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Setup

We consider nonlinear discrete time control systems

r(n+1) = f(z(n),u(n))

with z(n) € X, u(n) € U, X, U arbitrary metric spaces

UNIVERSITAT
\y‘ BAYREUTH Lars Griine, Model predictive control without terminal constraints: stability and performance, p. 2



Setup

We consider nonlinear discrete time control systems

r(n+1) = f(z(n),u(n))
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Setup
We consider nonlinear discrete time control systems
z(n+1) = f(z(n),u(n))
with z(n) € X, u(n) € U, X, U arbitrary metric spaces

Problem: Optimal feedback stabilization via infinite horizon
optimal control:

For a running cost ¢ : X x U — R penalizing the distance to
the desired equilibrium solve

minimize Joo(z,u) Z/ n),u(n)) with u(n) = F(z(n))

UNIVERSITAT
BAYREUTH

Lars Griine, Model predictive control without terminal constraints: stability and performance, p. 2



Setup
We consider nonlinear discrete time control systems
z(n+1) = f(z(n),u(n))
with z(n) € X, u(n) € U, X, U arbitrary metric spaces

Problem: Optimal feedback stabilization via infinite horizon
optimal control:

For a running cost / : X x U — R/ penalizing the distance to
the desired equilibrium solve

minimize Joo(z,u) Z/ n),u(n)) with u(n) = F(z(n)),

subject to state/control constraints = € X, u € U
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Model predictive control
Direct solution of the problem is numerically hard

Alternative method: model predictive control (MPC)
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Model predictive control
Direct solution of the problem is numerically hard

Alternative method: model predictive control (MPC)

Idea: replace the original problem

minimize Joo(z,u) =Y ((x(n), u(n))

n=0
by the iterative (online) solution of finite horizon problems

N—-1

minimize Jy(x,u) = Zf(lu(k),u(k;))

k=0

with z, (k) € X, u(k) € U
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Model predictive control
Direct solution of the problem is numerically hard

Alternative method: model predictive control (MPC)

Idea: replace the original problem

minimize Joo(z,u) =Y ((x(n), u(n))

n=0
by the iterative (online) solution of finite horizon problems

N—-1

minimize Jy(x,u) = Zf(xu(k),u(k))

k=0

with z, (k) € X, u(k) € U

We obtain a feedback law Fy by a moving horizon technique
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Model predictive control
Basic moving horizon MPC concept:
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Model predictive control
Basic moving horizon MPC concept:
At each time instant n solve for the current state x(n)

N—-1

minimize Jy(x,u) = Z Uxy(k),u(k)), x,(0)=x(n)

k=0
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Model predictive control
Basic moving horizon MPC concept:

At each time instant n solve for the current state x(n)

minimize Jy(x,u) = 2_: Uxy(k),u(k)), x,(0)=x(n)

k=0

~ optimal trajectory  z°?*(0),..., 2P"(N — 1)
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Model predictive control
Basic moving horizon MPC concept:
At each time instant n solve for the current state x(n)

N—-1

minimize Jy(x,u) = Z Uxy(k),u(k)), x,(0)=x(n)

k=0

~ optimal trajectory  xP/(0),..., 2 (N — 1)

1
with optimal control u??*(0), ..., u?"(N — 1)
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Model predictive control
Basic moving horizon MPC concept:

At each time instant n solve for the current state x(n)

N-1

minimize Jy(x,u) = Z Uxy(k),u(k)), x,(0)=x(n)
k=0

~ optimal trajectory  z°?*(0),..., 2P"(N — 1)

with optimal control u??*(0), ..., u?"(N — 1)

~+ MPC feedback law Fy(x(n)) := u®*(0)
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Model predictive control
Basic moving horizon MPC concept:

At each time instant n solve for the current state x(n)

N—-1

minimize Jy(x,u) = Z Uxy(k),u(k)), x,(0)=x(n)
k=0
~ optimal trajectory  z°?*(0),..., 2P"(N — 1)

1
with optimal control u??*(0), ..., u?"(N — 1)
~+ MPC feedback law Fy(x(n)) := u®*(0)

