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Kalman Filtering

We assume that the dynamics and measurement processes can
be modeled by a linear system

ẋ = Ax

y = Cx

The state is x ∈ IRn , the measurement is y ∈ IRp and p ≤ n .

The model is said to be observable (more precisely,
reconstructable) if the past measurements y(s), s ≤ t uniquely
determine the current state x(t) .

One might try to reconstruct the state by differentiating the
measurements

y(t) = Cx(t)

ẏ(t) = CAx(t)

ÿ(t) = CA2x(t)
...
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Kalman Filtering

If the matrix 
C

CA
CA2

...
CAn−1


is of full column rank n then the system is observable.

But the model is probably not completely accurate.

• The process is not linear.

• There are unmodeled dynamics.

• There are unknown exogenous inputs affecting the
dynamics.

• There are unknown exogenous noises affecting the
measurements.
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Kalman Filtering

To cope with these inaccuracies Kalman added driving and
observation noises to the model.

ẋ = Ax + Bv

y = Cx + Dw

He assumed that v, w are standard white Gaussian noises
(WGN) of dimensions m, p .

What is standard white Gaussian noise?
It is the formal derivative of a standard Weiner process and is
mathematically characterized by the following properties.

If f(t) ∈ L2([t1, t2], IRm) then the random variable

X =
∫ t2

t1

f ′(t)w(t) dt

is Gaussian with zero mean and variance

E(X2) =
∫ t2

t1

‖f(t)‖2 dt
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Kalman Filtering

Why white Gaussian noise? There are several possible answers.

•• Because it is ”real”.

• To keep us from doing something dumb like differentiating
the output to reconstruct the state.

• This requires that there is noise in every measurement so
we assume that D is invertible.

• Because it has a constant power spectrum density at all
frequencies.

• Unfortunately this means that it has infinite power.

• Since we don’t know the errors in the dynamics and
measurements, modeling them as white is appropriate.

• This overlooks the fact that we have to choose B, D which
fixes the covariances of the errors.

• Because standard white Gaussian noise is relatively easy to
handle mathematically in a linear setting.
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Kalman Filtering

For simplicity of exposition we are restricting the discussion to
continuous time Kalman filtering of a time invariant linear
system where the measurements are available over the infinite
past.

There are generalizations and extensions to handle the following.

•• Discrete time systems, x(t + 1) = Ax(t), . . .
• Time varying linear systems, A = A(t), C = C(t), . . .
• Finite interval of measurements y(s), t0 ≤ s ≤ t
• Partial knowledge of the initial state x̂(t0) ≈ N(x̂0, P 0)
• Known bias in the noises, Ev(t) 6= 0, Ew(t) 6= 0
• Correlation between the noises.
• An additional known input.
• Extended Kalman filters for nonlinear systems.
• Unscented Kalman filters for nonlinear systems.
• Particle filters for nonlinear systems.
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Derivation of the Kalman Filter

ẋ = Ax + Bv

y = Cx + Dw

We assume that the filter for xi(t) is a weighted sum of the
past observations. The estimate is

x̂i(t) =
∫ ∞

0
k(s)y(t − s) ds

We wish to choose the weighing pattern k(s) ∈ IR1×p to
minimize E(x̃i(t))2 where x̃i(t) = xi(t) − x̂i(t) .

Given a k(s) define h(s) ∈ IR1×n by

ḣ = hA + kC

h(0) = −ei

where ei is the ith unit row vector.
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Derivation of the Kalman Filter
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=
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0
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)
x(t − s) + k(s)Dw(t − s) ds

