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The milestones

The green years: 1963-1977.

Understanding nonlinear controllability, observability and minimality.
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1960 1970 1980 1990

Hermann, On the 
accessibility problem in 
control theory, 1963

Haynes, Hermes, 
Nonlinaer controllability 
via Lie theory, 1968

Lobry, Controlabilite
des systems nonlineaires, 
1968

Sussmann, Jurdjevic, 
Controllability of 
nonlinear systems, 1971

Brockett, System theory 
on group manifolds and 
coset spaces, 1971

Hermann-Krener, 
Nonlinear controllability 
and observability, 1976

Sussmann, Orbits of 
families of vector fields 
… distributions, 1972

Krener, A 
generalization of Chow’s 
theorem, 1972

Kalman :Mathematical 
Description of Linear 
Dynamical Systems, 1962

Chow W.L.,  Uber systeme
von linearen partiellen
dierentialgleichungen
ester ordnung, 
Math. Ann., vol. 117 (1938)
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The growth of nonlinear control: 1979-1989.

Understanding feedback design for nonlinear systems: decoupling,

non-interaction, feedback linearization

(only marginal emphasis on stability, though).
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1970 1980 1990

Basile, Marro, Controlled 
and conditioned invariant 
subspaces …, 1968

Wonham, Morse, 
Decoupling and pole 
assignment …, 1968

Nijmeijer, V. der Schaft, 
Controlled invariance for 
nonlinear systems, 1982

Singh, Rugh, Decoupling in 
a class of nonlinear systems 
by … feedback, 1972

Porter, Diagonaliz-
ation and inverses 
for nonlinear, 1969

Hirschorn, Invertibility of 
miltivarlable nonlinear 
systems, 1978

AI, Krener, CGG, SM, 
Nonlinear decoupling …
diferential geometric, 1979

Hirschorn, (A,B) invariant 
distributions …, 1979

Descusse, Moog, 
Decoupling with dynamic 
compensation, 1984

De Persis, AI, Geometric 
approach to nonlinear fault 
detection …, 1999

Battilotti, A sufficient 
condition for nonintercting
control with stability, 1989

Wagner, Nonlinear 
noninteraction with 
stability, 1989

Internal stability is 
still missing !

Grizzle, AI, Fixed modes 
and nonlin. non-interacting 
control with stability, 1987

20 years
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The Copernican revolution: 1989-1995.

The introduction of the concept of Input-to-State Stability radically

changes the way in which problems of feedback stabilization are handled.

The possibility of estimating the (nonlinear) gain functions via

Lyapunov-like criteria makes it easy to assign such functions in the design

of (globally) stabilizing feedback laws.
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1980 1990 2000

Sontag, Smooth stabiliz-
ation implies coprime
factorization, 1989

Sontag-Wang, On 
characterizations of input-to-
state stability …, 1995

Sontag-Wang, New 
characterizations of input-to-
state stability …, 1996

Teel-Praly, Tools for semi-
global stabilization by partial 
state and output … 1995

Sontag, Feedback 
stabilization of nonlinear 
systems, MTNS 1989

Jiang-Teel-Praly, Small    
gain theorm for ISS sysems
… 1994

Sontagfest 23-25 May 2011 6



Alberto Isidori

Roadblocks and Challenges

One basic question puzzles me: where did MIMO systems go ?

In the late 1960s and early 1970s, the theory of MIMO linear systems reached

a high degree of sophistication (one example for all: Wonham’s famous book

is entitled “Linear Multivariable Control”). In the 1980s, a big a collective

effort aimed at extending this theory to nonlinear systems. Sophisticated

tools had been developed, yielding a rather satisfactory understanding of

system inversion, zero dynamics, infinite zero structure for MIMO nonlinear

system.

However, by the early 1990s, a blackout occurred.

Only in the early 2000s, interest in such ideas came back.
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1980 1990 2000

Di Benedetto, Grizzle, 
Moog, Rank invariants of 
nonlinear systems, 1988

Liberzon, Sontag, Morse, 
Output-Input Stability and 
minimum phase …, 2002

Liberzon, Output-input 
stability implies feedback 
stabilization, 2004

Singh, A modified algorithm 
for invertibility in nonlinear 
systems, 1981

Respondek, Right and Left 
Invertibility of Non-linear 
Contr. Systems, 1990

The MIMO blackout !
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Stabilization of MIMO systems by output feedback

A SISO strongly minimum-phase system (having relative degree 1) can be

globally stabilized by memoryless output feedback u = κ(e).