~ closed loop system

w0+ 1) = f(a(n), Fu(a(n)) = [(0), u™(0)) = 27(1)
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MPC from the trajectory point of view

X
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MPC from the trajectory point of view

X

0 1 2 3 4 5 6

black = predictions (open loop optimization)
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MPC from the trajectory point of view

X

0 1 2 3 4 5 6

black = predictions (open loop optimization)

red = MPC closed loop z(n+ 1) = f(z(n), Fx(z(n)))
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MPC from the trajectory point of view
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black = predictions (open loop optimization)
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MPC: Questions

Questions in this talk:
@ When does MPC stabilize the system?
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MPC: Questions
Questions in this talk:
@ When does MPC stabilize the system?

@ How good is the MPC feedback law compared to the
infinite horizon optimal solution?
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MPC: Questions
Questions in this talk:
@ When does MPC stabilize the system?

@ How good is the MPC feedback law compared to the
infinite horizon optimal solution?

Part 1: stabilizing MPC — survey on recent results
Part 2: economic MPC — some very recent results

In stabilizing MPC, stability can be ensured by including
additional “stabilizing” terminal constraints in the finite
horizon problem. Here we consider problems without such
stabilizing constraints.
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MPC: Questions

Questions in this talk:
@ When does MPC stabilize the system?

@ How good is the MPC feedback law compared to the
infinite horizon optimal solution?

Part 1: stabilizing MPC — survey on recent results
Part 2: economic MPC — some very recent results

In stabilizing MPC, stability can be ensured by including
additional “stabilizing” terminal constraints in the finite
horizon problem. Here we consider problems without such
stabilizing constraints.

Main motivation: even for small optimization horizons N we
can — in principle — obtain large feasible sets, i.e., sets of
initial values for which the finite horizon problem is well defined
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Stability without stabilizing terminal constraints

Without stabilizing constraints, stability is known to hold for
“sufficiently large optimization horizon N" [Alamir/Bornard '95,
Jadbabaie/Hauser '05, Grimm/Messina/Tuna/Teel '05]
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Stability without stabilizing terminal constraints

Without stabilizing constraints, stability is known to hold for
“sufficiently large optimization horizon N" [Alamir/Bornard '95,
Jadbabaie/Hauser '05, Grimm/Messina/Tuna/Teel '05]

How large is “sufficiently large”?
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Stability without stabilizing terminal constraints

Without stabilizing constraints, stability is known to hold for
“sufficiently large optimization horizon N" [Alamir/Bornard '95,
Jadbabaie/Hauser '05, Grimm/Messina/Tuna/Teel '05]

How large is “sufficiently large”?

For obtaining a quantitative estimate we need quantitative
information.
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Stability without stabilizing terminal constraints

Without stabilizing constraints, stability is known to hold for
“sufficiently large optimization horizon N" [Alamir/Bornard '95,
Jadbabaie/Hauser '05, Grimm/Messina/Tuna/Teel '05]

How large is “sufficiently large”?

For obtaining a quantitative estimate we need quantitative
information.

A suitable condition is “exponential controllability through /" :

there exist constants C' > 0, o € (0, 1) such that for each
2,(0) € X there is u(-) with x,(k) € X, u(k) € U and
U2y (k), u(k)) < Co*t*(2,(0))

with (*(x) = Iglelurjlﬁ(x,u)
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Stability and performance conditions
C, o-exp. controllability: (z(k),u(k)) < Co®t*(x,(0))
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Stability and performance conditions

C, o-exp. controllability: (z(k),u(k)) < Co®t*(x,(0))
N
(’YN - 1) H (’YZ - 1) i—1
Define a:=1— — =2 with ~; = Z Co*
1= IT(w = 1) F=0
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Stability and performance conditions

C, o-exp. controllability: (z(k),u(k)) < Co®t*(x,(0))
N
(’YN - 1) H (’YZ - 1) i—1
Define a:=1— — 2;2 with ~; = Z Co*
1:[2 Vi — 1:[2(% - 1) k=0

Theorem: If o > 0, then the MPC feedback F'y stabilizes all
C', o-exponentially controllable systems and we get

Joo(x, Fn) < inf Joo(z,u)/a

uelUee
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Stability and performance conditions