= [h(s)x(t − s)]∞0 +
∫ ∞

0
h(s)Bv(t − s) + k(s)Dw(t − s) ds

We assume that h(∞) = 0 so

x̃i(t) = −
∫ ∞

0
h(s)Bv(t − s) + k(s)Dw(t − s) ds

E(x̃i(t))2 =
∫ ∞

0
h(s)BB′h′(s) + k(s)DD′k′(s) ds



Linear Quadratic Regulator

So we have the optimal control problem of minimizing by choice
of k(s) ∫ ∞

0
h(s)BB′h′(s) + k(s)DD′k′(s) ds

subject to

ḣ = hA + kC

h(0) = h0

We assume that the minimum is a quadratic form in h0

h0P (h0)′ = min
k

∫ ∞

0
h(s)BB′h′(s) + k(s)DD′k′(s) ds
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Completing the Square

If

0 = AP + PA′ + BB′ − PC′(DD′)−1CP

G = PC′(DD′)−1

then the above reduces to a perfect square

0 = min
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Kalman Filtering

To filter all states at once we let H(s) ∈ IRn×n satisfy

Ḣ = H(A − GC)

H(0) = −I

and K(s) = H(s)G then

Ḣ = (A − GC)H

x̂(t) =
∫ ∞

0
K(s)y(t − s) ds

= −
∫ t

−∞
H(t − s)Gy(s) ds

d

dt
x̂(t) = (A − GC)x̂(t) + Gy(t)
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Kalman Filtering

Kalman Filter

d

dt
x̂(t) = (A − GC)x̂(t) + Gy(t)

Riccati equation

0 = AP + PA′ + BB′ − PC′(DD′)−1CP

Filter Gain

G = PC′(DD′)−1

This derivation is easily extended to discrete time, time varying
and/or finite horizon linear systems.
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Johansen and Berkovitz-Pollard Problem

Independently Johansen (1966) and Berkovitz-Pollard (1967)
considered the following filtering problem.

ẍ = u, |u| ≤ 1

y = x + w, w WGN

They assumed a linear filter

x̂(t) =
∫ ∞

0
k(s)y(t − s) ds

where the weighing pattern k(s) is chosen to

min
k

max
|u|≤1

Ew(x̃(t))2
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ẍ = u, |u| ≤ 1

y = x + w, w WGN

They assumed a linear filter

x̂(t) =
∫ ∞

0
k(s)y(t − s) ds

where the weighing pattern k(s) is chosen to

min
k

max
|u|≤1

Ew(x̃(t))2



Johansen and Berkovitz-Pollard Problem
Given a k(s) define h(s) by

ḧ = k

h(0) = −1

ḣ(0) = 0

x̂(t) =
∫ ∞

0
k(s)y(t − s) ds

=
∫ ∞

0
ḧ(s)x(t − s) + k(s)w(t − s) ds

= x(t) +
∫ ∞

0
h(s)u(t − s) + k(s)w(t − s) ds

x̃(t) = −
∫ ∞

0
h(s)u(t − s) + k(s)w(t − s) ds
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Johansen and Berkovitz-Pollard Problem
Then

Ew(x̃(t))2 =
(∫ ∞

0
h(s)u(s) ds

)2

+
∫ ∞

0
(k(s))2 ds

and we have a differential game.

Our adversary wishes to choose u(s) to maximize this quantity
subject to |u(s)| ≤ 1 .
We wish to choose k(s), h(s) to minimize this maximum subject
to

ḧ = k

h(0) = −1

ḣ(0) = 0

Clearly for a given k(s), h(s) , the maximizing u(s) are

u(s) = ± sign(h(s))
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Johansen and Berkovitz-Pollard Problem
So

max
|u|≤1

Ew(x̃(t))2 =
(∫ ∞

0
|h(s)| ds

)2

+
∫ ∞

0
(k(s))2 ds

The differential game reduces to a non standard optimal control
of choosing k(s), h(s) to minimize this quantity subject to

ḧ = k

h(0) = −1

ḣ(0) = 0

The Euler Lagrange equation for this problem is

h(4) = −γ sign(h)

where

γ =
∫ ∞

0
|h(s)| ds
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Johansen and Berkovitz-Pollard Problem
Consider the related differential equation

φ(4) = − sign(φ)

Two one parameter groups act on the space of solutions of this
equation.

