))

Closed-loop system
ẋ = f(x, k(z, y(t)), d(t))

for feedback u(t) = k(z(t), y(t)) such that x(t)→ S as t→ +∞

APPLICATIONS OF OUTPUT REGULATION

General methods of design of output feedback controllers

General theory of adaptive control (control under uncertainty)
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Nonlinear Control Systems: “Output Regulation” Program

ẋ = f(x, u, d), y(t) = h(x(t))

controllability+observability ∃ stabilizing dynamic feedback

Dynamic observer with output injection
ż = g(z, y(t))

Closed-loop system
ẋ = f(x, k(z, y(t)), d(t))

for feedback u(t) = k(z(t), y(t)) such that x(t)→ S as t→ +∞
Important contributions by
Coron , Isidori et al. , Praly , Teel
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Why is “Output Regulation” Problem Difficult? Example:

Control system
ẋ = f(x, u), x ∈ Rn, u ∈ U

Asymptotic controllability: for any initial point x0 there exists
control u(∙) ∈ U

x(t; x0, u)→ 0 as t→ +∞

in some uniform manner
Stabilizing feedback control k : Rn → U

ẋ = f(x, k(x))

is asymptotically stable
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Why is “Output Regulation” Problem Difficult? Example:

Relation between asymptotic controllability (AC) and feedback
stabilization (FS):
Obvious ẋ = f(x, k(x)) is AS then ẋ = f(x, u) is AC

∃ feedback stabilizer asymptotic controllability

Long standing question: Is it true?

asymptotic controllability ∃ feedback stabilizer
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Why is “Output Regulation” Problem Difficult? Example:

∃ feedback stabilizer asymptotic controllability

Long standing question: Is it true?

asymptotic controllability ∃ feedback stabilizer

Topological obstacles to existence of continuous feedback
stabilizers:

Sontag&Sussmann 1980 one-dimensional example

Brockett 1982 general covering condition (topological
obstacles), nonholonomic integrator example

Artstein 1983 - smooth control Lyapunov functions and
continuous feedback

Coron 1990 stabilization of non-drift affine control systems

DIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 7/24



Why is “Output Regulation” Problem Difficult? Example:

DISCONTINUOUS stabilizing feedback k(x)

ẋ = f(x, k(x))

Filippov (or more meaningful Krasovskii) solutions for
discont.feedback

ẋ ∈ F (x) := ∩δ>0 co f(x, k(x+ δB))

– the same topological obstacles
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Why is “Output Regulation” Problem Difficult? Example:

Clarke, Ledyaev, Sontag and Subbotin 1996

THEOREM:

Asymptotic Controllability IFF ∃ Feedback Stabilizer

IMPORTANT: New concept of DISCONTINUOUS FEEDBACK of
“sample-and-hold" type (but different from traditional engineering
“sample-and-hold" approach)
PRECISE and NATURAL mathematical model of digital computer
control
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Nonlinear Control Systems under Persistent Disturbances

‘Output Regulation" Program: definition of asymptotic
controllability
Control system

ẋ = f(x, u, d) u ∈ U, d ∈ D

u(t) - control, d(t) -disturbance
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Nonlinear Control Systems under Persistent Disturbances

‘Output Regulation" Program: definition of asymptotic
controllability
Control system

ẋ = f(x, u, d) u ∈ U, d ∈ D

u(t) - control, d(t) -disturbance
dt a restriction of function d(∙) on the interval [0, t]
Non-anticipating strategy : operator F defining control u(t)

u(t) = F(t, dt)
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Nonlinear Control Systems under Persistent Disturbances

“Output Regulation" Program: definition of asymptotic
controllability
Control system

ẋ = f(x, u, d) u ∈ U, d ∈ D

u(t) - control, d(t) -disturbance
dt a restriction of function d(∙) on the interval [0, t]
Non-anticipating strategy : operator F defining control u(t)

u(t) = F(t, dt)

Asymptotic Controllability (AC): ∀ initial point x0 ∃ a strategy
F(t, dt)

x(t; x0, u(∙), d(∙))→ 0 as t→ +∞

in some uniform manner (with respect to d(∙) and x0)
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Nonlinear Control Systems under Persistent Disturbances

Feedback stabilizing controller; k : Rn → U

ẋ = f(x, k(x), d(t)), x(0) = x0

for any d(∙)
x(t; x0, d(∙))→ 0 as t→ +∞

uniformly with respect to d(∙) (and x0 in some sense)
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Nonlinear Control Systems under Persistent Disturbances

ẋ = f(x, k(x), d(t)), x(0) = x0

for any d(∙)
x(t; x0, d(∙))→ 0 as t→ +∞

uniformly with respect to d(∙) (and x0 in some sense)

Why do we need feedback
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Nonlinear Control Systems under Persistent Disturbances

ẋ = f(x, k(x), d(t)), x(0) = x0

for any d(∙)
x(t; x0, d(∙))→ 0 as t→ +∞

uniformly with respect to d(∙) (and x0 in some sense)

Robustness with respect to errors and perturbations!
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Nonlinear Control Systems under Persistent Disturbances

Original system
ẋ = f(x, k(x), d(t))

Perturbed system
ẋ(t) = f(x(t), k(x(t) + e(t)) + a(t), d(t)) + w(t)

e(t) – measurement error

a(t) – actuator error

w(t) – external disturbance

If k(x) is CONTINUOUS then robustness follows from classical
results on structural robustness of AS property ( Krasovskii
mid-1950s )

ẋ = f(x, k(x)) + w(t) ‖w(t)‖ ≤ Δ(x(t))

What happens when k(x) is DISCONTINUOUS?
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Main Results

Control system under persistent disturbances

ẋ = f(x, u(t), d(t))

Closed-loop system for feedback k(x)

ẋ = f(x, k(x), d(t))

Ledyaev and Vinter 2005, 2010
THEOREM:

Asymptotic Controllability IFF ∃ Feedback Stabilizer

THEOREM:
Discontinuous Feedback Stabilizer is Robust w.r.t.Small Errors

ẋ = f(x, k(x+ e(t)) + a(t), d(t)) + w(t)
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Main Results