C, o-exp. controllability: U(z(k), u(k)) < Co®t*(x,(0))
N
(’YN - 1) H (’Yz - 1) i—1
Define a:=1— — 2;2 with ~; = Z Co*
1:[2 Vi — 1:[2(% - 1) k=0

Theorem: If o > 0, then the MPC feedback F'y stabilizes all
C', o-exponentially controllable systems and we get

Joo(x, Fn) < inf Joo(z,u)/a

uelUee

If < 0 then there exists a (', o-exponentially controllable
system, which is not stabilized by Fiy
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Stability and performance conditions

C, o-exp. controllability: U(z(k), u(k)) < Co®t*(x,(0))
N
(’YN - 1) H (’Yz - 1) i—1
Define a:=1— — 2;2 with ~; = ZCUk
1:[2 Vi — _1:[2(% - 1) k=0

Theorem: If o > 0, then the MPC feedback F'y stabilizes all
C', o-exponentially controllable systems and we get

Joo(x, Fn) < inf Joo(z,u)/a

uclUoe

If < 0 then there exists a (', o-exponentially controllable
system, which is not stabilized by Fiy

Moreover, « — 1 as N — oo
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Stability chart for C' and o

1(Figure: Harald Voit)
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Stability chart for C' and o

0.8

0.6

0.4

0.z

| (Figure: Harald Voit)

0.0

Conclusion: try to reduce C', e.g., by choosing ¢ appropriately
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A PDE example

We illustrate this with the 1d controlled PDE
Yo = Yo + VYau + py(y + 1)(1 —y) +u

with

domain Q = [0, 1]

solution y = y(¢, x)

boundary conditions y(¢,0) = y(¢t,1) =0
parameters v = 0.1 and = 10

and distributed control u : R x (2 — R
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A PDE example

We illustrate this with the 1d controlled PDE

Yt = Yo+ VWao + py(y + 1)(1 —y) +u

with

domain Q = [0, 1]

solution y = y(¢, x)

boundary conditions y(¢,0) = y(¢t,1) =0
parameters v = 0.1 and = 10

and distributed control u : R x (2 — R

Discrete time system: y(n) = y(nT, -) for some 7" > 0
(“sampled data system with sampling time 7™")
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The uncontrolled PDE

t=0

| |
0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)

Lars Griine, Model predictive control without terminal constraints: stability and performance, p. 11



The uncontrolled PDE

t=0.025

0.81
0.6
0.4r

0.2r

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.05

0.81

0.4f

0.2r

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.075

0.81

0.4f

0.2r

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.1

0.81

0.4f

0.2r

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.125

0.81

0.4f

0.2r

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)

UNIVERSITAT
\y‘ BAYREUTH Lars Griine, Model predictive control without terminal constraints: stability and performance, p. 11



The uncontrolled PDE

t=0.15

0.81

0.4f

0.2r

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)

UNIVERSITAT
\y‘ BAYREUTH Lars Griine, Model predictive control without terminal constraints: stability and performance, p. 11



Vi

UNIVERS

BAYREU

T

ITAT
H

0.8

0.6

0.4

0.2

The uncontrolled PDE
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| |
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The uncontrolled PDE

t=0.2

0.81

0.4f

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.225

0.81

0.4f

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.25

0.81

0.4f

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.275

0.81

0.4f

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.3

0.81

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.325

0.81

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.35

0.81

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.375

0.81

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.4

0.81

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.425

0.81

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.45

0.81

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.475

0.81

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.5

0.81

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.525

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.55

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.575

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.6

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.625

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.65

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.675

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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The uncontrolled PDE

t=0.7
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The uncontrolled PDE

t=0.725
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The uncontrolled PDE

t=0.75
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The uncontrolled PDE

t=0.775
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The uncontrolled PDE

t=0.8
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The uncontrolled PDE

t=0.825
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The uncontrolled PDE

t=0.85
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The uncontrolled PDE

t=0.875
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The uncontrolled PDE

t=0.9
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The uncontrolled PDE

t=0.925
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The uncontrolled PDE

t=0.95
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The uncontrolled PDE

t=0.975
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The uncontrolled PDE

t=1

_l 1 Il 1
0 0.2 0.4 0.6 0.8 1

uncontrolled (u = 0)
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MPC for the PDE example

