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Talk Outline ,) engineering
Examples Modeling/Analysis tools
* Biology / degradation regulation * Lyapunov-based analysis
* Biology / transcription regulation * Moments dynamics

Disclaimer:
Several other important applications/researchers not mentioned in this talk. E.g.,
@ air traffic control [Bujorianu, Lygeros, Prandini, Hu, Tomlin,...]
@ network traffic modeling [Bohacek, Lee, Yin, ...]
@ queuing systems [Cassandras,...]
@ economics [Davis, Yin,...]

@ biology [Hu, Julius, Lygeros, Pappas,...]

disclaimer: This is an overview, technical details in papers referenced in
bottom right corner... http://www.ece.ucsb.edu/~hespanha
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Deterministic Hybrid Systems

continuous
dynamics

q(t) € Q={1.2,...} = discrete state
x(t) € R” = continuous state




Deterministic Hybrid Systems

continuous
dynamics

q(t) € Q={12,...}
x(r) € R”

= discrete state
= continuous state

impulsive system
(single discrete mode)
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z — ¢(z)
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Stochastic Hybrid Systems

continuous
dynamics

$H¢3

trahsition intensities
(probability of transition in
small interval (¢, t+dt])
€T — ¢2 ................

reset-maps
q(t) € Q={1,2,...} = discrete state
x(t) € R” = continuous state
4 )

Special case: Markovian jump system

When all A, are constant = time triggered SHS with exponential 41— %




Construction of the Stochastic Process

(\ UC SANTA BARBARA

1. Initialize state: given parameter

. Draw a unit-mean exponential random

. Solve ODE

. Apply the corresponding reset map

¥ engineering

here we take xp as a
ZE(tQ) = Xy k=0

variable
E ~ exp(1)

Tr = f(x) a:(tk) — Tk t Z tk

until time #.; for which

/ @)t > B

ty

T(thy1) = Trr1 = A (thy1))

set k=k+ 1 and go to 2.
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Example #1: Degradation Regulation ¥ engineering

x(t) = concentration of protein X at time ¢

degradation of
“‘each protein X
at a constant rate

productio:‘n of X at
constant rate

Degradation regulation = feedback mechanism used to regulate the concentration
of a protein by destroying protein molecules “in excess”
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Example #1: Degradation Regulation

¥ engineering
x(t) = concentration of protein X at time ¢

. exp
r=k—dx Tr —— —

degradation of
“‘each protein X
at a constant rate

productio:‘n of X at
constant rate

Degradation regulation = feedback mechanism used to regulate the concentration
of a protein by destroying protein molecules “in excess’

./; -.;?&\X } PROTEIN
o Suppose: Gene G produces an enzyme that

tags proteins for destruction
bl (e.g., ubiquitination for subsequent

REGULATORY |
UNIT

CORE
UNIT

degradation by the proteasome)

REGULATOR
_g» oF UNIT

DEGRADED (S . _
o | Ve { 0=k G off protein is only

degraded when the

angiebiotech.com r=k—dx G on Gene is on
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Example #1: Degradation Regulation ¥ engineering

Negative feedback =when the protein X is a transcription factor that activates the gene

X binds to G and activates it
(X-dependent activation rate)

Aon(T)dt

\/

Aofrdt

X unbinds to the gene
(X-independent deactivation rate)

Is this enough to keep the variance bounded? Small?
For which gene activation rates Aon(x) ¢

What about higher order moments?
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Example #1: Degradation Regulation ¥ engineering

Negative feedback =when the protein X is a transcription factor that activates the gene

X binds to G and activates it
(X-dependent activation rate)

Aon(T)dt

\/

Aofrdt

X unbinds to the gene
(X-independent deactivation rate)

What if the degradation is constrained by the enzyme concentration?

Aon(x)dt

bounded
decay rate
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ODE - Lie Derivative ¥ engineering

T = f(x) r e R"

Given scalar-valued function V : R® — R

dV (z(t)) _ vV (z(t))

x(t
dt ox f( ( ))
derivative > A g
along solution L.V
to ODE d

Lie derivative of V'

Basis of “Lyapunov” formal arguments to establish boundedness and stability...

