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Disclaimer: 
Several other important applications/researchers not mentioned in this talk. E.g.,

air traffic control [Bujorianu, Lygeros, Prandini, Hu, Tomlin,...]
network traffic modeling [Bohacek, Lee, Yin, ...]
queuing systems [Cassandras,...]
economics [Davis, Yin,…]
biology [Hu, Julius, Lygeros, Pappas,...]

Examples

• Biology / degradation regulation

• Biology / transcription regulation

Modeling/Analysis tools

• Lyapunov-based analysis

• Moments dynamics



Deterministic Hybrid Systems

guard
conditions

reset-maps

continuous
dynamics

q(t) ! Q={1,2,…}! " discrete state  
x(t) ! Rn ! " continuous state

q 1
x f1 x

q 2
x f2 x

q 3
x f3 x



Deterministic Hybrid Systems

guard
conditions

continuous
dynamics

q(t) ! Q={1,2,…}! " discrete state  
x(t) ! Rn ! " continuous state

ẋ = f(x)

g(x) ≥ 0?

x �→ φ(x)
impulsive system

(single discrete mode)

q 1
x f1 x

q 2
x f2 x

q 3
x f3 x

reset-maps



Stochastic Hybrid Systems

transition intensities
(probability of transition in 
small interval  (t, t+dt])

q(t) ! Q={1,2,…}! " discrete state  
x(t) ! Rn ! " continuous state

λ�(x)dt ≣ probability of transition in an “elementary” interval (t, t+dt]

≣ instantaneous rate of transitions per unit of timeλ�(x)
!

continuous
dynamics

Special case:
When all "! are constant ⇒ time triggered SHS with exponential tk+1" tk

Markovian jump system

q 1
x f1 x

q 2
x f2 x

q 3
x f3 x

reset-maps



1. Initialize state:

2. Draw a unit-mean exponential random 
variable

3. Solve ODE

until time tk+1 for which

4. Apply the corresponding reset map

set k = k + 1 and go to 2.

Construction of the Stochastic Process

ẋ = f(x)

ẋ = f(x) x(tk) = xk t ≥ tk

λ(x)dt x �→ φ(x)

E ∼ exp(1)

� tk+1

tk

λ(x(t))dt ≥ E

x(tk+1) = xk+1 := φ(x−(tk+1))

x(t0) = x0 k = 0

here we take x0 as a
given parameter 



Example #1: Degradation Regulation

Degradation regulation " feedback mechanism used to regulate the concentration 
of a protein by destroying protein molecules “in excess”

x(t) = concentration of protein X at time t

production of X at 
constant rate

x k dx

degradation of 
“each protein X” 

at a constant rate

x
exp k

d



Example #1: Degradation Regulation

Degradation regulation " feedback mechanism used to regulate the concentration 
of a protein by destroying protein molecules “in excess”

x(t) = concentration of protein X at time t

production of X at 
constant rate

x k dx

degradation of 
“each protein X” 

at a constant rate

x
exp k

d

Suppose:!Gene G produces an enzyme that 
tags proteins for destruction
(e.g., ubiquitination for subsequent 
degradation by the proteasome)  

protein is only 
degraded when the 

Gene is onangiebiotech.com

x k G off

x k d x G on



Example #1: Degradation Regulation

Negative feedback " when the protein X is a transcription factor that activates the gene

g 1

x k d x

g 0

x k

X binds to G and activates it 
(X-dependent activation rate)

λon x dt

λoffdt

X unbinds to the gene
(X-independent deactivation rate)

Is this enough to keep the variance bounded? Small?

For which gene activation rates λonpxq ?

What about higher order moments?



Example #1: Degradation Regulation

g 1

x k d x

g 0

x k

Negative feedback " when the protein X is a transcription factor that activates the gene

X binds to G and activates it 
(X-dependent activation rate)

λon x dt

λoffdt

X unbinds to the gene
(X-independent deactivation rate)

What if the degradation is constrained by the enzyme concentration?

g 0

x k

λon x dt

λoffdt

bounded 
decay rate

g 1

x k
d xh

α xh



ODE " Lie Derivative

derivative
along solution

to ODE
Lf V

Lie derivative of V 

Basis of “Lyapunov” formal arguments to establish boundedness and stability…

remains bounded along trajectories !

dV
�
x(t)

�

dt
=

∂V
�
x(t)

�

∂x
f
�
x(t)

�

E.g., picking V (x) := �x�2

�x�2

Given scalar-valued function V : Rn → R

dV x t

dt

V

x
f x 0 V x t x t 2 x 0 2



Generator of a Stochastic Hybrid System

(extended)
generator of 

the SHS

where

Lie derivative

Reset term

Dynkin’s formula
(in differential form)

instantaneous variation

intensity

x & q are discontinuous, 
but the expected value is 

differentiable

Given scalar-valued function V : Q× Rn → R

d

dt
E
�
V
�
q(t), x(t)