Meaning of these results
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Main Results

Meaning of these results

THEOREM:

Asymptotic Controllability IFF ∃ Feedback Stabilizer

Asymptotic Controllability: for any x0 ∃ F s.t. using complete
perfect INFINITE MEMORY information dt at each moment t

u(t) = F(t, d(∙)t)

we can drive to the origin as t→ +∞
Theorem claims: NO NEED to use infinite memory information
(NO infinite-dimensional information states) to drive to the origin
Only use updated values of FINITE-DIMENSIONAL state vector
x(t)
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Precise Definitions and Statements

Main Assumptions:
A1. Sets U, D are compact, function f : Rn × U× D→ Rn is
continuous and is loc. Lipschitz on x on compact subsets of
Rn × U× D.
A2. ( Isaacs 1965 condition) For any (x, p) ∈ Rn × Rn

max
d∈D
min
u∈U
〈p, f(x, u, d)〉 = min

u∈U
max
d∈D
〈p, f(x, u, d)〉

REMARK. NO growth condition on f .
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Precise Definitions and Statements

Main Assumptions:
A1. Sets U, D are compact, function f : Rn × U× D→ Rn is
continuous and is loc. Lipschitz on x on compact subsets of
Rn × U× D.
A2. For any (x, p) ∈ Rn × Rn

max
d∈D
min
u∈U
〈p, f(x, u, d)〉 = min

u∈U
max
d∈D
〈p, f(x, u, d)〉

Set D of all meas. func. d : R+ → D (called disturbances)
SetMU of all relaxed controls (weakly meas. functions)
μ : R+ → prm(U) ( prm(U) – set of all probab. Radon measures on
U)
N : D →MU – non-anticipating strategy if ∀ d1, d2 ∈ D s.t. for
some t ∈ R+ d1t = d

2
t we have N(d1)t = N(d2)t.
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Precise Definitions and Statements

Main Assumptions:
A1. Sets U, D are compact, function f : Rn × U× D→ Rn is
continuous and is loc. Lipschitz on x on compact subsets of
Rn × U× D.
A2. For any (x, p) ∈ Rn × Rn

max
d∈D
min
u∈U
〈p, f(x, u, d)〉 = min

u∈U
max
d∈D
〈p, f(x, u, d)〉

Set D of all meas. func. d : R+ → D (called disturbances)
SetMU of all relaxed controls (weakly meas. functions)
μ : R+ → prm(U) ( prm(U) – set of all probab. Radon measures on
U)
N : D →MU – non-anticipating strategy if ∀ d1, d2 ∈ D s.t. for
some t ∈ R+ d1t = d

2
t we have N(d1)t = N(d2)t.

Varaiya-Lin, Kalton-Elliot 1970s, Chentsov 1980s, Gusyatnikov ...
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Precise Definitions and Statements

For ∀ d(∙) ∈ D and a strategy N consider relaxed control

ν := N(d(∙))

x(t; x0, N, d) – is a solution (locally exists)

ẋ(t) = f̂(x(t), ν(t), d(t)), x(t0) = x0

where

f̂(x, ν.d) :=

∫

U
f(x, u, d)ν(du)
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Precise Definitions and Statements

x(t; x0, N, d) – is a solution (locally exists)

ẋ(t) = f̂(x(t), ν(t), d(t)), x(t0) = x0

where

f̂(x, ν.d) :=

∫

U
f(x, u, d)ν(du)

REMEMBER

x(t; x0, N, d)
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Precise Definitions and Statements

DISCONTINUOUS feedback k : Rn → U and diff.equation with
discontinuous right-hand side

ẋ = f(x, k(x), d(t)), x(0) = x0

Concept of solution : π-trajectory (from positional differential
games theory Krasovskii & Subbotin 1970s )
Partition π = {ti}i≥0 of [0,+∞), limi→∞ ti = +∞
Diameter of partition: d(π) := supi(ti+1 − ti)
π-trajectory xπ(t) := x(t)

ẋ(t) = f(x(t), k(x(ti)), d(t)) , t ∈ [ti, ti+1]

Natural model of computer digital control ("sampling")
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Precise Definitions and Statements

DEFINITION: ASYMPTOTIC CONTROLLABILITY ẋ = f(x, u, d)
∀ x0 ∈ Rn there exists a non-anticipating strategy N such that

(ATTRACTIVENESS) For any disturbance d ∈ D a trajectory
x(t; x0, N, d) is defined on the entire interval R+ and
x(t; x0, N, d)→ 0 as t→ +∞ uniformly with respect to
disturbances d ∈ D;

(UNIFORM BOUNDEDNESS)

sup
d∈D
sup
t≥0
‖x(t; x0, N, d)‖ < +∞

(LYAPUNOV STABILITY ) ∀ ε > 0 ∃ δ > 0 s.t. ∀ x0 satisfying
‖x0‖ < δ ∃ non-anticipating strategy N s.t. ∀d ∈ D

‖x(t; x0, N, d)‖ < ε ∀ t ≥ 0
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Precise Definitions and Statements

DEFINITION: STABILIZING FEEDBACK ẋ = f(x, k(x), d)
For any 0 < r < R ∃ M =M(R) > 0, δ = δ(r, R) > 0, and
T = T (r, R) > 0 s.t. ∀ π with d(π) < δ and ∀ x0 such that ‖x0‖ ≤ R
and ∀ disturbance d ∈ D, the π-trajectory x(∙), x(0) = x0 is defined
on [0,+∞) and

(UNIFORM ATTRACTIVENESS)

‖x(t)‖ ≤ r ∀ t ≥ T

(OVERSHOOT BOUNDEDNESS)

‖x(t)‖ ≤M(R) ∀ t ≥ 0

(LYAPUNOV STABILITY )

lim
R↓0
M(R) = 0
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Precise Definitions and Statements