E.g., picking V (z) := ||z||?

VD) Vo) <o = VW) = 2O <O

|z]|* remains bounded along trajectories !




= UC SANTA BARBARA

Generator of a Stochastic Hybrid System (,; engineering

Given scalar-valued function V : 9 x R™ — R
x & q are discontinuous,
p but the expected value is

- E [V( (1), :c(t))} — E[(LV) (q(t), :I;(t))] differentiable

where
oV N
(LV)(q, x) :=a—x(q,x)fq(g;) Lie derivative
(extended)
generator of + 3 Mg, ( | V(g ) o Resetterm
the SHS Z o(q,2)(V(delg, ) = V(g )
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Example #1: Degradation Regulation (,} engineering
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Lyapunov Analysis — SHSs

probability of ||x(f)|| exceeding any given bound M,

class-K functions: can be made arbitrarily small by making ||x|| small

(zero at zero & mon. increasing)

{al(lfcl) < V(z) < ax(||z]) ~ {P (3t lz(t)]| > M) < 22Ul

LV(z) < —as({[z]]) P (z(t) = 0) =1 amostsure (as.)
asymptotic stability

sample-path
notions

Viz)>0 N / } V] dt < stochastic stability
N o0 (mean square when

Lt c  exponential stability
- b {W (a:(t))} < e *V(xo) + —  (mean square when
H W) = Jz)?)

expected-value
notions

t~

<

=%

H N—"

~— |V
=
&
AV4
()

VAN
|
=
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Example #1: Degradation Regulation

Aofrdt

Assume A\, (x) = € > 0: For every m > 1, 3pg, p1, 4, ¢ > 0 such that

V(g’x):pgxm ()™ e_utg; m E

all moments are bounded
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Example #1: Degradation Regulation

E [x(t)m] <e Mg (0)™ + <
7
all moments are bounded

bounded
decay rate

Ao dit

Assume )\, radially unbounded: For every m > 1, dpg, p1, it, ¢ > 0 such that

V(9(0),2(0))]
T

V ’ — m—+—1_|_ m
{ (9,2) =z Py VT

1 T
= _ Elz(t)"|dt < ¢+
(LV)(g,2) < —pa™ + TL lo(t)"]




5 UCSANTA BARBARA

Talk Outline ,) engineering
Examples Modeling/Analysis tools
* Biology / transcription regulation * Moments dynamics

(ex) students:  D. Antunes (IST), A. Mesquita (UCSB), Y. Xu
(Advertising.com), A. Singh (UCSD)

collaborators: M. Khammash (UCSB), C. Silvestre (IST)

acknowledgements: NSF, Institute for Collaborative bio-technologies (ARO),
AFOSR (STTR program)

disclaimer: This is an overview, technical details in papers referenced in
bottom right corner... http://www.ece.ucsb.edu/~hespanha




=\ UC SANTA BARBARA

Example III:(Unregulated) Gene Expression (,} engineering

Gene expression = process by which a gene (encoded in the DNA) produces proteins:

http://en.wikipedia.org

Coding transcripton y S
- AN — ran 5 o)
21:! > Y BEAP n:?ﬁﬁ:rgi mRNA (constant rate) =
r o Template %
& Strand wn
S
MRNA—— X + mRNA translation > =t
Ribosome ()
Q\. =
- mRNA D
« Polypeptide chain =
A mMRNA —> * mRNA decay =1

/\ G

\ (‘9‘

//
_.® X — * protein decay
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Example III:(Unregulated) Gene Expression (,p engineering

http://en.wikipedia.org

| Coding transcription Y S
g A —> d *— @
5, =5, AP TIT mRNA (constant rate) —
‘r 4 g Template =
- Strand 8
(@]
mRNA—— X + mRNA  transiaon &
@ Ribosome g
s mRNA @
- Polypeptlde chain =
7 mMRNA —s * mRNA decay 3