��
= E

�
(LV )

�
q(t), x(t)

��

(q, x) �→ φ�(q, x)λ� q, x dt

x fq x

LV q, x
V

x
q, x fq x

m

� 1

λ� q, x V φ� q, x V q, x



Example #1: Degradation Regulation

λon x dt

λoffdt

LV g, x
V g, x

x
k gd λon x 1 g λoffg V 1, x V 0, x

g 0

x k

g 1

x k d x



Lyapunov Analysis " SHSs

x �→ φ(x)

λ(x)dt
d

dt
E
�
V
�
x(t)

��
= E

�
(LV )

�
x(t)

��

almost sure (a.s.)
asymptotic stability

class-K functions:
(zero at zero & mon. increasing)

�
α1(�x�) ≤ V (x) ≤ α2(�x�)
LV (x) ≤ −α3(�x�)

probability of ||x(t)|| exceeding any given bound M, 
can be made arbitrarily small by making ||x0|| small

sa
m

pl
e-

pa
th

 
no

tio
ns

�
V (x) ≥ 0

LV (x) ≤ −W (x)

stochastic stability
(mean square when
                      )

� ∞

0
E
�
W

�
x(t)

��
dt < ∞

ex
pe

ct
ed

-v
al

ue
 

no
tio

ns

�
V (x) ≥ W (x) ≥ 0

LV (x) ≤ −µV + c
E
�
W

�
x(t)

��
≤ e−µtV (x0) +

c

µ

exponential stability
(mean square when
                      )

!

!

!

W (x) = �x�2

W (x) = �x�2

�
P
�
∃t : �x(t)� ≥ M

�
≤ α2(�x0�)

α1(M)

P
�
x(t) → 0

�
= 1

x f x

g x w



Example #1: Degradation Regulation

V g, x pgxm

LV g, x µV x c
!

all moments are bounded

E x t m e µtx 0 m c

µ

Assume λon x � 0: For every m 1, p0, p1, µ, c 0 such that

g 1

x k d x

g 0

x k

λon x dt

λoffdt



Example #1: Degradation Regulation

all moments are bounded

E x t m e µtx 0 m c

µg 1

x k d x

g 0

x k

λon x dt

λoffdt

g 0

x k

λon x dt

bounded 
decay rate

g 1

x k
d xh

α xh

λoffdt

!

Assume λon radially unbounded: For every m 1, p0, p1, µ, c 0 such that

V g, x xm 1 pgxm

LV g, x µxm c

1

T

T

0
E x t m dt c

V g 0 , x 0

T
, T
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Example III:(Unregulated) Gene Expression

Gene expression " process by which a gene (encoded in the DNA) produces proteins:

* #$ mRNA

mRNA #$ X + mRNA

X #$ *

transcription
(constant rate)

translation

protein decay

mRNA #$ * mRNA decay

one transcription event

http://en.wikipedia.org



Example III:(Unregulated) Gene Expression

* #$ mRNA

mRNA #$ X + mRNA

X #$ *

transcription
(constant rate)

translation

protein decay

mRNA #$ * mRNA decay

one transcription event

http://en.wikipedia.org

prob. of one transcription 
event in (t, t+dt]

prob. of one decay 
event in (t, t+dt]

x(t) " number of proteins at time t

x �→ x− 1x �→ x+N
# of proteins produced per 

transcription event

equivalent to Gillespie’s 
stochastic simulation 

algorithm (SSA)

Kdt d x dt



Example III:(Unregulated) Gene Expression

* #$ mRNA

mRNA #$ X + mRNA

X #$ *

transcription
(constant rate)

translation

protein decay

mRNA #$ * mRNA decay

one transcription event

http://en.wikipedia.org

x(t) " number of proteins at time t
How to go beyond stability/bounds and

study the dynamics of means, variances, co-variances, etc.?

prob. of one transcription 
event in (t, t+dt]

prob. of one decay 
event in (t, t+dt]

x �→ x− 1x �→ x+N
# of proteins produced per 

transcription event

equivalent to Gillespie’s 
stochastic simulation 

algorithm (SSA)

Kdt d x dt



Moment Dynamics

d

dt
E
�
V (x)

�
= E

�
(LV )(x)

�
(LV )(x) = K

�
V (x+N)− V (x)

�

+ d x
�
V (x− 1)− V (x)

�

One can show that 

dE[x]

dt
= K E[N]− dE[x]

dE[x2]

dt
= K E[N2] + (2K E[N] + d)E[x]− 2dE[x2]

http://en.wikipedia.org

transcription 
event decay 

event

x �→ x− 1x �→ x+N

Kdt d x dt



(Unregulated) Gene Expression

• measure of stochastic fluctuations in protein level x
(normalized by mean population)

• intrinsic noise (solely due to random protein
expression/degradation)