Yt = Yo+ Vao +py(y + 1)(L—y) +u
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MPC for the PDE example

Yt = Yo+ Vao +py(y + 1)(L—y) +u

Goal: stabilize the sampled data system y(n) at y =0
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MPC for the PDE example

Yt = Yo+ Vao +py(y + 1)(L—y) +u

Goal: stabilize the sampled data system y(n) at y =0

For y ~ 0 the control « must compensate for y, ~ u ~ —y,
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MPC for the PDE example
Yt = Yo + Voo +py(y +1)(1 —y) +u

Goal: stabilize the sampled data system y(n) at y =0
For y =~ 0 the control u must compensate for y, ~~ u ~ —y,

This observation and a little computation reveals:

For the (usual) quadratic L? cost

Uy(n),u(n)) = [ly(n)|Z2 + AMu(n)|z2
the constant C' is much larger than for the quadratic H' cost

((y(n),u(n)) = [ly(m)lIz2 + ly=()llZz +Allu(n)|Z:.

-~

=lymI2,
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MPC for the PDE example
Yt = Yo + Voo +py(y +1)(1 —y) +u

Goal: stabilize the sampled data system y(n) at y =0
For y =~ 0 the control u must compensate for y, ~~ u ~ —y,

This observation and a little computation reveals:

For the (usual) quadratic L? cost

Uy(n),u(n)) = [ly(n)|Z2 + AMu(n)|z2
the constant C' is much larger than for the quadratic H' cost

((y(n),u(n)) = [ly(m)lIz2 + ly=()llZz +Allu(n)|Z:.

-~

=lymI2,

~ H" should perform better that I
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MPC with L9 vs. Hy cost
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MPC with L9 vs. Hy cost
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MPC with L9 vs. Hy cost
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MPC with L9 vs. Hy cost
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MPC with L9 vs. Hy cost
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MPC with L9 vs. Hy cost
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MPC with L9 vs. Hy cost
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MPC with L9 vs. Hy cost
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MPC with L9 vs. Hy cost
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Boundary Control

Now we change our PDE from distributed to (Dirichlet-)
boundary control, i.e.

Yo = Yo+ Voo + 1y(y + 1)(1 — y)
with
domain Q = [0, 1]
solution y = y(t, x)
boundary conditions y(t,0) = uo(t), y(t, 1) = uy(t)
parameters v = (0.1 and p = 10

UNIVERSITAT
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Boundary Control

Now we change our PDE from distributed to (Dirichlet-)
boundary control, i.e.

Yo = Yo + Vo + py(y + 1)(1 — y)
with
domain Q = [0, 1]
solution y = y(t, x)
boundary conditions y(t,0) = uo(t), y(t, 1) = uy(t)
parameters v = (0.1 and p = 10

with boundary control, stability can only be achieved via large
gradients in the transient phase
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Boundary Control
Now we change our PDE from distributed to (Dirichlet-)

boundary control, i.e.

Yo = Yo + Voo + 1y (y +1)(1 = y)
with
domain Q = [0, 1]
solution y = y(t, x)
boundary conditions y(t,0) = uo(t), y(t, 1) = uy(t)
parameters v = (0.1 and p = 10

with boundary control, stability can only be achieved via large
gradients in the transient phase
~ L? should perform better that '
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Boundary control, Loy vs. Hy, N =20
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Proofs, references etc.

For proofs, references, histor-
ica | n otes etc . p I ea se see . Communications and Control Engineering

Lars Griine
Jiirgen Pannek

Nonlinear Model
Predictive Control

Theory and Algorithms

@ Springer

WWww.nmpc-book.com
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Economic MPC

In principle, the receding horizon MPC paradigm can also be
applied for stage cost ¢ not related to any stabilization problem

UNIVERSITAT
\y‘ BAYREUTH Lars Griine, Model predictive control without terminal constraints: stability and performance, p. 17



Economic MPC

In principle, the receding horizon MPC paradigm can also be
applied for stage cost ¢ not related to any stabilization problem

