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LTI Systems w/ Constant Delay

Ẋ(t) = AX(t)+BU(t −D)

A - possibly unstable; D - arbitrarily large

Assume: (A,B) controllable and matrix K found such that A+BK is Hurwitz.



LTI Systems w/ Constant Delay

Ẋ(t) = AX(t)+BU(t −D)

Predictor-based control law:

U(t) = K

[

eADX(t)+

Z t

t−D
eA(t−θ)BU(θ)dθ

]

︸ ︷︷ ︸

X(t+D),P(t)



Time-Varying Input Delay

Basic idea introduced by Artstein (TAC, 1982) , but only conceptually (nor explicitly), for

LTV systems with TV delays.

Explicit design for LTI plants presented by Nihtila (CDC, 1991) , but no analysis of stability

or of feasibility of the controller.



Time-Varying Input Delay

Ẋ(t) = AX(t)+BU(φ(t))

φ(t) = t −D(t) := “delayed time”

Predictor feedback

U(t) = K

[

e
A
(

φ−1(t)−t
)

X(t)+
Z t

φ(t)
e

A
(

φ−1(t)−φ−1(θ)
)

B
U(θ)

φ′
(
φ−1(θ)

)dθ

]



Need a Lyapunov functional.

Construct one with a backstepping transformation of the actuator state :

W (θ) = U(θ)−K

X(φ−1(θ),P(θ)
︷ ︸︸ ︷[

e
A
(

φ−1(θ)−t
)

X(t)+

Z θ

φ(t)
e

A
(

φ−1(θ)−φ−1(σ)
)

B
U(σ)

φ′
(
φ−1(σ)

)dσ

]

φ(t) ≤ θ ≤ t



Need a Lyapunov functional.

Construct one with a backstepping transformation of the actuator state :

W (θ) = U(θ)−K

X(φ−1(θ),P(θ)
︷ ︸︸ ︷[

e
A
(

φ−1(θ)−t
)

X(t)+

Z θ

φ(t)
e

A
(

φ−1(θ)−φ−1(σ)
)

B
U(σ)

φ′
(
φ−1(σ)

)dσ

]

φ(t) ≤ θ ≤ t

V (t) = X(t)T PX(t)+a
Z t

φ(t)

e
bφ−1(θ)−t

φ−1(t)−t
(
φ−1(t)− t

)
φ′
(
φ−1(θ)

)W (θ)2dθ



Theorem 1 ∃G,g > 0 s.t.

|X(t)|2+
Z t

t−D(t)
U2(θ)dθ ≤ Ge−gt

(

|X0|2+
Z 0

−D(0)
U2(θ)dθ

)

, ∀t ≥ 0,

where G (but not g) depends on the function D(·).



Conditions on the delay function D(t) = t −φ(t):

• D(t) ≥ 0 (causality);

• D(t) is uniformly bounded from above (all inputs applied to the plant eventually reach

the plant);

• D′(t) < 1 (plant never feels input values that are older than the ones it has already

felt— input signal direction never reversed );

• D′(t) is uniformly bounded from below (delay cannot disappear instantaneously, but

only gradually).



Achilles heel: φ−1(t) > t > φ(t)

t

D(t) needs to be known sufficiently far in advance

⇒ method appears not to be usable for state-dependent delays



Nonlinear systems with state-dependent delay
(with Nikolaos Bekiaris-Liberis)



• Control over networks

• Driver reaction delay

• Milling processes

• Rolling mills

• Engine cooling systems

• Population dynamics



Nonlinear Systems with State-Dependent Input Delay

Ẋ(t) = f
(

X(t),U
(

t − D(X(t))
))

Challenge:

P(t) = value of the state at the time when the control applied at t reaches the system

= X
(
t +D(P(t))

)

P(θ) = X(t)+
Z θ

t−D(X(t))

f (P(s),U(s))
1−∇D(P(s)) f (P(s),U(s))

ds , t −D(X(t)) ≤ θ ≤ t



Nonlinear Systems with State-Dependent Input Delay

Ẋ(t) = f
(

X(t),U
(

t − D(X(t))
))