Ledyaev and Vinter 2005, 2010

THEOREM: Under Assumptions A1 and A2 we have

Asymptotic Controllability IFF ∃ Feedback Stabilizer
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Precise Definitions and Statements

Ledyaev and Vinter 2005, 2010
THEOREM: Under Assumptions A1 and A2 we have

Asymptotic Controllability IFF ∃ Feedback Stabilizer

Even more, we can prove existence of continuous functions
δ : Rn\{0} → (0,+∞), β : [0,+∞)× [0,+∞)→ (0,+∞) of class KL:
β(t, r) - monot. decreasing in t, increasing in r, lim

t→+∞
β(t, r) = 0,

lim
r→0
β(t, r) = 0.

for discontinuous stabilizing feedback k(x) and any π = {ti}i≥0 s.t.
0 < ti+1 − ti ≤ δ(x(ti)) we have the next decay estimate

‖x(t)‖ ≤ β(t, ‖x(0)‖) ∀ t ≥ 0
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Proof: Control Lyapunov Functions

Control Lyapunov function (CLF) pair (V (x),W (x))

(POSITIVENESS)

V (x) ≥ 0, V (x) = 0⇔ x = 0, W (x) > 0 ∀ x 6= 0

(PROPERNESS)

V (x)→ +∞ as ‖x‖ → +∞

(INFINITESIMAL DECREASE )

min
u∈U
max
d∈D
〈∇V (x), f(x, u, d)〉 ≤ −W (x) ∀ x ∈ Rn\{0}

Kokotovic & Freeman 1990s robust control Lyapunov function
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Proof: Control Lyapunov Functions

Control Lyapunov function (CLF) pair (V (x),W (x))

(POSITIVENESS)

V (x) ≥ 0, V (x) = 0⇔ x = 0, W (x) > 0 ∀ x 6= 0

(PROPERNESS)

V (x)→ +∞ as ‖x‖ → +∞

(INFINITESIMAL DECREASE )

min
u∈U
max
d∈D
〈∇V (x), f(x, u, d)〉 ≤ −W (x) ∀ x ∈ Rn\{0}

We assumed that V is C1 and ∃ continuous k : Rn → U s.t.

max
d∈D
〈∇V (x), f(x, k(x), d)〉 ≤ −W (x) ∀ x ∈ Rn\{0}
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Proof: Control Lyapunov Functions

We assumed that V is C1 and ∃ continuous k : Rn → U s.t.

(✱ ) max
d∈D
〈∇V (x), f(x, k(x), d)〉 ≤ −W (x) ∀ x ∈ Rn\{0}

Then solutions x(t) of the closed-loop system

ẋ = f(x, k(x), d(t)), x(0) = x0

are well-defined and we have a decay estimate

‖x(t)‖ ≤ β(t, ‖x(0)‖) ∀ t ≥ 0

Thus, existence of C1 CLF V and continuous (or

DISCONTINUOUS) k(x) satisfying (✱) AC (asymptotic
controllability)
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Proof: Control Lyapunov Functions

We assumed that V is C1 and ∃ continuous k : Rn → U s.t.
(✱ ) max

d∈D
〈∇V (x), f(x, k(x), d)〉 ≤ −W (x) ∀ x ∈ Rn\{0}

Then solutions x(t) of the closed-loop system
ẋ = f(x, k(x), d(t)), x(0) = x0

are well-defined and we have a decay estimate

‖x(t)‖ ≤ β(t, ‖x(0)‖) ∀ t ≥ 0

Thus, existence of C1 CLF V and continuous (or

DISCONTINUOUS) k(x) satisfying (✱) AC (asymptotic
controllability)

Is inverse valid?
AC (asymptotic controllability) existence of C1 CLF V
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Proof: Control Lyapunov Functions

In general, NO C1 control Lyapunov function V exists but
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Proof: Control Lyapunov Functions

In general, NO C1 control Lyapunov function V exists but
Ledyaev and Vinter 2005, 2010
THEOREM: Under Assumptions A1 and A2

Asymptotic Controllability IFF ∃ lower semicont. CLF V

CLF pair (V,W ): V is lower semicontinuous (lim inf
x→x0

V (x) ≥ V (x0)),

W – continuous
(POSITIVENESS)

V (x) ≥ 0, V (x) = 0⇔ x = 0, W (x) > 0 ∀ x 6= 0

(PROPERNESS)
V (x)→ +∞ as ‖x‖ → +∞

(INFINITESIMAL DECREASE )
min
u∈U
max
d∈D
〈ζ, f(x, u, d)〉 ≤ −W (x) ∀ ζ ∈ ∂PV (x), x ∈ R

n\{0}
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Proof: Control Lyapunov Functions

NONSMOOTH ANALYSIS: proximal subgradients
ζ ∈ ∂P f(x) if ∃ σ > 0

〈ζ, z − x〉 − σ‖z − x‖2 ≤ f(z)− f(x) ∀ z near x

y

x

(f’(x),-1)
Normal vectors (z,-1)
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Proof: Control Lyapunov Functions

Reference on Nonsmooth Analysis (proximal calculus) and its
applications
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Proof: Control Lyapunov Functions

Proof of the existence of l.s.c. CLF V for AC system

V (x) := inf
N
sup
d∈D

∫ +∞

0
W (x(t; x,N, d))dt

It is analogous to proofs of inverse Lyapunov function theorems
for diff.equations:
asymptotic stability existence of Lyapunov function
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Proof: Control Lyapunov Functions

Proof of the existence of l.s.c. CLF V for AC system

V (x) := inf
N
sup
d∈D

∫ +∞

0
W (x(t; x,N, d))dt

It is analogous to proofs of inverse Lyapunov function theorems
for diff.equations:
asymptotic stability existence of smooth Lyapunov functions
Massera 1949, Krasovskii 1950s,Kurzweil 1955, ...
For control systems (AC continuous CLF) Sontag 1983

OPEN QUESTION: Does CONTINUOUS CLF exist for AC
control system under persistent disturbances?
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Design of (Dis-)Continuous Feedback Stabilizer via CLF

