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 systems of molecular interactions inside a cell, modeled using dynamical systems
 strongly nonlinear, high dimensional, and noisy
 many of the parameters are unknown
 but: often the phase space dynamics is one of the following:

Problem:
To study the qualitative behavior of models arising in biochemical processes, using 
as little quantitative knowledge as possible
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 Also: ‘consistent interactions’ are common:

Introduction: gene and protein networks



Monotone Input/Output Systems

   &x  f (x,u),    y  h(x), h : X U

 Order defined on both the state space X and the input space U




 Assume that the I/S characteristic is well defined, and define S(u) as the I/O 
characteristic

I/O system is monotone if u(t) v(t) t, x(0) z(0), implies x(t) z(t) t
Positive Feedback Output: x  z  h(x)  h(z)
Negative Feedback Output:  x  z    h(x)   h(z)  



Example: Orthant I/O Monotone Systems 
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   &x  f (x,u),      y  h(x)

Recall orthant order:  for some fixed  (1,1)n, x  z iff xii  zii  i
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 Positive parity for all undirected feedback loops, including those involving 
inputs, states and/or outputs

 Positive feedback:  all paths from any input to any output have positive parity
 Negative feedback:  all paths from any input to any output have negative parity



Theorem:  In the SISO positive feedback 
case, each equilibrium of the closed loop 
system x’=f(x,h(x)) corresponds to a fixed 
point of S(u). Moreover, the stable 
equilibria correspond to the fixed points 
such that S’(u)<1.

[1]  D. Angeli, E. Sontag, “Multistability in monotone input/output systems”.  Systems and Control Letters 51 (2004), 
185-202.  
[2] GAE, E. Sontag, “Monotone systems under positive feedback: multistability and a reduction theorem”, Systems 
and Control Letters 51(2):185-202, 2005.
[3] GAE, E. Sontag, “Monotone bifurcation graphs”, to appear in the Journal of Biological Dynamics.

This result is proved for arbitrary monotone systems with a steady 
state response function S(u) in [1].  It is generalized to the case of 
multiple inputs and outputs [2], and to systems without a well 
defined response function S(u) [3].   
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Positive Feedback Multistability Theorem



 Only use the general topology of the interaction digraph, plus quantitative 
information about the function S(u) -- no need to know all parameter 
values!

 The function S(u) can potentially be measured in the lab, without precise 
knowledge of parameter values

 This analysis also stresses the robustness of the system: small parameter 
changes will only affect the number of equilibria etc only to the extent that 
they alter the steady state response.  

Comments:
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&p
i
= Kimp,i (qi ) - Kexp ,i ( pi ) - a2,i pi

&q
i
= T (ri ) - Kimp,i (qi ) + Kexp ,i ( pi ) - a3,iqi

&ri = H ( pi , pi- 1) - a1,iri

i=1...k,   p0 := pk

Consider the following gene regulatory network of k genes: 
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pi :  protein i, located in the nucleus
ri:   messenger RNA
qi:  protein i in the cytoplasm

Positive Feedback - Example



Negative feedback and the Small Gain Theorem (SGT)

Small Gain Condition (SGC): the function S(u) forms a discrete system 

which is globally attractive towards a unique equilibrium.   

1 ( )n nu S u 

Given a SISO I/O monotone system under negative feedback, assume that the I/O 
characteristic S(u) is well defined.   Suppose that the following condition holds:

Then the closed loop of the system converges globally towards an equilibrium. 

D. Angeli, E. Sontag, Monotone control systems, IEEE Trans. on Automatic Control 48 (10): 1684-1698, 2003.



A generalization to abstract Banach spaces yields an analog result for:

[1] GAE,  E. Sontag, “On the global attractivity of abstract dynamical systems satisfying a small gain hypothesis, with application to biological 
delay systems”, to appear in J. Discrete and Continuous Dynamical Systems.
[2] GAE, H. Smith, E. Sontag, “Non-monotone systems decomposable into monotone systems with negative feedback”, Journal of Differential 
Equations 224:205-227, 2006. 
[3] B. DasGupta, GAE, E. Sontag, Y. Zhang, Algorithmic and complexity results for decompositions of biological networks into monotone 
subsystems, Lecture Notes in Computer Science 4007: Experimental Algorithms, pp. 253-264,  Springer Verlag, 2006.

 Multiple inputs and outputs [1]
 Delays of arbitrary length [1]
 Spatial models of reaction-diffusion equations [2]

Also, using a computational algorithm [3] one can efficiently decompose any sign-
definite system as the closed loop of a I/O monotone system under negative 
feedback.    