The MIMO version of this stabilization paradigm is still a largely open domain

of research.

After a “blackout” period that lasted for about a decade, interest has

resumed in the problem of (globally) stabilizing MIMO nonlinear systems.

Advances in this domain have been triggered by a paper of Liberzon, Morse,

Sontag (2002).

A paper of Liberzon (2004), in particular, considers input-affine systems

having m inputs and p ≥ m outputs, with the following property: for some

integer N , there exist functions β ∈ KL and γ ∈ K∞ such that for every

initial state x(0) and every admissible input u(·) the corresponding solution

x(t) satisfies

|x(t)| ≤ max{β(|x(0)|, t), γ(‖yN−1‖[0,t])}
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as long as it exists. The property in question is a possible extension to

MIMO systems of the property of being strongly minimum phase.

Then, Liberzon (2004) assumes that the system is globally left invertible, in

the sense that (the global version of) Singh’s inversion algorithm terminates

at a stage k∗ ≤ m in which the input u(t) can be uniquely recovered from

the output y(t) and a finite number of its derivatives.

Under this (and another technical) assumption it is shown that a static state

feedback law u = α(x) exists that globally stabilizes the system. The role

of this law is essentially to guarantee that – in the associated closed-loop

system – the individual components of the output obey linear differential

equations whose characteristic polynomials are Hurwitz.

This result is very intersting, and is the more general result available to date

dealing with global stabilization of MIMO systems possessing a (strongly)

stable zero dynamics. The feedback law proposed, though, is a static state

feedback law. The problem of finding a UCO (in the sense of Teel-Praly)

feedback law is still open.
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There are classes of MIMO systems, though, in which the design paradigm

based on high-gain feedback (from the output and their higher derivatives)

is applicable.

The most trivial one is the class of (square) systems in which Lgh(x) is

nonsingular. In this case, in fact, if in addition there exist a matrix M and

a number b0 > 0 such that

[Lgh(x)]TM +M [Lgh(x)] ≥ b0I

and if the above property holds for N = 1, the global stabilization paradigm

described in the previous section is applicable.

So the question arises: how can a more general system be reduced to a

system possessing such property ?
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If the property that Lgh(x) is nonsingular could be achieved via a

transformation of the type

ỹ = φ(y, y(1), . . . , y(k)) ,

the paradigm in question, supplemented by the robust observer of Teel-Praly,

can still be pursued to obtain (at least) semiglobal stability.

A special case of systems for which such transformation exists are the systems

that are invertible and whose input-output behavior can be rendered linear

via a transformation of the form u = α(x) + β(x)v (compare with Liberzon

(2004), where the autonomous behavior is rendered linear by a control law

u = α(x)). For such systems, in fact, one can find the desired ỹ as

ỹ = Λ(s)K

in which K is a nonsingular matrix and Λ(s) is a diagonal matrix of Hurwitz

polynmials. If the original system was strongly minimum phase so is the

modified system and the property above holds for N = 1.
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A simple benchmark in MIMO stabilization

Consider a system with two inputs and two outputs and assume

Lgh2(x) = δ(x)Lgh1(x)

for some δ(x). Define

φ(x) = Lfh2(x)− δ(x)Lfh1(x)

Then
ẏ1 = Lfh1(x) + Lgh1(x)u

ẏ2 = φ(x) + δ(x)ẏ1

φ̇ = Lfφ(x) + Lgφ(x)u

Assume invertibility, i.e. assume(
Lgh1(x)

Lgφ(x)

)
is nonsingular for all x. How can we achieve global stability via output

fedback ?
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Output regulation of MIMO Systems

Let a plant
ẇ = s(w)

ẋ = f(w, x, u)

e = h(w, x)

y = k(w, x) ,

(1)

with control u ∈ Rm, regulated output e ∈ Rp, and supplementary

measurements y ∈ Rq, be controlled by

ẋc = fc(xc, e, y)

u = hc(xc, e, y) .
(2)

The goal is to to obtain a closed-loop system in which all trajectories are

ultimately bounded and limt→∞ e(t) = 0.

