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linear stochastic system
{

dx = A(t)x(t)dt +B1(t)u(t)dt +B2(t)dw

dy = C(t)x(t)dt +D(t)dw

w(t) is a vector-valued Wiener process
x(0) is a Gaussian random vector independent of w(t), y(0) = 0
A, B1, B2, C , D are matrix-valued functions

Goal: Design nonanticipatory control

π : y 7→ u

that minimizes

J(u) = E

{
∫ T

0

x(t)′Q(t)x(t)dt +

∫ T

0

u(t)′R(t)u(t)dt + x(T )′Sx(T )

}
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separation priniciple

under suitable assumptions on the class of admissible control π : y 7→ u,

the “optimal control” is
u(t) = K(t)x̂(t)

where x̂(t) = E{x(t) | Yt},

dx̂ = A(t)x̂(t)dt + B1(t)u(t)dt

+L(t)(dy − C(t)x̂(t)dt)
x̂(0) = 0.

with K(t) and L(t) computed via a pair of dual Riccati equations

NB:
— attempts to prove separation for u(t) is Yt measurable (a.s.). . .
— too big a class; we know no proof which is correct (strong solutions)
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historical remarks

Wonham, Kushner, Lindquist, Fleming & Rishel

• treatment overburdened with technicalities

• folk accounts not supported by existing proofs

• non-Gaussian nature due to an a-priori nonlinear π is often overlooked

• herein, separation principle for:

– the most natural class of controls
all linear/nonlinear and even discontinuous
such that feedback loop makes “engineering” sense

– engineering view point: signals = sample functions

– general semimartingale driving noise, with jumps

– delay-differential linear systems, etc.
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the standard “completion of squares”

J(u) = E

{

x(0)′P (0)x(0) +

∫ T

0

(u−Kx)′R(u−Kx)dt

}

+

∫ T

0

tr(B′
2PB2)dt

where {

Ṗ = −A′P − PA + PB1R
−1B′

1P −Q

P (T ) = S

K(t) := −R(t)−1B1(t)
′P (t).

using Itô’s rule:

d(x′Px) = x′Ṗ xdt + 2x′Pdx + tr(B′
2PB2)dt

= [−x′Qx− u′Ru + (u−Kx)′R(u−Kx) + tr(B′
2PB2)]dt + 2x′PB2dv

with “complete state-information”:

uoptimal(t) = K(t)x(t)
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incomplete state information

u(t) needs to be a function of {y(s); 0 ≤ s ≤ t}

Standard recipe:
u(t) = K(t)x̂(t)

where
x̂(t) = E{x(t) | Yt}

justification ⇔ separation theorem
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where is the potential problem?

set
x̃(t) := x(t) − x̂(t)

then

E

∫ T

0

(u−Kx)′R(u−Kx)dt = E

∫ T

0

[(u−Kx̂)′R(u−Kx̂)]dt+tr(K ′RKΣ)

since E{[u(t) −K(t)x̂(t)]x̃(t)′} = 0,

and where Σ(t) := E{x̃(t)x̃(t)′}

why isn’t obvious that u = Kx̂ is optimal?

subtlety: in general, Σ may depend on the control
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source of fallacy (?)
due to linearity

x(t) = x0(t) +

∫ t

0

Φ(t, s)B1(s)u(s)ds

the control term cancels out:

x̃(t) = x̃0(t) := x0(t) − x̂0(t),

where x̂0(t) := E{x0(t) | Yt}

how could E{x̃0(t)x̃0(t)
′} depend on the control?

because the filtration Yt, and hence x̂0, might depend on u!

— u is in general a nonlinear function of y
— hence, y may not be Gaussian
— despite the fact that x0 is Gaussian,
x̂0(t) = E{x0(t) | Yt} may not be linear in the data {y(τ ); τ ∈ [0, t]}

— x̂0(t) may not be given by a Kalman filter.
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generalization - notation

π

z y

z0

+ +
g H

u

z(t) = z0(t) +
∫ t

0 G(t, τ )u(τ )dτ
y(t) = Hz(t)

where

g : (t, u) 7→

∫ t

0

G(t, τ )u(τ )dτ

E.g., z(t) =

(
x(t)
y(t)

)

and H = [0, I ]
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ways out (?)

SOL: stochastic open loop (Lindquist)

limit control so as to be adapted to {Y0
t }

π
z yy0z0

z0

+ +
g HH

u

examples
— linear control
— Lipschitz feedback
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e.g., control adapted to {Y0
t } via

−

PSfr

π
z yy0

z0

+ +

g

gg H

H

u
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example: linear feedback

u(t) = udeterministic +

∫ t

0

F (t, τ )dy

then the Gaussian character is preserved.

It can be shown that Yt = Y0
t .