Let (V,W ) be a Control Lyapunov Function (CLF) pair
V (x) is lower semicontinuous, V (x) > 0 iff x 6= 0, V (x)→ +∞ as
‖x‖ → +∞ and infinitesimal decrease condition holds

H(x, ζ) := min
u∈U
max
d∈D
〈ζ, f(x, u, d)〉 ≤ −W (x) ∀ ζ ∈ ∂PV (x), ∀ x ∈ R

n\{0}

Note, if V ∈ C1 then ∂PV (x) ⊂ {∇V (x)}
In the case V continuous, the stabilizing feedback construction is
contained in Clarke,Ledyaev,Sontag&Subbotin 1996

Asymptotic Controllability Implies Feedback Stabilization

How to handle a lower semicontinuous CLF V ?
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Design of (Dis-)Continuous Feedback Stabilizer via CLF

Let (V,W ) be a Control Lyapunov Function (CLF) pair
V (x) is lower semicontinuous, V (x) > 0 iff x 6= 0, V (x)→ +∞ as
‖x‖ → +∞ and infinitesimal decrease condition holds

H(x, ζ) := min
u∈U
max
d∈D
〈ζ, f(x, u, d)〉 ≤ −W (x) ∀ ζ ∈ ∂PV (x), ∀ x ∈ R

n\{0}

Note, if V ∈ C1 then ∂PV (x) ⊂ {∇V (x)}
In the case V continuous, the stabilizing feedback construction is
contained in Clarke,Ledyaev,Sontag&Subbotin 1996

Asymptotic Controllability Implies Feedback Stabilization

How to handle a lower semicontinuous CLF V ?
Use method of Clarke,Ledyaev and Subbotin 1997

The synthesis of universal feedback pursuit strategies in
differential games SIAM J.Control and Optimization
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Design of (Dis-)Continuous Feedback Stabilizer via CLF

Method

Kruzhkov transform (κ - some constant)

v(x) := 1− exp(−κV (x)) > 0, v(x) = 0⇐⇒ x = 0

For any x ∈ Rn and ζ ∈ ∂P v(x)

H(x, ζ) ≤ κW (x)(v(x)− 1)

ζ ∈ ∂P v(x)⇔ ζ ∈ κ exp(−κV (x))∂PV (x)
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Design of (Dis-)Continuous Feedback Stabilizer via CLF

Method

Kruzhkov transform (κ - some constant)

v(x) := 1− exp(−κV (x)) > 0, v(x) = 0⇐⇒ x = 0

For any x ∈ Rn and ζ ∈ ∂P v(x)

H(x, ζ) ≤ κW (x)(v(x)− 1)

ζ ∈ ∂P v(x)⇔ ζ ∈ κ exp(−κV (x))∂PV (x)

Iosida-Moreau regularization (from monotone operators
theory) vα – loc.Lipschitz

vα(x) := min
y
[v(y) +

1

2α2
‖y − x‖2]
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Design of (Dis-)Continuous Feedback Stabilizer via CLF

For any x ∈ Rn

H(x, ζ) ≤ κW (x)(v(x)− 1) ∀ ζ ∈ ∂P v(x)

Iosida-Moreau regularization (from monotone operators
theory), va – loc.Lipschitz

vα(x) := min
y
[v(y) +

1

2α2
‖y − x‖2]

"Taylor expansion" formula: ∀ f ∈ Rn

vα(x+ τf) ≤ vα(x) + τ〈ζα(x), f〉+
τ2‖f‖2

2α2
.

ζα(x) :=
x− yα(x)
α2

∈ ∂P v(yα(x))

yα(x) an arbitrary minimizer y → v(y) + 1
2α2‖y − x‖

2
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Design of (Dis-)Continuous Feedback Stabilizer via CLF

"Taylor expansion" formula: ∀ f ∈ Rn

(✱ ) vα(x+ τf) ≤ vα(x) + τ〈ζα(x), f〉+
τ2‖f‖2

2α2
.

ζα(x) :=
x− yα(x)
α2

∈ ∂P v(yα(x))

yα(x) an arbitrary minimizer y → v(y) + 1
2α2‖y − x‖

2

Compare traditional one-sided Taylor expansion formula for
ϕ ∈ C2:

ϕ(x+ τf) ≤ ϕ(x) + τ〈ϕ′(x), f〉+ Cτ2‖f‖2

We have some analogue for vα (v is only l.s.c.) (✱)
magic of proximal calculus!

DIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 12/24



Design of (Dis-)Continuous Feedback Stabilizer via CLF

Definition of the stabilizing feedback k(x)

max
d∈D
〈ζα(x), f(x, k(x), d)〉 = min

u∈U
max
d∈D
〈ζα(x), f(x, u, d)〉 = H(x, ζα(x))

Then

max
d∈D
〈ζα(x), f(x, k(x), d)〉 ≤ H(x, ζα(x)) ≤ −κW (yα(x))(1− v(yα(x)))
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Design of (Dis-)Continuous Feedback Stabilizer via CLF

Definition of the stabilizing feedback k(x)

max
d∈D
〈ζα(x), f(x, k(x), d)〉 = min

u∈U
max
d∈D
〈ζα(x), f(x, u, d)〉 = H(x, ζα(x))

Then

max
d∈D
〈ζα(x), f(x, k(x), d)〉 ≤ H(x, ζα(x)) ≤ −κW (yα(x))(1− v(yα(x)))

vα(x(t)) ≤ vα(x(ti)) (invariance of level sets) and also
vα(x(t)) is monotonic.decreasing
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Robustness of Discontinuous Feedback I

Original closed-loop system
ẋ = f(x, k(x), d(t))

Perturbed system
ẋ = f(x, k(x+ e(t)) + a(t), d(t)) + w(t)

e(t) – measurement error

a(t) – actuator error

w(t) – external disturbance
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Robustness of Discontinuous Feedback I

Perturbed system
ẋ = f(x, k(x+ e(t)) + a(t), d(t)) + w(t)

e(t) – measurement error

a(t) – actuator error

w(t) – external disturbance

Structural assumption
a(t) = a1(t) + a2(t), w(t) = w1(t) + w2(t)

Small errors means
small magnitude but unbounded impulse

‖e(∙)‖∞ < ε, ‖a1(∙)‖∞ < ε, ‖w1(∙)‖∞ < ε

small impulse but unbounded magnitude

‖a2(∙)‖1 < ε, ‖w2(∙)‖1 < εDIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 13/24



Robustness of Discontinuous Feedback I

It follows from the design of discontinuous feedback k(x) that it is
robust with respect to small actuator errors and external
disturbances...