Negative feedback and the Small Gain Theorem (SGT)



Comments

 Monotone systems can also be used to establish the global asymptotic behavior 
of certain non-monotone systems  

 Once again, the result only uses the general topology of the interaction digraph, 
plus quantitative information about the function S(u) -- no need to know all 
parameter values

 This theorem can also be extended to delay and reaction-diffusion equations 
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under the assumptions

 Can allow for multiple delays and                           after a change of variables
 The dynamics of this system is governed by a Poincare-Bendixson theorem
 Recent examples of this system in the biology literature:  Elowitz & Leibler 2000, 

Monk 2003, Lewis 2003. 
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Consider the nonlinear delay system
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Example:  stability and oscillations under time delay 
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Example:  stability and oscillations under time delay 
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Theorem:
Consider a cyclic time delay system under negative feedback, with Hill 
function nonlinearities.   Then exactly one of the following holds:  

I.  If the iterations of S(u) are globally convergent, then all solutions of 
the cyclic system converge towards the equilibrium, for every value of 
the delay (SGT):

II.  Else, periodic solutions exist for some values of the delay, due to a 
Hopf bifurcation on the delay parameter.

If some nonlinearities gi(x) have nonnegative Schwarzian derivative, then both I. and II. 
might be violated.  This is possible even for some (non-Hill) sigmoidal nonlinearites.

GAE, “A dichotomy for a class of cyclic delay systems”,  Mathematical Biosciences 208:63-75, 2007.



Unique fixed point for characteristic of negative feedback systems

Theorem: assume








Then: S(u)  has a unique fixed point.  

x ' f (x,u),  y h(x) I/O monotone, negative feedback

S :° n  ° n   bounded, C2  I/O characteristic (u  vS(u)S(v))
S '(u0) strongly monotone, hyperbolic for every fixed point u0
a.e. iteration of  ui1 S(ui) is convergent to some s.s. (weak small gain condition)

Answer: cannot generalize SGT to the case of bistability for MIMO systems, at least 
using the weak small gain condition 

On the other hand, this result allows to unify MIMO positive and negative feedback 
cases  (following slide)  

Question: is it possible to generalize SGT to the case of bistability as in the positive 
feedback case, even for MIMO systems? 



Monotone I/O systems: a unified framework

Weak small gain condition:  every solution of the 
discrete system

converges towards an equilibrium (which may 
depend on the initial condition)

1 ( )n nu S u 

Theorem: Consider a MIMO I/O monotone control 
system under positive or negative feedback, and a I/O 
characteristic function S(u) with strongly (anti)monotone 
and hyperbolic linearization around fixed points.   
Assume:

Then almost every solution of the closed loop system converges towards an equilibrium.
Moreover, the stable equilibria correspond to the stable fix points of the discrete system.

Note:  Proof in the MIMO negative feedback case follows from the uniqueness of the 
fixed point by previous result

Mixed Feedback?    It has been shown that I/O systems that satisfy small gain condition 
in the mixed feedback case can be unstable (Angeli et al, work in preparation). 

S(u)



Boolean Monotone Systems

 system is monotone with respect to the standard order iff each f_i can be written in 
terms of AND, OR, with no negations 

Which properties of monotone systems hold in the Boolean case?   

 On average,  Boolean monotone systems tend to have shorter periodic orbits than 
arbitrary Boolean systems (Sontag, Laubenbacher et al.)

 Can any hard bounds be shown for such systems?

xi(t 1) fi(x(t)),   fi :{0, 1}n{0, 1},   i 1... n 



Boolean Monotone Systems
Additive lagged Fubini generator:

z(t) z(t  p) + z(t q) mod 2
       z(t  p) XOR z(t q)

For appropriate choices of p>q, the 
iterations of this system have period 
2^p – 1.

Theorem: (Just, GAE 2011)  For arbitrary 1<c<2, there exists a Boolean monotone 
system of dimension n with a solution of period at least c^n.     Moreover, the system is 
irreducible and has at most two inputs for each variable. 

Proof:   imitate the non-monotone Boolean network above with a monotone Boolean 
network which reproduces its dynamics.   

*
*







Thanks!

 Eduardo Sontag, of course 
 Hal Smith 
 Moe Hirsch
 Patrick de Leenheer
 DIMACS

Questions?





Monotone systems: a definition

not monotone monotone
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A dynamical system is monotone (with respect to some orthant order) iff every 
loop of the interaction graph has an even number of –’s (i.e. positive feedback), 
regardless of arc orientation:

  
x j

  xi   if the interaction is promoting, i.e.  
fi

x j

 0

  
x j

  xi   if the reaction is inhibitory, i.e.  
fi

x j

 0

Write every variable in the system as a node in a graph, and denote:



 Monotone systems have very strong stability properties:  almost every 
solution converges towards an equilibrium [1],[2]

 Monotonicity can be established using only ‘qualitative’ information, i.e. 
without knowledge of exact parameter values or nonlinearities

 Notice: monotonicity is a very strong assumption, which is usually only 
satisfied on subsystems of a given network!  

 Also:  given the digraph of the system alone, it is not possible to determine 
the number of equilibria and their stability.  

Monotone systems: some notes

[1]  M. Hirsch, “Systems of differential equations that are competitive or cooperative II: convergence almost 
everywhere”,  SIAM J. Math. Anal. 16:423-439, 1985.
[2]  GAE, M. Hirsch, H. Smith, “Prevalent behavior of strongly order preserving semiflows”, submitted.