Hence,

dx̃ = (A− LC)x̃dt + (B2 − LD)dw

x̃(0) = x(0)

Σ(t) := E{x̃(t)x̃(t)′} is independent of u
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u(t) =

∫ t

0

F (t, τ )dy(τ ) ⇒ dy = dy0 +

∫ t

0

M (t, s)u(s)dsdt

⇒ dy = dy0 +

∫ t

0

N (t, τ )dy(τ )dt

where N (t, τ ) =
∫ t

τ
M (t, s)F (s, τ )ds

Volterra resolvent R(t, τ ) =
∫ t

τ
R(t, s)N (s, τ )ds +N (t, s)

Then
∫ t

0

N (t, τ )dy(τ ) =

∫ t

0

R(t, τ )dy0(τ )

⇒ dy = dy0 +

∫ t

0

R(t, τ )dy0(τ )dt

⇒ σ{y(τ ); 0 ≤ τ ≤ t} = σ{y0(τ ); 0 ≤ τ ≤ t}
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example: Lipschitz continuous control

[Wonham] Assuming that

dy(t) = x(t)dt +D(t)dw(t)

i.e., C(t) = I is invertible!
Then among control laws of the form

u(t) = ψ(t, x̂(t))

the choice u(t) = K(t)x̂(t) is optimal.

[Fleming & Rishel]
removed the assumption on C(t); Lipschitz on y; simpler proof.
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example: Lipschitz (cont.)

[Kushner] ξ̂0(t) := E{x0(t) | Y
0
t }

given by the Kalman filter

dξ̂0 = Aξ̂0(t)dt + L(t)dv0, ξ̂0(0) = 0

dv0 = dy0 − Cξ̂0(t)dt, v0(0) = 0

define

ξ̂(t) := ξ̂0(t) +

∫ t

0

Φ(t, s)B1(s)u(s)ds

and assume
u(t) = ψ(t, ξ̂(t)) is Lipschitz

Then ξ̂ is the unique strong solution of

dξ̂ =
(
Aξ̂(t) +B1ψ(t, ξ̂(t))

)
dt + L(t)dv0, ξ̂(0) = 0.

This choice force u to be adapted to {Y0
t } ⇒ {Y0

t } = {Yt} ⇒ ξ̂ = x̂
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example: delay in the loop

when u(t) is a function of y(τ ); 0 ≤ τ ≤ t− ε,

Yt = Y0
t

the possibility of a control-dependent σ-field
does not arise in the usual (predictive) discrete-time formulation

— Taking ǫ→ 0 and general nonlinear feedback
there is no guarantee that Yt is left-continuous

— “Proofs” of separation using such limits are circular,
misleading accounts in textbooks.
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signals and systems

signals :
sample paths; possibly having bounded discontinuities
in D (càdlàg – Skorokhod space)
systems: measurable nonanticipatory maps

examples:
i) SDE’s that have strong solutions
ii) nonlinearities, hysteresis (C → D), etc.

z

h(z)
1

ǫ

z(t) → h(z(t))
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well-posedness of feedback

Defn. a feedback loop, that is z = z0 + f (z) is well-posed
if it has a unique solution in D for all z0 ∈ D
and (1 − f )−1 is a system.

h

z

z0

+ +

low pass

(1 − f)−1

︸ ︷︷ ︸
f

z

h(z)
1

ǫ

z0(t) z(t) = (1 − f )−1z0(t)
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well-posedness (cont.)

by defn z, z0 stochastic processes
well-posedness implies that

Z0
t = Zt, t ∈ [0, T ].

f

z

z0

+ +

(1 − f ) and (1 − f )−1 are systems

⇒ z0 = z − f (z) and z = (1 − f )−1z0

NB.
— no more information other than what is contained in Z0

t
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how about incomplete state-information?

H
z y

z1 =

(
w
0

)

, z2 =

(
0
w

)

generate the same filtrations, i.e., Z1
t = Z2

t

while for H =
(
1 0

)
,

y1 =
(
1 0

)
(
w
0

)

, y2 =
(
1 0

)
(

0
w

)

do not, i.e., Y1
t 6= Y2

t .
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linear read-out map

π

z y

z0

+ +
g H

u

Assume
z(t) = z0(t) + g ◦ π(y(t))
y(t) = Hz(t)

is well-posed with H linear,

it follows that
Yt = Y0

t , t ∈ [0, T ].
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Proof: (1 −Hgπ)H = H −HgπH

= H(1 − gπH)

