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Genetic networks: transcription and translation

Transcription
(RNApolymerase)

Translation
(Ribosomes)

DNA
(1-2 copy /cell)

mRNA
(103 in E. coli)

Protein
(106 in E. coli

109 mammalian)

1 min to transcribe

103 polymerase/cell

2 min to translate

104 ribosomes/cell

2-5 min 
mRNA lifetime
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Genetic networks: some common interactions

Activation of transcription    (A          M)

A

Repression     (X           M) 

XX

Translation    (M          P)

+
Signaling event

(eg., MAPK cascade)

Binding event
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Experimental data (“data rich/data poor” Sontag 2005)

Expression 
of gene 
wingless,

fly embryo
(dark: higly 
expressed)

Microarray
relative changes 
(red: expression 

increased)

Cdc2,
cyclin B,

Pomerening,
Kim & Ferrell,

Cell 2005
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Genetic networks: questions and challenges

 Modeling 

      Understanding the system; dynamics; predictions 

 Model and experiments: available data 

     different mathematical formalisms give different information  

 Parameters

        calibration of models; robustness
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 (Too)  many components: model reduction techniques

    Two well-known modules: interconnection of two systems  

 Control 

     How to find feedback laws? 

     How to implement? 

    Synthetic biology: assembling components; re-wiring a network

 State estimation, observers

Genetic networks: questions and challenges
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dM
dt

= 
An


n
An − M M

Genetic networks: how to model

Activation of transcription    (A          M)

A

Concentration of mRNA in terms of activator

Repression     (X           M) 

XX dM
dt

= 

n

nXn − M M

Concentration of mRNA in terms of repressor

Translation    (M          P)
Concentration of  protein

A

dP
dt

=  M − P P
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Example: drosophila segment polarity network

Model:  concentrations of mRNA and  proteins, for a group of 5 genes
              responsible for generating and maintaining the segmented 
              body of the fruit fly

Goal:   reproduce the observed pattern of expression for these 5 genes 
        

Expression 
of gene wingless
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A model using ordinary differential equations 

Drosophila segment polarity genes
von Dassow et al, Nature 2000 
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Parameters and dynamical behavior

About 180 eqs.
Randomly try 200,000 

   sets of parameters
About 0.5% yield 

“correct” gene pattern 

Drosophila segment polarity genes
von Dassow et al, Nature 2000 
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Alternative frameworks: qualitative models

Boolean models: logical rules; 0/1 or ON/OFF states

hh k1 = ENk   and not CIR k 

CIR

EN hh

  Robustness of the model to perturbations in the environment?

        Fluctuations in the mRNA/protein concentrations; 

        Different timescales in biological phenomena; 

        Degradation and synthesis rates 
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SLPi

=

0,   if i∈{1,2}

1,   if i∈{3,4}

wgi

= CIAi  and SLPi  and not CIR i or [wgi  and CIAi  or SLP i and not CIRi ]

WGi

= wgi

eni

= WGi−1 or WGi1  and not SLP i

EN i
 = eni

hhi

= EN i and not CIRi

HH i
 = hh i

ptc i

= CIAi  and not EN i  and not CIRi

PTC i

= ptc i  or PTCi  and not HHi−1 and not HH i1

cii

=  not ENi

CI i
 = cii

CIAi

= CI i and [not PTC i  or HH i−1  or HHi1  or hhi−1 or hhi1]

CIRi
 = CI i  and PTCi  and not HHi−1  and not HH i1  and not hhi−1  and not hhi1

A Boolean model of the segment polarity network

Albert & Othmer
J Theor Biol 2003
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wg
WG
en
EN
hh
HH
ptc
PTC
ci
CI
CIA
CIR

Wild type No segmentationBroad stripes

ptc mutants,
heat shocked genes 

en mutants
(lethal phenotype) 

The model exhibits multiple “biological” equilibria  

wg 
expression
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How to study Boolean models?  

dhhc

dt
= −i hhc  Fhh

with:  Fhh t  = EN t  and not CIRt 

hh = {0, if hhc0.5
1, if hhc0.5 {

CIR

EN hh
hh
hhc

CIR
CIRc

EN
ENc

  Dynamics: synchronous or asynchronous algorithms?

  Piecewise linear models  -  Glass type

hhT hh
k1

 = ENT EN
k

 and not CIR TCIR
k


Chaves, Albert 
& Sontag, JTB 2005
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Boolean models: updates and dynamics
t

Synchronous Tk

All variables simultaneously updated.
Deterministic trajectories in a directed graph.⇒

O11

101

110

O01

100

010

111 000

A               B

        C

Positive loop                             Synchronous transition graph
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Boolean models: updates and dynamics

Asynchronous

T1
k

T N
k

T2
k

...

Each variable updated at its own pace:  
    
     perturbed time unit   (1+ r) T ,   r  in [-ε, ε] 

NOT deterministic⇒
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Boolean models: updates and dynamics

Asynchronous

T1
k

T N
k

T2
k

...