What about measurement errors?
Instead of x(ti) we use corrupted data

x′(ti) := x(ti) + e(ti) k(x′(ti))

DIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 13/24



Robustness of Discontinuous Feedback I

What about measurement errors?
Instead of x(ti) we use corrupted data

x′(ti) := x(ti) + e(ti) k(x′(ti))

Control Problem: Drive x(t) to S := (−∞,−1| ∪ [1,+∞)

ẋ = u, x ∈ R, u ∈ U := {−1, 1}

Feedback

k(x) =

{
+1, x ≥ 0

−1, x < 0

0set S set Sk(x)=1k(x)=-1

DIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 13/24



Robustness of Discontinuous Feedback I

What about measurement errors?
Instead of x(ti) we use corrupted data

x′(ti) := x(ti) + e(ti) k(x′(ti))

Control Problem: Drive x(t) to S := (−∞,−1| ∪ [1,+∞)

ẋ = u, x ∈ R, u ∈ U := {−1, 1}

Feedback

k(x) =

{
+1, x ≥ 0

−1, x < 0

0set S set Sk(x)=1k(x)=-1

x x’=x+e
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Feedback
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{
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Robustness of Discontinuous Feedback I

What about measurement errors?
Instead of x(ti) we use corrupted data

x′(ti) := x(ti) + e(ti) k(x′(ti))

Control Problem: Drive x(t) toS := (−∞,−1| ∪ [1,+∞)

ẋ = u, x ∈ R, u ∈ U := {−1, 1}

Feedback

k(x) =

{
+1, x ≥ 0

−1, x < 0

0set S set Sk(x)=1k(x)=-1

xx’=x+e
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Robustness of Discontinuous Feedback I

What about measurement errors?
Instead of x(ti) we use corrupted data

x′(ti) := x(ti) + e(ti) k(x′(ti))

Control Problem: Drive x(t) toS := (−∞,−1| ∪ [1,+∞)

ẋ = u, x ∈ R, u ∈ U := {−1, 1}

Feedback

k(x) =

{
+1, x ≥ 0

−1, x < 0

0set S set Sk(x)=1k(x)=-1

xx’=x+e
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Robustness of Discontinuous Feedback II

FIRST REMEDY: Control with Guide Procedure Krasovskii & Subbotin
begin. 1970s use of a computational model of closed-loop system
In the context of stabilization problems Ledyaev&Sontag 1997

SECOND REMEDY: Restrict a sampling rate ν := sup 1
ti+1−ti

from above

ti+1 − ti ≥ 1/ν and let us assume that

small measurement error: ‖e(t)‖ < 1/2ν ≤ 12(ti+1 − ti)

0set S set Sk(x)=1k(x)=-1

x x’=x+e
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Robustness of Discontinuous Feedback II

FIRST REMEDY: Control with Guide Procedure Krasovskii & Subbotin
begin. 1970s use of a computational model of closed-loop system
In the context of stabilization problems Ledyaev&Sontag 1997

SECOND REMEDY: Restrict a sampling rate ν := sup 1
ti+1−ti

from above

ti+1 − ti ≥ 1/ν and let us assume that

small measurement error: ‖e(t)‖ < 1/2ν ≤ 12(ti+1 − ti)

0set S set Sk(x)=1k(x)=-1 x

x’=x+e
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Robustness of Discontinuous Feedback II

PRESCRIPTION in GENERAL CASE: Keep sampling interval ti+1 − ti
bounded from below, then k is also robust with respect to small
measurement errors
In the case of stabilization of control system Clarke,Ledyaev, Rifford
and Stern, 2000

Lyapunov functions and feedback stabilization
SIAM J.Control Optimiz.

In the case of stabilization of control system under persistent
disturbances Ledyaev and Vinter 2005, 2010
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Robustness of Discontinuous Feedback II

DEFINITION: Feedback k : Rn → U is robust stabilizing if
∀ 0 < r < R ∃ M =M(R) > 0, δ = δ(r, R) > 0, T = T (r, R) > 0
and bj = bj(r, R), j = 1, 2, 3, s.t. ∀ partition π with

1

2
δ < ti+1 − ti < δ

∀ initial state x0: ‖x0‖ ≤ R, for any disturb. d ∈ D, any external
disturb. w(t), actuator errors a(t) and measurement errors e(t)
satisfying

‖w(t)‖ < b1, ‖a(t)‖ < b2, ‖e(t)‖ < b3 ∀ t ≥ 0

the π-trajectory x(∙) starting from x0 is well-defined and it holds:
(UNIFORM ATTRACTIVENESS) ‖x(t)‖ ≤ r ∀ t ≥ T ;

(OVERSHOOT BOUNDEDNESS) ‖x(t)‖ ≤M(R) ∀ t ≥ 0;

(LYAPUNOV STABILITY ) lim
R→0
M(R) = 0.
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Robustness of Discontinuous Feedback II

Ledyaev and Vinter 2005, 2010
THEOREM:
Under Assumptions A1 and A2 we have
the stabilizing feedback k(x) is robust stabilizing
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Robustness of Discontinuous Feedback II

Ledyaev and Vinter 2005, 2010
THEOREM:
Under Assumptions A1 and A2 we have
the stabilizing feedback k(x) is robust stabilizing

APPLICATION: Quantization of values x: find a net {yj} such that
‖yi − yj‖ < sup‖e(t)‖/2 < b3/2(r, R) then we can use only values of
control

k(yj) if ‖x′ − yj‖ < b3/2

ANOTHER APPLICATION: existence of piece-wise constant robust
stabilizing feedback
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Robustness of Discontinuous Feedback II