[Angeli/Rawlings '09, Angeli/Amrit/Rawlings '10, Diehl/Amrit/
Rawlings '11] consider MPC for the infinite horizon averaged
performance criterion

=

_ 1
Joo(x,u) =i —
(x,u) lgljip[(

Uz, (k, ), u(k))

0

o~
Il

Here ¢ reflects an “economic” cost (like, e.g., energy
consumption) rather than penalizing the distance to some
desired equilibrium
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Economic MPC with terminal constraints
Typical result: Let 2* € X be an equilibrium for some u* € U,
ie., f(x*,u*) = a*. Consider an MPC scheme where in each
step we minimize

=2

— 1
Jn(z,u) = I

U (k), ulk))

0

;,
Il

subject to the terminal constraint z,(N) = x*.
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Economic MPC with terminal constraints
Typical result: Let 2* € X be an equilibrium for some u* € U,
ie., f(x*,u*) = a*. Consider an MPC scheme where in each
step we minimize

=2

— 1
Jn(z,u) = I

U (k), ulk))

0

?@
Il

subject to the terminal constraint z,(/N) = z*. Then for any
feasible initial condition x € X we get the inequality

Joo(, Fn) < (2", u")
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Economic MPC with terminal constraints
Typical result: Let 2* € X be an equilibrium for some u* € U,
ie., f(x*,u*) = a*. Consider an MPC scheme where in each
step we minimize

=2

— 1
Jn(z,u) = I

Uy (k), u(k))

0

?@
Il

subject to the terminal constraint z,(/N) = z*. Then for any
feasible initial condition x € X we get the inequality

Joo(, Fn) < (2", u")

Question: Does this also work without the terminal constraint
z,(N) = z*, ie., is MPC able to find a good equilibrium z*
“automatically”?
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Economic MPC without terminal constraints

We investigate this question for the following optimal
invariance problem:

Keep the state of the system inside an admissible set X with
minimal infinite horizon averaged cost

=

_ 1
Joo(x,u) = limsup — Uz, (k, ), u(k))
K—o0 K 0

=
Il

UNIVERSITAT
BAYREUTH

Lars Griine, Model predictive control without terminal constraints: stability and performance, p. 19



Economic MPC without terminal constraints

We investigate this question for the following optimal
invariance problem:

Keep the state of the system inside an admissible set X with
minimal infinite horizon averaged cost

=

_ 1
Joo(,u) =limsup —= » €(zu(k, x), u(k))
K—o0 K 0

=
Il

Example: x(k+1) =2x(k) + u(k)
with X = [-2,2], U= [-2,2] and ((z,u) = u*
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Economic MPC without terminal constraints

We investigate this question for the following optimal
invariance problem:

Keep the state of the system inside an admissible set X with
minimal infinite horizon averaged cost

=

_ 1
Joo(x,u) = limsup — Uz, (k, ), u(k))
K—o0 K 0

=
Il

Example: x(k+1) =2x(k) + u(k)
with X = [-2,2], U= [-2,2] and ((z,u) = u*

For this example, it is optimal to control the system to x* = 0

and keep it there with u* =0~ i%f Joso(x,u) =0
uelU>®
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Optimal invariance example

open loop trajectories (black) and closed loop trajectory (red)

n N pu— 5
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Optimal invariance example

open loop trajectories (black) and closed loop trajectory (red)
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Optimal invariance example

open loop trajectories (black) and closed loop trajectory (red)
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Optimal invariance example

open loop trajectories (black) and closed loop trajectory (red)
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Optimal invariance: observations
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Optimal invariance: observations

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

@ optimal open loop trajectories first approach the optimal
equilibrium and then tend to the boundary of X = [-2, 2]
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Optimal invariance: observations

apen oop st ack) and cosed o ey (20 opon oop oo (ack) and losed lop afoctory (1)

@ optimal open loop trajectories first approach the optimal
equilibrium and then tend to the boundary of X = [-2, 2]

@ closed loop trajectories follow the “good part” of the
open loop trajectories
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Optimal invariance: observations

apen oop st ack) and cosed o ey (20 opon oop oo (ack) and losed lop afoctory (1)

