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Motivating example I: pollution propagation (Fukushima)
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Stokes equation and advection diffusion equation
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Motivating example Il: Viscous fingering in porous media (EOR)

Enhanced oil recovery from underground reservoirs

«c: FD 15000 (t = 100, Pe250)
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Darcy’s law and advection diffusion equation (twice)
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Motivating example Ill: VLSI circuits
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nanometer details 108 components
several GHz speed | several km interconnect
~ 10 layers

Interconnect analysis: signal distortions & delays = Maxwell’s equations
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Motivating example IV: A steel cooling model
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Advection diffusion equation
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Motivating example V: Driven Cavity Flow

A cavity is filled with viscoelastic material and is excited through shearing
forces u(t) of the lid. We are interested in the displacement of the material,
w(X, t), at the center.

aQ«] u(t
Q
‘/w.w 0)
00—

= wave equation with hereditary damping
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Introduction

The overall problem

Physical system

4
PDEs

ODEs
I3

Model reduction
(Reduced number of ODES)

4

Simulation, Design, Control
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Introduction

Model reduction via projection

o f(x(1), x(), u(t)) =0 Ex(t) = Ax(t) + Bu(t)
Givenis vty Zh(x(t)u(t))  ° y(t) = Cx(t) + Du()

Common framework for (most) model reduction methods:

Petrov-Galerkin projective approximation.
Choose k-dimensional subspaces, Vx = Range(Vk), Wx = Range(Wy) c C".
Find v(t) = Vixk(t) € Vi, X, € C', such that

Ev(t) - Av(t)—Bu(t) L W, =
Wy (EViexk (1) — AVix, (1) — Bu(t)) =0,  yi(t) = CVixk(t) + Du(?),

Reduced order system
Ex = W;EV, A, =W[AV,, Bx=W;B, Cx=CV,. J
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Introduction

The quality of the reduced system depends on the choice of V, and W,.

n

n EA

[ ¢ ][]

k

Ex, Ak

Norms:
e H,-norm:
worst output error

ly(8) = Y()]] wor fJu(?)

A

e Ho-norm: |[h(t) — h(t)||

Consider a system described by implicit nonlinear equations (DAESs):

f(x(1), x(1),u(t)) = 0, y(t) = h(x(t),u(t)),

with: u(t) € R™, x(t) € R", y(t) € RP.
Approximate by means of a Petrov-Galerkin projection N = V,W;:

Wi (Vi (1), Viexi (1), u(t)) = 0, yu(t) = h(Vixi (1), u(t))

where x, € R, k < n. The approximation is "good” if x — MNx is "small’.
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Introduction

Issues and requirements

Issues with large-scale systems
@ Storage — Computational speed — Accuracy
© System theoretic properties
Requirements for model reduction

@ Approximation error small

© Structure preservation (e.g. stability/passivity)

© Procedure computationally efficient and automatic

Q In addition: many ports, parameters, nonlinearities, ... .
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Approximation: SVD based methods

Outline

9 Approximation: SVD based methods
@ POD
@ Balanced reduction
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Approximation: SVD based methods

Approximation methods:

/\
N

e Realization
e Interpolation
e Lanczos

e Arnoldi

Thanos Antoulas (Rice U. & Jacobs U.)

Nonlinear systems

Linear systems

e POD methods
e Empirical Gramians

e Balanced truncation
e Hankel approximation
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14 /42



Approximation: SVD based methods

SVD

Prototype approximation problem: SVD (Singular Value Decomposition):
A=UxXV*

Singular values X provide trade-off between accuracy and complexity.

original 599 x 726 k=10 k=50
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Approximation: SVD based methods POD

POD

POD (Proper Orthogonal Decomposition):

Consider: f(x(t), x(t),u(t)) = 0, y(t) = h(x(t),u(t)).

Snapshots of the state: X = [x(t;) x(&) --- X(ty)] € R™N.

SVD: X = UXV* = UV}, k < n. Approximation of the state:
Xk () = Upx(t) = x(t) =~ Ugxk(t), xx(t) € R¥

Project state and output equations. Reduced order system:

| Uif(Uike(1), Uexi(1), (1)) = 0, yi(t) = h(Uixi(8), u(t)) |

= Xk(t) eolves in a low-dimensional space.