,,,,, - X%*

x(t) = number of proteins at time ¢

prob. of one transcription
eventin (¢, t+dt] d di

# of proteins produced per .

transcription event - x + N

r—x—1

protein decay

prob. of one decay
eventin (¢, t+dt]

equivalent to Gillespie’s
stochastic simulation
algorithm (SSA)
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Example III:(Unregulated) Gene Expression ( ¥ engineering

http://en.wikipedia.org

| Coding transcription
§al — *—
) RNAP T mRNA (constant rate)
3 ‘r ‘ ’ Template >
= 5'

Strand

MRNA—— X + mRNA translation

Ribosome
mRNA

'
JuaAs uonduosuel) auo

g Pol tide chai
G pepride chan mMRNA —s * mRNA decay
\d/
,,,,, .® X—>s * protein decay

How to go beyond stability/bounds and
study the dynamics of means, variances, co-variances, etc.?

prob. of one transcription prob. of one decay
eventin (¢, t+dt] Kdt drdt eventin (¢, t+dt]

equivalent to Gillespie’s
stochastic simulation
algorithm (SSA)

# of proteins produced per
franscriptonevent 1+ x + N r—x—1
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Moment Dynamics ¥ engineering

http://en.wikipedia.org

o N Coding t ) t Kdt d €T dt
s ]!6;. ) I[S : RNAP,, E%:%Fg: ran:\j::rﬁ)tlon i32i¥
Ribosome
O mRNA
« Poﬂllypeptide chain T — x+ N = r—1
N
o~ =
d
GEV@)] = B[LV)() (LV)(@) = K (V(@+N) - V(@)

+ da:(V(x 1) — V(a:))

dE[z]
g~ KEIN|—dE[z]
dlil[;v | KE[N? + QK E[N] + d)E[] — 24E[+?]

mRNA translation rate Var[N] = N2 - N

One can show that E[N] = N :=
N] mRNA decay rate
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(Unregulated) Gene Expression Y engineering

http://en.wikipedia.org

" ay™ — Coding transcription Kdt d X dt
5 — » I[E? ﬁ ; RNAP j Strand N
Sﬂr ‘ ' 5 Template > event decay

strand event

Ribosome
mRNA
Polypeptide chain xr— x -+ N r—x—1

Thus, at steady-state,

StdDev|x
Elr] =~ V] = tgx][]:@:,/%

k * measure of stochastic fluctuations in protein level x
(normalized by mean population)
* intrinsic noise (solely due to random protein
expression/degradation)

mRNA translation rate

N =
mRNA decay rate
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Auto-Regulated Gene Expression

http://en.wikipedia.org

‘ Coding transcription
§aX — ® 5

g agﬁg@ﬁmlﬁ%g mRNA  (hon-constant rate)
6. ol - Template

Strand

¥ engineering

Ribosome MRNA—— X + mRNA translation
. mRNA

Polypeptide chain

\ @3 mRNA > % MRNA decay

N o X—— * protein decay

Protein production rate is a function of the current protein molecule count through
transcription regulation:

transcriptional response .,
(stochastic rate at which g'(m) dt d o dt
transcription events occur)

« Altering the RNA polymerase specificity for a

given promoter or set of promoters x—x+ N r—xv—1
« Binding to non-coding sequences on the

DNA to impede RNA polymerase's progress
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Auto-Regulatory Negative Feedback ¥ engineering

http://en.wikipedia.org

o transcrlpthon g(x) dt d o dt
5]! - RNAP UL even
N 6. P gpans , , [TITITIT ., decay
- 5 g Template
f strand event
r— x+ N r—x—1

negative feedback = protein production rate 1s a decreasing function
of the protein molecule count

| transcriptional
response * Common form of auto regulation
(e.g., half of the repressors in E. Coli)
g(z) * Experimentally shown to exhibit noise
reduction ability