Thus, at steady-state,

http://en.wikipedia.org

transcription 
event decay 

event

x �→ x− 1x �→ x+N

Kdt d x dt



Auto-Regulated Gene Expression

Protein production rate is a function of the current protein molecule count through 
transcription regulation:

* #$ mRNA

mRNA #$ X + mRNA

X #$ *

transcription
(non-constant rate)

translation

protein decay

mRNA #$ * mRNA decay

• Altering the RNA polymerase specificity for a 
given promoter or set of promoters

• Binding to non-coding sequences on the 
DNA to impede RNA polymerase's progress

transcriptional response 
(stochastic rate at which 

transcription events occur)

http://en.wikipedia.org

x �→ x− 1x �→ x+N

g(x) dt d x dt



Auto-Regulatory Negative Feedback

negative feedback % protein production rate is a decreasing function 
of the protein molecule count

g(x)

x

• Common form of auto regulation
(e.g., half of the repressors in E. Coli)

• Experimentally shown to exhibit noise 
reduction ability

transcriptional
response

g(x) dttranscription 
event

decay 
event

x �→ x− 1x �→ x+N

http://en.wikipedia.org

d x dt



Moment Dynamics

d

dt
E
�
V (x)

�
= E

�
(LV )(x)

�
(LV )(x) = g(x)

�
V (x+N)− V (x)

�

+ d x
�
V (x− 1)− V (x)

�

!When g(x) is an affine function we still get a finite system of linear equations
!When g(x) is a polynomial, we get a closed but infinite system of linear equation

(general property of polynomial SHSs)
!For other g(x), one generally does not get a closed system of equations

dE[x]

dt
= E[N]E[g(x)]− dE[x]

dE[x2]

dt
= E[N2]E[g(x)] + 2E[N]E[g(x)x] + dE[x]− 2dE[x2]

transcription 
event

decay 
event

x �→ x− 1x �→ x+N

http://en.wikipedia.org

g(x) dt d x dt



Auto-Regulated Gene Expression

Approximate Analysis Methods
Distribution-based: assume a specific type of distribution (Normal, LogNormal, 
Poisson, etc.) and force dynamics to be compatible with this type of distribution
Large numbers/large volume: take the limit as volume $ & and assume 
concentrations do not $ 0

Derivative matching: force solutions of approximate dynamics to match exact 
equation locally in time 
Linearization: Linearize transcriptional response around steady-state value of the 
mean

transcription 
event

decay 
event

x �→ x− 1x �→ x+N

http://en.wikipedia.org

g(x) dt d x dt



Auto-Regulatory Negative Feedback

transcription 
event

decay 
event

x �→ x− 1x �→ x+N

http://en.wikipedia.org

For a transcriptional response approximately linear around steady-state mean

steady-state 
population mean

protein’s half-live (response time without feedback)

protein’s response-time (with feedback)

Negative feedback reduces Tr with 
respect to Tp ' decreases noise

CV [x] =
StdDev[x]

E[x]
=

�
Tr

Tp

N

E[x]

g(x) dt d x dt

experimental study using a synthetic gene 
circuit in which the repressor TetR fused to 

GFP represses its own promoter 

“unregulated”
intrinsic noise Tr

Tp

1

2.25

 Rosenfeld et al, J. Molecular Biology, 2002



Exogenous Noise

In practice, transcription rate also depends on exogenous species
(e.g., RNA polymerase and other enzymes)

g(x, z) % transcriptional response (stochastic rate at 
which transcription events occur)

exogenous species
(with stochastic fluctuations)

http://en.wikipedia.org transcription 
event

decay 
event

d x dt

x �→ x− 1x �→ x+N

g(x,z) dt



CV [x]2 ≈ Tr

Tp

N

E[x]
+

�Tr

Tp

�2
CV [z]2

Exogenous Noise

intrinsic noise
(as before)

CV of extrinsic 
species 

Negative feedback reduces Tr with respect to Tp 
! attenuates both intrinsic and extrinsic noise
!more efficient at reducing extrinsic noise
! surprisingly good matches with experimental results…
! offers a new technique to discover sources of extrinsic noise (solve for CV[z] !)

Tr % protein’s response-time (with feedback)

Tp % protein’s half-live (response time without 
feedback)extrinsic noise

[Singh et al, 2009; related results by Paulsson 2004]

http://en.wikipedia.org transcription 
event

decay 
event

d x dt

x �→ x− 1x �→ x+N

g(x,z) dt

Tr

Tp

1

2.25



Summary

1. SHS models that find use in several areas
(network traffic modeling, networked control systems, distributed estimation, 
biochemistry, population dynamics in ecosystems)

2. The analysis of SHSs is challenging but there are tools available
(stability conditions for linear time-triggered SHS, Lyapunov methods, moment 
dynamics, linearization, truncations)

3. Lots of work to be done …