Issues with POD: (a) Choice of snapshots, (b) singular values not I/0
invariants, (c) computation of U;f costly.
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Approximation: SVD based methods POD

Viscous fingering in porous media

: FD 15000 (t = 100, Pe250) © :PODAO/DEIMAO (t = 100, Pe250)
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V.-u=0 (incompressibility)
Vr=—uu (Darcy’s law)

%‘,’ +u-Ve=aVec+gf(c) (convection, diffusion for c)
9% +u-VO=+V20+4f(c) (convection, diffusion for ©)

u: velocity, 7: pressure, ¢: concentration, ©: temperature, «, 3, v, § constants,
u(c, ©): viscosity of injected fluid, f(c) nonlinear function of c.
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Approximation: SVD based methods Balanced reduction

SVD methods: balanced truncation

Given linear system (E, A, B, C), detE # 0, (A, E) stable, use state and
output. This implies the computation of the gramians which satisfy the
generalized Lyapunov equations:

APE* +EPA*+BB*=0, P>0, AAQE+E'QA+C'C=0, Q>0 =

oi = v/ Ai(PE*QE) |: Hankel singular values: provide trade-off between
accuracy and complexity.

@ Stability is preserved

@ Global error bound: oy 1 <|| H(S) — H(S) [|co< 2(0ks1 + - - - + o)

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 18/42



Approximation: SVD based methods Balanced reduction

lterative solution of Lyapunov equations

@ Dense computations, matrix factorizations and inversions = may be
ill-conditioned; number of operations O(n®)

@ Bottleneck: solution of Lyapunov equations: APE* + EPA* 4+ BB* = 0.
For large A such equations cannot be solved exactly.

Instead, since P > 0 = square root L exists: P = LL*.
Hence compute approximations Vto L: P = VV*: rankV = k < n:

v*

Iterative solution: ADI, modified Smith (guaranteed convergence).
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Approximation: SVD based methods Balanced reduction

Example

Semidiscretized advection diffusion equation (concentration of pollutant c):

66, 1) — V(nVe(€ 1) + V() - Vo(e. ) = ul, )

advection v: solution of steady state Stokes equation; diffusivity x = 0.005.

Original | Reduced
m=16 m=16
n=2673 | k=10

p=283 | p=283
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Approximation: SVD based methods Balanced reduction

Example

t=2.0
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Approximation: Krylov-based or interpolatory methods

Outline

e Approximation: Krylov-based or interpolatory methods
@ Choice of interpolation points: Passivity preserving reduction
@ Choice of interpolation points: Optimal H2 reduction
@ Reduction of models in generalized form
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Approximation: Krylov-based or interpolatory methods

Approximation methods:

/\
N

e Realization
e Interpolation
e Lanczos

e Arnoldi
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Nonlinear systems

Linear systems

e POD methods
e Empirical Gramians

e Balanced truncation
e Hankel approximation
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Approximation: Krylov-based or interpolatory methods

Krylov methods: Approximation by moment matching

Given Ex(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), expand transfer function
around Sg:

H(s) = no+n1(5— So0) + ma(5— S0)° +m3(S — S0)® + -+, m; : moments at s

Find Eka(t) = Aka(t) + BkU(t), yk(t) = Ckxk(t) + DkU(t), with

Hk(S) = 00 + 01(s — Sp) + 02(s — 80)? + O3(s — 50)° + - - -

such that for appropriate s, and ¢: ‘77/

Approximation by interpolation \
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Approximation: Krylov-based or interpolatory methods

The general interpolation framework

@ Goal: produce Hg(s), that approximates a large order H(s), by means of
interpolation at a set of points o;: Hk(o;) =H(oy), i=1,---, k.

@ For MIMO systems interpolation conditions are imposed in specified
directions: tangential interpolation.

Problem: Find reduced model satisfying:
LiHy (1) = L7 H(pi), He(A\)r = HO\)E, =1,k

Interpolatory projections
£;C(1E — A)~!
Vi = [(ME—=A)""Bry, ---, \E—A)"'Bry], W; = :
£;C(ukE — A~
e Consequence: Krylov methods match moments without computing them. |

Q: ‘ How to choose the interpolation points and tangential directions? ‘

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 25/42



Approximation: Krylov-based or interpolatory methods Choice of interpolation points: Passivity preserving reduction

Choice of interpolation points: Passivity preserving model reduction

Recall: (E,A,B,C,D) is passive < H(s) is positive real.

= implies spectral factorization H(s) + H*(—s) = ®(s)®*(—s). The spectral
zeros are A such that: (), loses rank. Hence 3 right spectral zero direction,
r, such that (H(A) + H*(=A\))r=0

@ Method: Interpolatory reduction

@ Solution: interpolation points = spectral zeros

Passivity preserving tangential interpolation

Given H(s) = C(sE — A)~'B + D, stable and passive, let Ay, - - - , A\x be stable
spectral zeros with corresponding right directions r4, - - - | r,.