General Principle for Robust Feedback
Ledyaev 1999 in Ledyaev&Rifford 1999

THEOREM: Integral Decrease Principle:
V (x) contin. or loc.Lipschitz ∃ k : Rn → U and δ(x) > 0 such that

V (x+ τf)− V (x) ≤ −τW (x) ∀ f ∈ co f(x, k(x), D), 0 ≤ τ ≤ δ(x)

Then k(x) is robust stabilizing
vα(x) can be chosen as V (x) in our case

Analogous principle for differential games Ledyaev 2002

DIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 14/24



Robustness of Stabilizing Feedback for Any Sampling Rate

Let (dis)-continuous k(x) be robustly sampling-stabilizing (permitting
arbitrary large sampling rate) if ∀ 0 < r < R ∃ T = T (r, R),
δ = δ(r, R), η = η(r, R), and M(R) s.t. for any disturb. d ∈ D
measurement errors e(t) and external disturbances w(t) for which

‖e(t)‖ ≤ η ∀t ≥ 0, ‖w(∙)‖∞ ≤ η

and any partition π with d(π) ≤ δ:
0 < ti+1 − ti < δ,

every π-trajectory with ‖x(0)‖ ≤ R does not blow-up and satisfies
the following relations:

(UNIFORM ATTRACTIVITY) ‖x(t)‖ ≤ r ∀t ≥ T ;

(BOUNDED OVERSHOOT) ‖x(t)‖ ≤M(R) ∀t ≥ 0;

(LYAPUNOV STABILITY ) lim
R↓0
M(R) = 0.
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Robustness of Stabilizing Feedback for Any Sampling Rate

Ledyaev&Sontag, 1998

THEOREM:
∃ robust sampl.-stabiliz. feedback k(x) IFF ∃ C∞ CLF V (x)
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Robustness of Stabilizing Feedback for Any Sampling Rate

Ledyaev&Sontag, 1998

THEOREM:
∃ robust sampl.-stabiliz. feedback k(x) IFF ∃ C∞ CLF V (x)

Let V (x) be C∞ control Lyapunov function
Then ANY k(x) s.t.

max
d∈D
〈∇V (x), f(x, k(x), d)〉 ≤ −W (x)

is ROBUST STABILIZING for any high enough sampling rate
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Robustness of Stabilizing Feedback for Any Sampling Rate

Ledyaev&Sontag, 1998

THEOREM:

∃ robust sampl.-stabiliz. feedback k(x) IFF ∃ C∞ CLF V (x)

Let V (x) be C∞ control Lyapunov function
Then ANY k(x) s.t.

max
d∈D
〈∇V (x), f(x, k(x), d)〉 ≤ −W (x)

is ROBUST STABILIZING for any high enough sampling rate
Artstein 1983 for affine-control systems:

∃ SMOOTH control Lyapunov function IFF ∃ continuous
stabilizing feedback
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Robustness of Stabilizing Feedback for Any Sampling Rate

PROOF is based on the inverse Lyapunov function theorem for
differential inclusion

ẋ ∈ F (x)

F (x) upper semicontinuous multifunction
Clarke,Ledyaev&Stern 1999

THEOREM:
Diff. inclusion ẋ ∈ F is strongly AS IFF ∃ C∞ V (x)

Proof is based on structural robustness of AS of diff.inclusions

ẋ ∈ coF (x+Δ(x)B) + Δ(x)B
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Robustness of Stabilizing Feedback for Any Sampling Rate

PROOF is based on the inverse Lyapunov function theorem for
differential inclusion

ẋ ∈ F (x)

F (x) upper semicontinuous multifunction
Clarke,Ledyaev&Stern 1999

THEOREM:
Diff. inclusion ẋ ∈ F is strongly AS IFF ∃ C∞ V (x)

APPLICATION Criteria for AS of Filippov or Krasovskii solutions in
terms of C∞ Lyapunov function V

ẋ ∈ ∩ε>0co f(x, k(x+ εB),D)

Limits of trajectories of perturbed system are solutions of this
differential inclusion

DIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 15/24



Underwater Vehicle Example:

Lyapunov function V (x) = x21 + x
2
2 + x

2
3

ẋ1 = u2u3

ẋ2 = u1u3

ẋ3 = u1u2

U := {(u1, u2, u3) : |ui| ≤ 1, i = 1, 2, 3}

discontinuous ROBUST stabilizer

uj(x) := −sign(xi(x)), ul(x) := 1

ui(x) := −sign(xj(x)ul(x) + xl(x)uj(x))

i(x) := max{i : |xi| = max |xl|}, j(x) := i(x) + 1

l(x) := i(x) + 2
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Robust Stabilization of Nonholonomic Integrator

Brockett’s example (nonholonomic integrator) 1982

ẋ1 = u1

ẋ2 = u2

ẋ3 = x1u2 − x2u1

U := {(u1, u2) : |ui| ≤ 1, i = 1, 2}

Ledyaev&Rifford 1999
design of robust discontinuous stabilizing feedback based on
nonsmooth control Lyapunov functions

V (x) = max{
√
x21 + x

2
2, |x3| −

√
x21 + x

2
2}

Known results: Bloch&Drakunov 1994, Astolfi 1995 - no robustness
results

Stabilization of nonholonomic integrator: pictures

Cylindrical coordinates: r =
√
x21 + x

2
2, z = x3

ṙ = v1, ż = rv2
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√
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Output Regulation Problem: Conjecture

Open Problem:
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Output Regulation Problem: Conjecture

Open Problem:
Consider

ẋ(t) = f(x(t), u(t), d(t)), y(t) = h(x(t))
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Output Regulation Problem: Conjecture

Open Problem:
Consider

ẋ(t) = f(x(t), u(t), d(t)), y(t) = h(x(t))