φ(s) → φ(s + σ), σ ∈ IR

φ(s) → α4φ(s/α), α ∈ IR>0

We look for a self similar solution that has consecutive simple
zeros at s = 0, s = 1 and satisfies for s ∈ [0, α]

φ(s + 1) = −α4φ(s/α)

On s ∈ [0, 1]

φ(s) = c1s + c2s2/2 + c3s3/6 + c4s4/24

where c4 = − sign(c1) 6= 0
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Johansen and Berkovitz-Pollard Problem
Matching φ(s) and its first three derivatives at s = 1± we
obtain

0
0
0
0

 =


1 1/2! 1/3! 1/4!

1 + α3 1 1/2! 1/3!
0 1 + α2 1 1/2!
0 0 1 + α 1




c1

c2

c3

c4


so the determinant of this matrix must be zero.

The determinant is

p(s) = (−α6 + 3α5 + 5α4 − 5α2 − 3α + 1)/24

and it has three positive roots

α =


0.2421

1
1/0.2421

The first and third roots yield self similar solutions to
φ(4) = − sign(φ) while the second root yields a periodic
solution to φ(4) = sign(φ) .
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Johansen and Berkovitz-Pollard Problem

We choose the first root because that solution chatters to zero
at s = 1/(1 − α) = 1.3194 .

Then

h(s) = γβ4φ(s/β)

where β is chosen so that

1 =
∫ ∞

0
|β4φ(s/β)| ds

Then γ is chosen so that

h(0) = −1
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Johansen and Berkovitz-Pollard Problem

For s ∈ [0, β]

h(s) = −s + 0.872575492926169s2 − 0.253795996951782s3

+0.024616157365051s4

k(s) = 1.745150985852338 − 1.522775981710693s

+0.295393888380611s2

and it chatters to zero at β/(1 − α) = 4.2244 .

Integration by parts yields the minmax expected error variance

ḧ(0) = k(0) = 1.745150985852338

The problem is that the resulting filter is infinite dimensional as
it requires storing the values of y(t − s) for s ∈ [0, 4.2244] .

And what about a general linear system?
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ḧ(0) = k(0) = 1.745150985852338

The problem is that the resulting filter is infinite dimensional as
it requires storing the values of y(t − s) for s ∈ [0, 4.2244] .

And what about a general linear system?



Linear Time Invariant Minimax Filtering

Plant:

ẋ = Ax + Bu, ‖u‖∞ ≤ 1

y = Cx + Dw, w WGN

z = Lx, z ∈ IR

Linear Filter:

ẑ =
∫ ∞

0
k(s)y(t − s) ds

Goal:

min
k

max
‖u‖∞≤1

Ew(x̃i)2
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ẑ =
∫ ∞

0
k(s)y(t − s) ds

Goal:

min
k

max
‖u‖∞≤1

Ew(x̃i)2



Linear Time Invariant Minimax Filtering

Given a k(s) define h(s) as before

ḣ = hA + kC

h(0) = −L

After integration by parts

z̃(t) =
∫ ∞

0
h(s)Bu(t − s) + k(s)Dw(t − s) ds

Ew(z̃(t))2 =
(∫ ∞

0
h(s)Bu(t − s) ds

)2

+
∫ ∞

0
k(s)DD′k′(s) ds

max
‖u‖∞≤1

Ew(z̃(t))2 =
(∫ ∞

0
‖h(s)B‖1 ds

)2

+
∫ ∞

0
k(s)DD′k′(s) ds
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ḣ = hA + kC

h(0) = −L

After integration by parts

z̃(t) =
∫ ∞

0
h(s)Bu(t − s) + k(s)Dw(t − s) ds

Ew(z̃(t))2 =
(∫ ∞

0
h(s)Bu(t − s) ds

)2

+
∫ ∞

0
k(s)DD′k′(s) ds

max
‖u‖∞≤1

Ew(z̃(t))2 =
(∫ ∞

0
‖h(s)B‖1 ds

)2

+
∫ ∞

0
k(s)DD′k′(s) ds



Non Standard Optimal Control Problem

Minimize(∫ ∞

0
‖h(s)B‖1 ds

)2

+
∫ ∞

0
k(s)DD′k′(s) ds

subject to

ḣ = hA + kC

h(0) = −L

• State h(s) ∈ IR1×n , Control k(s) ∈ IR1×p

This optimization problem is too complicated for the
Euler-Lagrange approach so we apply the Pontryagin Maximum
Principle instead.
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Pontryagin Maximum Principle