Challenge:

P(t) = value of the state at the time when the control applied at t reaches the system

= X
(
t +D(P(t))

)

P(θ) = X(t)+
Z θ

t−D(X(t))

f (P(s),U(s))
1−∇D(P(s)) f (P(s),U(s))

ds , t −D(X(t)) ≤ θ ≤ t



Controller (possibly time-varying)

U(t) = κ((t +D(P(t)) ,P(t))



Example 1 (stabilizing, but not global even for linear systems)

Ẋ(t) = X(t)+U
(

t −X(t)2
)

Simulations with input initial conditions U(θ) = 0,−X(0)2 ≤ θ ≤ 0.

For X(0) ≥ X∗ = 1√
2e

= 0.43, the controller never “kicks in” (dashed)
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Result not global because of feasibility condition “delay rate < 1”

To keep the prediction horizon finite and control bounded, the initial conditions and solu-

tions must satisfy

Fc : ∇D(P(θ)) f (P(θ),U(θ)) < c, for all θ ≥−D(X(0)),

for some c ∈ (0,1].

We refer to F1 as the feasibility condition of the controller.



state:   X,  U(•+s),  -D(X) ≤ s ≤ 0

.



Theorem 2 (local u.a.s. in sup-norm of U )

∃ψRoA ∈ K , ρ ∈ K C , and β ∈ K L s.t. ∀ initial cond. that satisfy

B0(c) : |X(0)|+ sup
−D(X(0))≤θ≤0

|U(θ)| < ψRoA (c)

for some 0 < c < 1,

|X(t)|+ sup
t−D(X(t))≤θ≤t

|U(θ)| ≤ β

(

ρ

(

|X(0)|+ sup
−D(X(0))≤θ≤0

|U(θ)|,c
)

, t

)

, ∀t ≥ 0.

If U is locally Lipschitz on the interval [−D(X(0)) ,0), there exists a unique solution to the

closed-loop system with X Lipschitz on [0,∞), U Lipschitz on (0,∞)



Assumption 1 D ∈C1 (Rn;R+)

Assumption 2 Ẋ = f (X ,ω) is forward complete

Assumption 3 Ẋ = f (X ,κ(t,X)) is g.u.a.s.



Lemma 1 (infinite-dimensional backstepping transformation of the actuator state)

W (θ) = U(θ)−κ(σ(θ),P(θ)), t −D(X(t)) ≤ θ ≤ t,

transforms the closed-loop system into the “target system”

Ẋ(t) = f (X(t),κ(t,X(t))+W (t −D(X(t))))

W (t) = 0, ∀t ≥ 0.

Lemma 2 (u.a.s. of target system)

∃ρ∗ ∈ K C , β2 ∈ K L s.t., for all solutions satisfying Fc for 0 < c < 1,

|X(t)|+ sup
t−D(X(t))≤θ≤ t

|W (θ)| ≤ β2



ρ∗



|X(0)|+ sup
−D(X(0))≤θ≤ 0

|W (θ)| ,c



 , t



 ,



U(· + τ)

τ ∈ [-D(X),0]
W(· + τ)

τ ∈ [-D(X),0]

.



level set of 
Lyapunov functional

state:   X,  U(•+s),  -D(X) ≤ s ≤ 0

.



Lemma 3 (norm equivalence between the original system and target system)

∃ρ2 ∈ K C ∞, α9 ∈ K∞ s.t., for all solutions satisfying Fc for 0 < c < 1,

|X(t)|+ sup
t−D(X(t))≤θ≤t

|U(θ)| ≤ α−1
9

(

|X(t)|+ sup
t−D(X(t))≤θ≤t

|W (θ)|
)

|X(t)|+ sup
t−D(X(t))≤θ≤t

|W (θ)| ≤ ρ2

(

|X(t)|+ sup
t−D(X(t))≤θ≤t

|U(θ)| ,c
)

Lemma 4 (finding a ball B̄ around the origin and within the feasibility region)

∃ρ̄c ∈ K C ∞ s.t. Fc (0 < c < 1) is satisfied by all solutions that satisfy

B̄(c) : |X(t)|+ sup
t−D(X(t))≤θ≤t

|U(θ)| < ρ̄c(c,c) ∀t ≥ 0.