H(1 − gπH)−1 = (1 −Hgπ)−1H

⇒ y = (1 −Hgπ)−1y0, and y0 = (1 −Hgπ)y.
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essence of the lemma

well-posedness resolves the issue of circular control dependence

π

z y

z0

+ +
g H

u

≃

π

z y

z0

+

+
g

H

H
u
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the separation principle

thm: assuming
{

dx = A(t)x(t)dt +B1(t)u(t)dt +B2(t)dw

dy = C(t)x(t)dt +D(t)dw

w(t) is a vector-valued Wiener process
x(0) is a Gaussian random vector independent of w(t), y(0) = 0
A, B1, B2, C , D are matrix-valued functions
there is a unique control law π : y 7→ u minimizing

J(u) = E

{
∫ T

0

x(t)′Q(t)x(t)dt +

∫ T

0

u(t)′R(t)u(t)dt + x(T )′Sx(T )

}

in the class of well-posed control laws, and has the form

u(t) = K(t)x̂(t)
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the separation principle (general)

thm: for the same linear system, assuming
w is a semimartingale and x(0) an independent random vector
the unique optimal control
in the class of well-posed controllers
is given by

u(t) = K(t)x̂(t)

where x̂ is the conditional mean.

remarks: no need for Lipschitz continuity
allows jump processes
K(t) is still given by a Riccati equation
in general, the difficult part is constructing x̂(t) = E{x(t)|Yt}.

25



Proof: i) Yt = Y0
t , t ∈ [0, T ].

ii) completion-of-squares using Itô’s rule:

x(T )′Px(T ) − x(0)′Px(0) = f∆ +

+

∫ T

0

{x′Ṗ xdt + 2x′Pdx + d tr([x, x′]P )}

iii) x(t) =
∫ t

0 Φ(t, s)
(
A(s)x(s) + B1(s)u(s)

)
ds + v(t)

i.e., continuous/BV +v(t) where dv = B2dw

⇒

iiia) [x, x′] = [v, v′] independent of u

iiib) f∆ =
∑

s≤T

[
(x(s)′P (s)(x(s) − x(s−)′P (s)x(s−)

−2x(s−)′P (s)∆s − ∆′
sP (s)∆s

]

= 0

where ∆s := x(s) − x(s−).
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example: step change in white noise

v

u ẏx∫

ẇ

v(t) =

{

1 t ≥ τ

0 t < τ

with τ exponentially distributed

minimize E
{∫ T

0 (x2 + u2)dt
}

{

dx = u(t)dt + dv, x(0) = 0,

dy = x(t)dt + dw
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i) Wonham-Shiryaev filter:

dx̂ = (1 − x̂)dt + udt + x̂(1 − x̂)(dy − x̂dt)

ii) optimal feedback:
u(t) = −p(t)x̂(t)

where ṗ = p2 − 1 ⇒ p(t) = tanh(T − t).

iii) cost: since [v, v](t) = v(t),

E

{
∫ T

0

p(t)d[v, v](t)

}

= E

{
∫ T

τ

p(t)dt

}

= ln(coshT )(1 − e−T ) −

∫ T

0

ln(cosh t)e−tdt.
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separation for delay-differential systems







dx = A1(t)x(t)dt +A2(t)x(t− h)dt

+

∫ t

t−h

A0(t, s)x(s)dsdt + B1(t)u(t)dt + B2(t)dw

dy = C1(t)x(t)dt + C2(t)x(t− h)dt +D(t)dw

more generally
{

dx =
∫ t

t−h dsA(t, s)x(s)dt + B1(t)u(t)dt + B2(t)dw

dy =
∫ t

t−h dsC(t, s)x(s)dt +D(t)dw

determine π to minimize

E

{
∫ T

0

x(t)′Q(t)x(t)dα(t) +

∫ T

0

u(t)′R(t)u(t)dt

}
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System can be written in the form:

z(t) = z0(t) +
∫ t

0 G(t, τ )u(τ )dτ

y(t) = H(t)z(t)
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Deterministic optimal control

Deterministic optimal control problem (with w = 0) is

uoptimal(t) =

∫ t

t−h

dτK(t, τ )x(τ )
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separation thm for delay systems

w a Gaussian martingale
over all feedback laws π that are well-posed
the unique optimal control law is given by

u(t) =

∫ t

t−h

dsK(t, s)x̂(s|t)

with
x̂(s|t) := E{x(s) | Yt}

is given by a linear (distributed) filter [Lindquist]

dx̂(t|t) =

∫ t

t−h

dsA(t, s)x̂(s|t)dt + B1udt +X(t, t)dv

dtx̂(s|t) = X(s, t)dv, s ≤ t

dv = dy −

∫ t

t−h

dsC(t, s)x̂(s|t)dt, v(0) = 0

32



Key points

— well-posedness + linearity ⇒ control-independent σ-field

— separation principle holds over a wide class of nonlinear control:
u = Kx̂ is optimal

— noise: semi-martingale with possible jumps
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Happy birthday Eduardo!!!
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