Add an extra state coordinate

ḣn+1 = ‖hB‖1

Adjoint variables ξ ∈ IRn×1 , ζ ∈ IR .

Control Hamiltonian

H = hAξ + kCξ + ‖hB‖1ζ + kDD′k

Adjoint Dynamics

ξ̇ = −
(

∂H
∂h

)′
= −Aξ − B ( sign(hB))′ ζ

ζ̇ = −
(

∂H
∂hn+1

)
= 0
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Pontryagin Maximum Principle

Maximize the Hamiltonian with respect to the control

0 =
∂H
∂k

= Cξ + 2DD′k′

k = −
ξ′C′(DD′)−1

2

and plug into the dynamics.



Pontryagin Maximum Principle

Hamiltonian Dynamics and Transversality Conditions

ḣ = hA −
ξ′C′(DD′)−1C

2
ḣn+1 = ‖hB‖1

ξ̇ = −Aξ − B ( sign(hB))′ ζ

ζ̇ = −2‖hB‖1

h(0) = −L

hn+1(0) = 0

ξ(∞) = 0

ζ(∞) = 0

This is usually too complicated to solve explicitly and even if we
could the resulting filter would probably be infinite dimensional.
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Rational Minimax Filtering

Therefore we restrict the optimization to weighing patterns k(s)
that are the impulse responses of finite dimensional linear
systems.

In other words we restrict to k(s) whose Laplace transforms are
rational.

k(s) =
N∑

i=1

γie
λis

This guarantees that the resulting filter is finite dimensional, it
can be realized by a finite dimensional time invariant linear
system.
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Rational Minimax Filtering

ẑ(t) =
∫ ∞

0
k(s)y(t − s) ds

k(s) =
N∑

i=1

γie
λis

is realized by

ξ̇ =

 λ1 0
. . .

0 λN

 ξ +

 1 0
. . .

0 1

 y

ẑ(t) =
[

γ1 . . . γN

]
ξ



Rational Minimax Filtering

If we look for a filter the same size as the original system
N = n , A, B is a controllable pair and all the eigenvalues of A
are in the closed right half plane then the filter takes the form

k(s) = −h(s)G

for some G .

In other words we are finding the linear feedback that

min
G

(∫ ∞

0
‖h(s)B‖1 ds

)2

+
∫ ∞

0
k(s)DD′k′(s) ds

subject to

ḣ = hA + kC

h(0) = −L

k(s) = −h(s)G
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Rational Minimax Filtering

One virtue of this approach is that the resulting filter is realized
by the linear system

ξ̇ = (A − GC)ξ + Gy = Aξ + G(y − Cξ)

ẑ = Lξ

and it looks like a Kalman filter or linear observer.

Notice that there may be a different gain G and different filter
for each linear functional of the state z = Lx .

This suggests the following approach. Use numerical routines to
minimize the optimal control problem with and without the
restriction that k(s) = h(s)G . If the optimal cost of the
former is close enough to that of the latter, accept the filter. If
not expand the class of rational filters that are considered.
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ẑ = Lξ

and it looks like a Kalman filter or linear observer.

Notice that there may be a different gain G and different filter
for each linear functional of the state z = Lx .

This suggests the following approach. Use numerical routines to
minimize the optimal control problem with and without the
restriction that k(s) = h(s)G . If the optimal cost of the
former is close enough to that of the latter, accept the filter. If
not expand the class of rational filters that are considered.