Lemma 5 (finding a ball B0 of initial conditions s.t. all solutions are confined in B̄ ⊂ Fc)

∃ψRoA ∈ K s.t. for all initial conditions in B0(c), the solutions remain in B̄(c) ⊂ Fc for

some 0 < c < 1.



Examples



Example 2 Non-holonomic unicycle with D(x,y) = x2+ y2

A predictor-based version of Pomet’s (1992) time-varying controller:

ω = −5P2cos(3σ(t))− pq
(

1+25cos(3σ(t))2
)

−Θ
v = −P+5Q(sin(3σ(t))−cos(3σ(t)))+Qω,

where

P = X cos(Θ)+Y sin(Θ)

Q = X sin(Θ)−Y cos(Θ) ,

and the predictor is given by

X(t) = x(t)+
Z t

t−D(x(t),y(t))
σ̇(s)v(s)cos(Θ(s))ds

Y (t) = y(t)+

Z t

t−D(x(t),y(t))
σ̇(s)v(s)sin(Θ(s))ds

Θ(t) = θ(t)+

Z t

t−D(x(t),y(t))
σ̇(s)ω(s)ds

σ(t) = t +D(X(t),Y (t))

σ̇(s) =
1

1−2(X(s)v(s)cos(Θ(s))+Y (s)v(s)sin(Θ(s)))
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Example 3 (global stabilization—not with D unif. bdd but with Ḋ = ∇D f < 1)

Ẋ(t) =
X(t)+U (t −D(X(t)))

1+U (t −D(X(t)))2 , D(X) =
1
4

log
(

1+X2
)

.

In the delay-free case, the controller U =−2X yields the closed-loop system Ẋ =− X
1+4X2.
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1. X(t) grows exponentially,
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3. X(t) decays exponentially.



Example 4 (forward completeness not needed for local stabilization)

Ẋ(t) = X4(t)+2X5(t)+X2(t)(1+X(t))U(t −X2(t)).

Origin not reachable for X0 < −1, hence not glob. stabilizable.

Origin not loc. exp. stabilizable.

Delay-free controller U = −X yields Ẋ = −X3+2X5, with RoA = 1√
2
≈ 0.7.
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Theorem 3 (loc. asymp. stabilization of ODE ⇒ loc. asymp. stabilization ∀ delay fcn)

If in the absence of delay there exist R > 0 and β1 ∈ K L s.t. ∀t ≥ 0,

|X(0)| < R ⇒ |X(t)| ≤ β1(|X(0)| , t) ,

then there exist δ > 0 and β2 ∈ K L s.t. ∀t ≥ 0,

|X(0)|+ sup
−D(X(0))≤θ≤0

|U(θ)| < δ

⇓

|X(t)|+ sup
t−D(X(t))≤θ≤t

|U(θ)| ≤ β2

(

|X(0)|+ sup
−D(X(0))≤θ≤0

|U(θ)|, t
)

.

Extra challenge: Make δ so small that, when control kicks in, |X | < R.

(Estimate the time the control kicks in from a fixed pt. problem on a delay bound, which is

a contraction for sufficiently small initial condition.)



Example 5 (state-dependent delay on state )

Ẋ1(t) = X2

(

t −asin2X1(t)
)

, a ≥ 0

Ẋ2(t) = U(t)

U(t) = −c2(X2(t)+ c1P1(t))− c1
X2(t)

1−asin(2P1(t))X2(t)

P1(θ) = X1(t)+

Z θ

t−asin2X1(t)

X2(s)ds
1−asin(2P1(s))X2(s)
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Feliz cumplea ños!