Assume that for arbitrary y0, z0 ∃ a non-anticipating strategy

u(t, yt, dt)

such that for the system

ẋ(t) = f(x(t), u(t, yt, dt), d(t)), y(t) = h(x(t))

x(t)→ S as t→ +∞
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Output Regulation Problem: Conjecture

Consider
ẋ(t) = f(x(t), u(t), d(t)), y(t) = h(x(t))

Assume that for arbitrary y0, z0 ∃ a non-anticipating strategy

u(t, yt, dt)

such that for the system

ẋ(t) = f(x(t), u(t, yt, dt), d(t)), y(t) = h(x(t))

x(t)→ S as t→ +∞

CONJECTURE: ∃ dynamic stabilizing feedback
k(z, y), g(z, y) such that

ẋ(t) = f(x(t), k(z(t), y(t)), d(t)), ż(t) = g(z(t), y(t)), y(t) = h(x(t))

is robustly stabilizing: x(t)→ S as t→ +∞
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Discontinuous Feedback in Control

OPTIMIZATION
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Discontinuous Feedback and Team Optimal Control

We discuss mathematical techniques for deriving optimal solution
of some coordinated control problem

Differential Game of Team Pursuit

Examples of Team Pursuit
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Discontinuous Feedback and Team Optimal Control

Differential Game of Team Pursuit

Consider objects x0, x1, . . . , xm in Rn with "simple" dynamics

ẋ0 = u0, ẋ1 = u1, . . . , ẋm = um

Controls u0(t), u1(t), . . . , um(t) are subject to constraints

‖u0‖ ≤ σ0, ‖u1‖ ≤ σ1, . . . , ‖um‖ ≤ σm
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Discontinuous Feedback and Team Optimal Control

Consider objects x0, x1, . . . , xm in Rn with "simple" dynamics

ẋ0 = u0, ẋ1 = u1, . . . , ẋm = um

Controls u0(t), u1(t), . . . , um(t) are subject to constraints
‖u0‖ ≤ σ0, ‖u1‖ ≤ σ1, . . . , ‖um‖ ≤ σm

The object x0 is an EVADER (it tries to avoid a capture by one of
the objects x1, . . . , xm ). Objects x1, . . . , xm are PURSUERS(they
try to capture the object x0 ), The pursuit is over at some moment
T if

‖x0(T )− xi(T )‖ ≤ li
for some i ∈ I := {1, 2, . . . ,m}
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Discontinuous Feedback and Team Optimal Control

IMPORTANT POINT: PURSUERS and EVADER can use only
closed-loop control (or feedback control)

ui(t) = ki(x(t)), i ∈ I

where x := [x0, x1, . . . , xm].
Optimal pursuit time w(x) for initial point x is a value function of
the differential game of pursuit
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Discontinuous Feedback and Team Optimal Control

IMPORTANT POINT: PURSUERS and EVADER can use only
closed-loop control (or feedback control)

ui(t) = ki(x(t)), i ∈ I

where x := [x0, x1, . . . , xm].
Optimal pursuit time w(x) for initial point x is a value function of
the differential game of pursuit.
If w(x) is smooth (differentiable) then it satisfies the eikonal
equation

H(x,∇w(x)) = −1, w(x)|M = 0
where Hamiltonian H is defined as follows

H(x,∇w(x)) = min
p∈P
max
q∈Q
〈∇w(x), f(x, p, q)〉

for the differential game of pursuit with the terminal set M and
dynamics

ẋ = f(x, p, q), p ∈ P, q ∈ Q

DIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 20/24



Discontinuous Feedback and Team Optimal Control

In general, w(x) is nonsmooth (lower semicontinuous) function,
optimal feedback controls kp(x), kq(x) are discontinuous
For lower semicontinuous value function w(x) relation

H(x,∇w(x)) = −1, w(x)|M = 0

is replaced by two inequalities in terms of subgradients of w(x)
One of them

H(x, ζ) ≤ −1, ∀ ζ ∈ ∂Pw(x), x 6∈M
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Discontinuous Feedback and Team Optimal Control

For lower semicontinuous value function w(x) relation
H(x,∇w(x)) = −1, w(x)|M = 0

is replaced by two inequalities in terms of subgradients of w(x)
One of them

H(x, ζ) ≤ −1, ∀ ζ ∈ ∂Pw(x), x 6∈M

The synthesis of universal feedback pursuit strategies in
differential games

THEOREM: Clarke,Ledyaev,Subbotin 1997 :
Let D ⊂ Ḡ be a compact set such that w is bounded on D,
then for any ε > 0 there exists δ > 0 and a feedback control k
such that for any x0 ∈ D and Δ, diam (Δ) < δ we have

θε(x0, kp,Δ) < w(x0) + ε

where θε(x0, kp,Δ) is a pursuit guaranteed time for feedback kpand
sampling partition Δ to drive x into setMε (ε-neighbourhood ofM)
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Team Optimal Pursuit

Dynamics of EVADER x0 and PURSUERS x1, . . . , xm in Rn

ẋ0 = u0, ẋ1 = u1, . . . , ẋm = um

Controls u0(t), u1(t), . . . , um(t) are subject to constraints

‖u0‖ ≤ σ0, ‖u1‖ ≤ σ1, . . . , ‖um‖ ≤ σm

Terminal set

M := {x = [x0, x1, . . . , xm] : min
1≤i≤m

(‖x0 − xi‖ − li) ≤ 0}

ASSUMPTION: m ≤ n, σi ≥ σ0 and σi + li > σ0, i = 1, . . . ,m
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Team Optimal Pursuit

ASSUMPTION: m ≤ n and σi ≥ σ0, σi + li > σ0, i = 1, . . . ,m
Consider sets for i ∈ I := {1, . . . ,m}

Yi(x) := {y ∈ R
n : Φi(y, xi) ≤ 0}, i ∈ I

where

Φi(y, xi) :=
‖y − x0‖
σ0

−
‖y − xi‖ − li

σi

Nonsmooth function (value (marginal) function for mathematical
programming problem)

w(x) := sup {
‖y − x0‖
σ0

: y ∈ Y (x)}

Y (x) := ∩i∈IYi(x)
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Team Optimal Pursuit