Rational Minimax Filtering

One virtue of this approach is that the resulting filter is realized
by the linear system

ξ̇ = (A − GC)ξ + Gy = Aξ + G(y − Cξ)
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Single Integrator

We tried this approach on some model problems.

A = 0 B = 1

C = 1 D = 1

z = x

Optimal Cost Suboptimal Rational Cost Ratio
1.1006 1.1906 1.0818

We were able to compute the optimal infinite dimensional filter
explicitly.
The suboptimal filter was computed using a numerical
optimization routine.
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Double Integrator

A =
[

0 1
0 0

]
B =

[
0
1

]
C =

[
1 0

]
D =

[
1

]
(JBP Problem) z = x1

Optimal Cost Suboptimal Rational Cost Ratio
1.7452 1.7880 1.0245

z = x2

Optimal Cost Suboptimal Rational Cost Ratio
2.1269 2.2733 1.0688

Again we were able to compute the optimal infinite dimensional
filters explicitly.
The suboptimal filters were computed using a numerical
optimization routine.
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Triple Integrator

Estimate x1

A =

 0 1 0
0 0 1
0 0 0

 B =

 0
0
1


C =

[
1 0 0

]
D =

[
1

]

z = x1

Approx. Optimal Cost Suboptimal Rational Cost Ratio
2.4074 2.4282 1.009

We computed the optimal filter and the suboptimal filter using
numerical optimization routines.



Quadruple Integrator

Estimate x1

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 B =


0
0
0
1


C =

[
1 0 0 0

]
D =

[
1

]

z = x1

Approx. Optimal Cost Suboptimal Rational Cost Ratio
3.0722 3.0901 1.006

We computed the optimal filter and the suboptimal filter using
numerical optimization routines.



Harmonic Oscillator

Estimate x1

A =
[

0 −1
1 0

]
B =

[
0
1

]
C =

[
1 0

]
D =

[
1

]

z = x1

Approx. Optimal Cost Suboptimal Cost Ratio
1.26 1.3536 1.07

We computed the optimal filter and the suboptimal filter using
numerical optimization routines.



Remarks

For the single integrator

• The best first order filter that we found was 8.2% above
optimal.

• It is the Kalman filter we would have constructed if we had
assumed that the driving noise covariance was 2.5198.

• The Kalman filter with driving noise covariance 1 was 36%
above optimal.
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Remarks

For the double integrator

•• The best second order filter for estimating x1 that we found
was 2.4% above optimal.

• The best Kalman filter for estimating x1 that we found was
2.6% above optimal. The driving noise covariance was 3.4.

• The Kalman filter for estimating x1 with driving noise
covariance 1 was 6.4% above optimal.

• The best gain for estimating x2 was 7% above optimal.

• If we used the best gain for estimating x1 to estimate x2

the performance was 9% above optimal.
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Remarks
From this we might conclude that a Kalman filter can be a
nearly optimal rational filter provided that we choose the driving
noise covariance correctly.

This conclusion is wrong!

For the single integrator

•• The best first order filter that we found was 8.2% above
optimal. It is the best Kalman filter.

• The best second order filter that we found was 1.4% above
optimal. The poles were complex at −1.9572 ± 1.0372i .

For the double integrator

• The best second order filter for estimating x1 that we found
was 2.4% above optimal. The best Kalman filter was 2.6%
above optimal.

• The best fourth order filter for estimating x1 that we found
was 0.7% above optimal. The poles were at
−1.4442 ± 0.9460i and −1.7142 ± 1.8055i.
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Conclusions

•• Minimax filters focus on worse case rather than average
case performance.

• Minimax filters do not require knowledge of the driving
noise covariance, instead, a bound on its magnitude.

• Rational minimax filtering is a computationally feasible
alternative to Kalman filtering for low dimensional systems.

• It is possible to compute how close to optimal is a rational
filter.

• Increasing the dimension of the filter over that of the plant
can significantly improve performance.

• More research is needed to understand how to choose a
good suboptimal rational filter particularly when the
dimension of the filter is greater than that of the original
system.

• Happy Birthday Eduardo
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