Follow one of many possible trajectories in the asynchronous 
transition graph,

O11

101

110

O01

100

010

111 000
A               B

        C

Each variable updated at its own pace:  
    
     perturbed time unit   (1+ r) T ,   r  in [-ε, ε] 
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56%,  Wild type

24%,  Broad stripes
15%,  No segmentation

4%,  Wild type variant
1%, Ectopic and variant

Totally asynchronous and random order updates

Starting from same initial state, percentage of simulations that
converge to each steady state ----- low robustness...
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Random order updates + Timescale separation

First, update all protein nodes;  then, update all mRNA nodes
Any permutation among protein nodes followed by any permutation 
among mRNA nodes

Theorem: Trajectories diverge from the wild type steady state if and only if the 
first permutation among proteins satisfies the following order,  in the third cell

             CIR
3
      CI

3
                   CIA

3
                     PTC

3
 

                          CI
3
      CIR

3
      CIA

3
                     PTC

3
                  [CI-PTC]

                          CI
3
                    CIA

3
       CIR

3
      PTC

3
 

and all other proteins may appear in any of the remaining sites.

Chaves, Albert  & Sontag, JTB 2005
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Random order
+

Timescale 
separation

Markov Chain
with two

absorbing 
states

Increased 
robustness

87.5%, Wild type

12.5%,  
Broad 
stripes
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Piecewise linear systems: Glass-type model

dx i

dt
= i F iX1 , , Xn−xi

with:  FiX1 , , Xn = Boolean rule for node X i

and:   Xi = {0, if xii
1, if xii }

Timescale of node X i

Synthesis of gene/protein X i

         (ON/OFF)

Based on: Glass& Kauffman, 1973;  Edwards and Glass, 2000

Steady states: 
same as in 
Boolean model
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Some simulations 

Four cells in each parasegment;  periodic boundary conditions

   Initial                     Cell 1      Cell 2       Cell 3        Cell 4                Final
(stage 8)                                                                                     (stages 9-11)
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Timescale separation: 100% convergence to WT

Assumption I:    protein  2mRNA

Assumption II:   1 = i ≤ 0.5

Assumption III:  PTC3
 CI3

Theorem: Under these assumptions the Glass-type model always
converges to the wild type steady state

Chaves, Sontag & Albert  2006
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 Robustness and fragility of Boolean models for genetic regulatory 
networks, Chaves, Albert and Sontag, 2005:
Paper was in JTB top 10 most cited (of the last 5 years)

 “Timescale separation”  leads to  “Priority classes” 
(Bioinformatics: GINsim software Chaouiya, Thieffry, etc.)

 Further work: asynchronous transition graphs and the dynamical 
behavior of “large” networks 

 Further work:  piecewise linear systems 

Analysis of Boolean models and beyond
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Piecewise linear systems: qualitative framework

ẋ = f x− x

x∈ℝ≥0
n , f :ℝ≥0

n
×ℝ≥0

n , =diag 1, ,n

Thresholds: 0i
1
⋯i

r iMi Function f is a sum of 
products of step functions

s
X ,

X

Refs: Casey, de Jong & Gouzé, 2006
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Piecewise linear systems

Regular domains: Bk1 ,,kn
, ki∈{0,r i}, i

kixii
ki1

Switching domains: Dl , xi=i
l , for some i

Focal points: ẋ= f k1 ,,kn− x=0 ⇒ 
k1 ,,kn=−1 f k1 ,,kn

Example:

ẋ1 = 1 s
−
x2 ,2−1 x1

ẋ2 = 2 s
− x1 ,1−2 x2
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Measurements and control

Qualitative measurements:  

Know only: position of variables with respect to thresholds 
(either “weakly expressed”  or  “strongly expressed”)

Qualitative inputs:   u  piecewise constant (in each regular domain)

Can only implement three values.
Inputs can act on degradation or synthesis rates (inducers)

s
xi ,i

r
 ∈ {0,1}

u: ℝ≥0×ℝ≥0
n

 {umin ,1,umax}

Chaves & Gouzé, Automatica 2011
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Control of simple biological motifs:
the bistable switch

ẋ1 = 1 s
− x2 ,2−1 x1 , ẋ2 = 2 s

− x1 ,1−2 x2
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Problem:  using only qualitative control laws,  is it possible to drive 
the system to either of its stable steady states?

Control: relocate focal points

ẋ1 = u1 s
− x2 ,2 − 1 x1 , ẋ2 = u2 s

− x1 ,1 − 2 x2

Control of the bistable switch
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u=umax

u=umin

Control to steady state P1

Theorem: Assume that Φ(ϴ
1
)<ϴ

2 
.

The system with this control law 
converges to point P1.

ux  =

1 x∈B11∪B10

umin x∈B01

umax x∈B00

Chaves & Gouzé, Automatica 2011



34

u=umin

Control to steady state P2

ut , x =

1 ∀ t , x∈B11∪B01

umin ∀ t , x∈B01

umin ∀ tT1, x∈B00

umax ∀ t≥T1, x∈B00

Theorem: Assume that Φ(ϴ
1
)<ϴ

2 
,

and condition on separatrix.
The system with this control law 
converges to point P2.

Chaves & Gouzé, Automatica 2011
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Using Filippov solutions

 ẋ1

ẋ2
 ∈ co { f Ax − x , f B x− x }
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A synthetic bistable switch

Gardner, Cantor & Collins, 
Nature 2000

u ≈
IPTG

Temperature

umax ≈ Apply IPTG

umin ≈ High temperature
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Conclusions

 Experimental data: choose appropriate formalism
           different formalisms provide complementary information

 Qualitative control 
           find feedback laws using only qualitative data (for simple motifs) 

           easier to implement
           “add large amount of inducer when expression of X is high”

           synthetic biology: assembling components; re-wiring a network

 Boolean models: 
           large networks as  interconnection of two smaller modules
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Final conclusion

THANK  YOU EDUARDO 

                      .... AND CONGRATULATIONS !