Nonsmooth function (value (marginal) function for mathematical
programming problem)

w(x) := sup {
‖y − x0‖
σ0

: y ∈ Y (x)}

Y (x) := {y :
‖y − x0‖
σ0

−
‖y − xi‖ − li

σi
≤ 0 ∀i ∈ I}

If w(x) < +∞ then define

Yopt(x) := {y ∈ Y (x) :
‖y − x0‖
σ0

= w(x)}
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Team Optimal Pursuit

w(x) := sup {
‖y − x0‖
σ0

: y ∈ Y (x)}

PURSUERS’ feedback controls

ki(x) := σi
y − xi
‖y − xi‖

, where y ∈ Yopt(x), i ∈ I

EVADER’s feedback control

k0(x) := σ0
y − x0
‖y − x0‖

, where y ∈ Yopt(x),
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Team Optimal Pursuit

w(x) := sup {
‖y − x0‖
σ0

: y ∈ Y (x)}

PURSUERS’ feedback controls

ki(x) := σi
y − xi
‖y − xi‖

, where y ∈ Yopt(x), i ∈ I

EVADER’s feedback control

k0(x) := σ0
y − x0
‖y − x0‖

, where y ∈ Yopt(x),

THEOREM: Ivanov & Ledyaev 1980
Under Assumptions A the nonsmooth function w(x) is the
value function of the team pursuit problem
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Team Optimal Pursuit

w(x) := sup {
‖y − x0‖
σ0

: y ∈ Y (x)}

PURSUERS’ feedback controls

ki(x) := σi
y − xi
‖y − xi‖

, where y ∈ Yopt(x), i ∈ I

EVADER’s feedback control

k0(x) := σ0
y − x0
‖y − x0‖

, where y ∈ Yopt(x),

THEOREM: Ledyaev 2007
Under Assumptions A the discontinuous feedbacks k1, . . . , km
are optimal universal robust pursuit feedback controls, k0 is
optimal universal robust evader’s feedback for the team
pursuit problem
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Team Optimal Pursuit

Meaning of the set Y (x)

Y (x) := {y :
‖y − x0‖
σ0

−
‖y − xi‖ − li

σi
≤ 0, ∀ i ∈ I}

At any point y ∈ Y (x) EVADER comes before interception by

EACH PURSUER EVADER can avoid interception on the
time interval [0, w(x))
EXAMPLE: the set Y1(x) ∪ Y2(x) ∪ Y3(x)
EXAMPLE: the set Y (x)
EXAMPLE: the set Yopt(x)
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Team Optimal Pursuit

EXAMPLE: Y1(x) ∪ Y2(x) ∪ Y3(x)

DIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 21/24



Team Optimal Pursuit

EXAMPLE: Y1(x) ∩ Y2(x) ∩ Y3(x)
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Team Optimal Pursuit

EXAMPLE: Y1(x) ∩ Y2(x) ∩ Y3(x)
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Team Optimal Pursuit

EXAMPLE: Y1(x) ∩ Y2(x) ∩ Y3(x)
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Team Optimal Pursuit

Differential Game of Team Pursuit

Examples of Team Pursuit
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Open Problems

Unsolved pursuit problems for games with simple motions

Progress in solving one of them should
help to solve another
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Open Problems

Pursuit in the case m > n and x0 ∈ conv {x1, . . . , xm}
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Open Problems

Pursuit in the case m > n and x0 ∈ conv {x1, . . . , xm}
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Open Problems

Pursuit inside a "corner"
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Open Problems

Pursuit inside a circular arena (Rado 1925) : Lion and Man have
equal maximal velocities
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Open Problems

Pursuit inside a circular arena (Rado) : Lion and Man have equal
maximal velocities

DIMACS Workshop on Perspectives and Future Directions in Systems and Control Theory , Rutgers University, May 23-25, 2011 – p. 22/24



Open Problems

Pursuit inside a circular arena (Rado) : Lion and Man have equal
maximal velocities

Besicovitch ∃ evader’s strategy such
that ‖xL(t)− xM (t)‖ > 0, ∀ t ≥ 0

Ivanov & Ledyaev 1980 ∀` > 0 ∃ pur-
suers’s strategy such that ∃ θ =
θ(xL(0), xM (0)) such that ‖xL(τ) −
xM (τ)‖ ≤ ` for some τ ≤ θ
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Open Problems

Pursuit inside a circular arena (Rado) : Lion and Man have equal
maximal velocities

Besicovitch ∃ evader’s strategy such
that ‖xL(t)− xM (t)‖ > 0, ∀ t ≥ 0

Ivanov & Ledyaev 1980 ∀` > 0 ∃ pur-
suers’s strategy such that ∃ θ =
θ(xL(0), xM (0)) satisfying ‖xL(τ) −
xM (τ)‖ ≤ ` for some τ ≤ θ

QUESTION: Optimal pursuit time θ
and optimal strategies?
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Summary

Concept of DISCONTINUOUS FEEDBACK CONTROL -
precise mathematical model of digital computer-aided control.
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Summary

Concept of DISCONTINUOUS FEEDBACK CONTROL -
precise mathematical model of digital computer-aided control.

Applications to stabilization and optimal control problems.
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Summary

Concept of DISCONTINUOUS FEEDBACK CONTROL -
precise mathematical model of digital computer-aided control.

Applications to stabilization and optimal control problems.
New approach to OUTPUT REGULATION problem.

Robustness of stabilizing and optimal feedback by restricting
a sampling rate
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Summary

Concept of DISCONTINUOUS FEEDBACK CONTROL -
precise mathematical model of digital computer-aided control.

Applications to stabilization and optimal control problems.
New approach to OUTPUT REGULATION problem.

Robustness of stabilizing and optimal feedback by restricting
a sampling rate.

If there exists smooth CLF then stabilizing k is robust for any
highly enough sampling rate (analogous result for optimal
feedback in differential game).

Nonsmooth control Lyapunov and value functions and
analytical techniques for working with them.
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