@ optimal open loop trajectories first approach the optimal
equilibrium and then tend to the boundary of X = [-2, 2]

@ closed loop trajectories follow the “good part” of the
open loop trajectories

o the larger IV, the “better” the closed loop trajectories.
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Optimal invariance: observations

apen oop st ack) and cosed o ey (20 opon oop oo (ack) and losed lop afoctory (1)

@ optimal open loop trajectories first approach the optimal
equilibrium and then tend to the boundary of X = [-2, 2]

@ closed loop trajectories follow the “good part” of the
open loop trajectories

o the larger IV, the “better” the closed loop trajectories.
This is also reflected in the average closed loop costs
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Optimal invariance: closed loop performance

infinite horizon average cost

2 4 6 8 10 12 14 16
N

J (0.5, Fly) depending on N, logarithmic scale
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Optimal invariance: closed loop performance

infinite horizon average cost

J (0.5, Fly) depending on N, logarithmic scale

Can we prove this behavior?
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Optimal invariance result

Theorem [Gr. 11] Assume that there are Ny > 0, /y € R and
01,09 € L such that for each x € X and N > N, there exists
a control sequence uy, € UV ! satisfying

oz, (kz)eX, k=0,...,N+1 admissibility
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oz, (kz)eX, k=0,...,N+1 admissibility
o Jn(z,uy.) < i%f Jy(x,u) +6,(N)/N  near optimality
uelU=

o U(xyy (N, z),un.(N)) < Lo+ 2(N) small terminal value
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Optimal invariance result

Theorem [Gr. 11] Assume that there are Ny > 0, /y € R and
01,09 € L such that for each x € X and N > N, there exists
a control sequence uy, € UV ! satisfying

oz, (kz)eX, k=0,...,N+1 admissibility

o Jn(z,uy.) < i%f Jy(x,u) +6,(N)/N  near optimality
uelUe®

o U(xyy (N, z),un.(N)) < Lo+ 2(N) small terminal value

Then joo(x, Fn(x)) <ly+01(N —1)+5(N —1) follows
for all x € X.
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Optimal invariance result

Theorem [Gr. 11] Assume that there are Ny > 0, /y € R and
01,09 € L such that for each x € X and N > N, there exists
a control sequence uy, € UV ! satisfying

oz, (kz)eX, k=0,...,N+1 admissibility

o Jn(z,uy.) < i%f Jy(x,u) +6,(N)/N  near optimality
uelUe®

o U(xyy (N, z),un.(N)) < Lo+ 2(N) small terminal value

Then Joo(x, Fx(x)) < 0o+ 61 (N — 1)+ 5,(N — 1) follows
for all x € X.

These assumptions can be ensured by suitable controllability
conditions plus bounds on the performance of certain
trajectories.
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Optimal invariance result

Theorem [Gr. 11] Assume that there are Ny > 0, /y € R and
01,09 € L such that for each x € X and N > N, there exists
a control sequence uy, € UV ! satisfying

oz, (kz)eX, k=0,...,N+1 admissibility

o Jn(z,uy.) < i%f Jy(x,u) +6,(N)/N  near optimality
uelU=

o U(xyy (N, z),un.(N)) < Lo+ 2(N) small terminal value

Then Joo(x, Fx(z)) < o+ 61 (N — 1)+ d5(N — 1) follows

for all = € X.

These assumptions can be ensured by suitable controllability
conditions plus bounds on the performance of certain
trajectories. For our invariance example, this allows to
rigorously prove J.(z, Fiy) — 0 as N — 00
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Summary and outlook

@ MPC without terminal constraints shows excellent results
both for stabilizing and for economic problems
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Summary and outlook

@ MPC without terminal constraints shows excellent results
both for stabilizing and for economic problems

e for stabilizing MPC, a controllability based analysis helps
to identify and design stage costs ¢ for obtaining stability
with small control horizons

e for economic MPC, under suitable conditions an average
performance close to that of an optimal equilibrium
without a priori knowledge of this equilibrium can be
achieved

o Future work:

» extension of economic MPC results to more general
problem classes and optimal periodic orbits

» (practical) asymptotic stability analysis of economic
MPC without terminal constraints
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Happy Birthday Eduardo!
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