\ 4
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Moment Dynamics ¥ engineering

http://en.wikipedia.org

” transcription g(x) dt dax dt
v — Strang event
21:[!6. > Pize - EEIIFDIE: decay
b s oy event
rx—x+ N r—x—1
d
SE[V@)] = B[LV)(@) (LV)(@) = g(2) (V (@ + N) = V(2))
+ d;r;(V(x 1) — V(:r;))
dF|x
) BIN|Elg(x)] - dEls
dE|z?
d[t } = E[N?|E[g(x)] + 2E[N]|E[g(z)x] + dE[z] — 2d E[2?]
e a
Q@ When g(x) is an affine function we still get a finite system of linear equations
Q@ When g(x) 1s a polynomial, we get a closed but infinite system of linear equation
(general property of polynomial SHSs)
f.? For other g(x), one generally does not get a closed system of equations )
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Auto-Regulated Gene Expression ¥ engineering

http://en.wikipedia.org

g transcription g( ) dt d o dt
y — Strand event
g::! > < [TIIIIIT., decay
6. - : ) Template
- > Strand event
r+— x+ N r—x—1

Approximate Analysis Methods

@ Distribution-based: assume a specific type of distribution (Normal, LogNormal,
Poisson, etc.) and force dynamics to be compatible with this type of distribution

©

Large numbers/large volume: take the limit as volume — o and assume
concentrations do not — 0

©

Derivative matching: force solutions of approximate dynamics to match exact
equation locally in time

©

Linearization: Linearize transcriptional response around steady-state value of the
mean
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Auto-Regulatory Negative Feedback @ engineering

http://en.wikipedia.org

transcription
cumg event g(x) dt dx dt
Template g decay
strand event
r— x+ N r—x—1

For a transcriptional response approximately linear around steady-state mean

g(z) ~ g(z*) + g'(z")(x — 27)

. | | R steady-state
protein’s response-time (with feedback) population mean

N “uhregulated”

StdDev[z] [T, "
CVz] = Elz] - T,E[z] intrinsic noise 1
P \ 235
protein’s half-live (response time without feedback) R T TR
experimental study using a synthetic gene
Negative feedback reduces 7). with circuit in which the repressor TetR fused to

GFP represses its own promoter

r t to 7, = decreases noi
CSpeCtto Ly decreases noise Rosenfeld et al, J. Molecular Biology, 2002
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Exogenous Noise

¥ engineering

d transcription g(x.2) dt dxdt
Codin
q A N — Strang . event
> >y - [TITTTIT?, decay
’ 6. - ‘ Template >
) ° Strand event
O Ribo:}::\leA
P Pglypeptide chain I H T + N T |_> T — 1
/\ &

In practice, transcription rate also depends on exogenous species
(e.g., RNA polymerase and other enzymes)

g(x, ) = transcriptional response (stochastic rate at
K which transcription events occur)

exogenous species
(with stochastic fluctuations)
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Exogenous Noise ¥ engineering

| o transcription g(z.2) dt dxdt
= \ _» s — — Strand 5 event d
3 ‘r ‘ / o Template o Q ecay
: Strand event
Ribosome
.9 mMRNA
= Polypeptide chain
r—x—1
s r+—x+ N

CV of extrinsic

T N T N2 species
OVl ~ F o+ () OV | -
T, Elx] T, T, = protein’s response-time (with feedback)
intr\inSiCYnoisje — T}, = protein’s half-live (response time without
xtrinsic noi
(as before)  © trinsic noise feedback)

Negative feedback reduces T, with respect to T,

@ attenuates both intrinsic and extrinsic noise

@ more efficient at reducing extrinsic noise

@ surprisingly good matches with experimental results...

Cell generations

@ offers a new technique to discover sources of extrinsic noise (solve for CV|[z] !)

[Singh et al, 2009; related results by Paulsson 2004]
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1. SHS models that find use in several areas

(

biochemistry, )

2. The analysis of SHSs is challenging but there are tools available
( Lyapunov methods, moment
dynamics, linearization, )

3. Lots of work to be done ...