Consider, without loss of generality, the case in which the state w of the

exosystem evolves on a compact invariant set W and assume that the

steady-state locus of the associated closed-loop system is the graph of a C1

map defined on W .
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Then, if the problem in question is solved, there exist maps π(w) and πc(w)

satisfying

Lsπ(w) = f(w, π(w), ψ(w))

0 = h(w, π(w))
∀w ∈W (3)

and
Lsπc(w) = fc(πc(w), 0, k(w, π(w)))

ψ(w) = hc(πc(w), 0, k(w, π(w))) .
∀w ∈W (4)

The first two are the so-called regulator equations. The last two express the

property, of the controller, of generating a steady-state control that keeps

e = 0.

In the case of linear systems, the regulator equations are robustly solvable

(with respect to plant parameter uncertainties) if and only if the system is

right-invertible with respect to e (which in turn implies m ≥ p) and none of

the transmission zeroes is an eigenvalue of the exosystem ( non-resonance

condition).
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This being the case, the fulfillment of the extra two conditions ( in spite of

plant parameter uncertainties) is automatically guaranteed if the controller

is chosen as the cascade of a “post processor” that contains of p identical

controllable copies of the exosystem

η̇i = Sηi +Giei , i = 1, . . . , p (5)

whose state η = col(η1, . . . , ηp) drives, along with the full measured output

(e, y), a “stabilizer”

ξ̇ = F11ξ + F12η +Bc1e+Bc2y

u = H1ξ +H2η +Dc1e+Dc2y .
(6)

In fact, appealing to the non-resonance condition, it is a simple matter to

show that if the controlled plant is stabilizable and detectable so is the

cascade of the controlled plant and of (5) and hence a stabilizer of the form

(6) always exists.
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Then, using Cayley-Hamilton’s Theorem, it is not difficult to show that,

regardless of what ψ(w) and π(w) are (recall that we are seeking solutions

in spite of parameter variations), the equations (4) always have a solution

πc(w) (even if the “steady-state” supplementary measurement k(w, π(w))

is nonzero).

In the case of nonlinear systems having m > 1 and p > 1, solving the two

equations (3) is not terribly difficult. This can be achieved, in fact, by means

of a suitably enhanced version of the zero dynamics algorithm (such as

presented in [Isidori (1995)]) and, if so desired for subsequent stabilization

purposes, by bringing the system to a multivariable normal form.

However, the problem of building a controller that also solves the two

equations (4) is substantially different, because the existence of πc(w) is no

longer automatically guaranteed by the fact that the controller is realized

as an internal model driven by the error variable e which in turn drives a

stabilizer.
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In fact, to the current state of our knowledge, it is known how to fulfill the

equations in question only if the controller is realized as a preprocessor

η̇ = ϕ(η) +Gv

u = γ(η) + v

with ϕ(·) and γ(·) satisfying

ψ(w) = γ(τ (w))

Lsτ (w) = ϕ(τ (w))
∀w ∈W (7)

for some τ (·) whose input v is provided by a stabilizer only driven by the

regulated variable e.
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The existence of such maps was recently showed in [Marconi, Praly, Isidori

(2007)]. In particular, it was shown that for a large enough d, there exists

a controllable pair (F,G), in which F is a d× d Hurwitz matrix and G is a

d× 1 vector, a continuous map γ : Rd→ R and a continuously differentiable

map τ : W → Rd satisfying

Lsτ (w) = Fτ (w) +Gψ(w)

ψ(w) = γ(τ (w))

from which is is seen that (7) can be fulfilled with

ϕ(η) = Fη +Gγ(η) .
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This substantially limits the generality for at least two reasons: on one side it

does not allow additional measured outputs (which would be otherwise useful

for stabilization purposes) because it is not immediate how their possibly

nontrivial steady-state behavior could be (robustly) handled, on the other

side because a scheme in which the internal model is a preprocessor requires

(even in the case of linear systems) m = p and this limits the availability

of extra inputs (which, again, would be otherwise useful for stabilization

purposes).

The theory of output regulation for MIMO nonlinear systems with m > p

and q > 1 is a completely open domain of research.
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Happy Birthday EDUARDO

and Congratulations for your outstanding
achievements !
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