If a reduced order system H(s) is obtained by interpolatory projection with
right data \;, r;, and left data p; = —\;, rf fori =1,--- | k, then Hk(s) is stable
and passive.
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Approximation: Krylov-based or interpolatory methods

Choice of interpolation points: Passivity preserving reduction

Example of passivity presrving reduction

Frequency response

DominantSZM, Modal Approxiation, SPRIM/IOPOR

An RLC transmission line o : 7,/”““’”‘““’

is reduced with dominant N :

SZM, SPRIM, modal ap- . / 44444 .

proximation (MA). Domi- I i 5

nant SZM gives the best / e

approximation. s I

System Dim. R C L | VCCs | States | Sim. time

Original 1501 | 1001 | 500 | 500 | 500 1500 0.50 s
Dominant SZM 2 3 2 0 - 4 0.01s
SPRIM/IOPOR 2 6 3 1 - 4 0.01s
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Approximation: Krylov-based or interpolatory methods Choice of interpolation points: Optimal 7{» reduction

Choice of interpolation points: Optimal 7> model reduction

Recall: the H2 norm of a stable system X is:

=he = (o | " irace [H(iw)H* (—iv)] dw)w

— 0o

where H(s) = C(sE — A)~'B, is the system transfer function.

Goal: construct a Krylov projector such that X, = argmin H}: — iH .
deg(£)=k He

The optimization problem is nonconvex. We propose finding reduced order

models that satisfy first-order necessary optimality conditions.
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Approximation: Krylov-based or interpolatory methods Choice of interpolation points: Optimal 7{» reduction
First-order necessary optimality conditions

Let H, solve the optimal 7, problem and let }\; denote its poles. Assuming for
simplicity that m = p = 1, the following interpolation conditions hold:

H(=%;) = Hk(=%}) and %H(S”s:—f\; - %Hk(s)’s:—ﬁ\f

Thus the optimal reduced system H, matches the first two moments of the
original system at the mirror image of its poles.

o Make an initial selection of o, for i=1,.-- , k
@ W=I(oE* —A")TC*, -, (04E" — A*)'CY]
QV=(E-M B o (oxE- M)

o while (not converged)
@ E, = W*EV, Ay = W*AV,

@ o, — —)\;(Ak, Ex) + Newton correction, i =1,--- , k
@ W=([(0iE* —A*)7'C*, ..., (o4E* — A*)TTC¥]
@ V—[(0iE—A)"'B, ---, (ckE — A)"'B]

© B« =WrEV, A, = W*AV, B, = W"B, C; = CV
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Approximation: Krylov-based or interpolatory methods Choice of interpolation points: Optimal 7{» reduction

A numerical algorithm for optimal 7> model reduction

e Global minimizers are difficult to obtain with certainty; current approaches
favor seeking reduced order models that satisfy a local (first-order) necessary
condition for optimality.

e The main computational cost of this algorithm involves solving 2k linear
systems to generate V and W. Computing the eigenvectors Y and X, and the
eigenvalues of the reduced pencil AEx — Ay is cheap since k is small.

e The resulting algorithm (IRKA) has been successfully applied to finding
Ho-optimal reduced models for systems of order n > 160, 000.

e Cooling process in a rolling mill.

Boundary control of 2D heat equation:
finite element discretization = n=79,841:

A Ec R79841><79841 Bc R79841 x7 Cc R6X79841
) ’ s .

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 30/42



Approximation: Krylov-based or interpolatory methods Choice of interpolation points: Optimal 7{» reduction
Numerical results

IRKA is compared with:
@ Modal Approximation Hyoq.: choose 20 dominant modes of H(s).
© H,.: interpolation points jw where ||H(yw)|| is dominant.
© H...: 20 interpolation points in the mirror images of the poles of H(s).

Hirka | Himodal H,. Hieal

Relative H o~ error 0.030 0.103 0.542 0.247

Bode plot ofthe fil and reduced systems for u, and y,

y
wHI

10" il
freq (rad/sec)
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Approximation: Krylov-based or interpolatory methods Reduction of models in generalized form

Models in generalized form

Forced vibration of an (isotropic) incompressible viscoelastic solid:

OnW(x,t) — n Aw(x, t)— /t p(t —7) Aw(x,7) dT + Vm(x,t) = b(x) -
0

V-w(x,t)=0, and y(t) = [w(X1,1), - -W(Xp, 1)]",

w(x, t): displacemet, m(x, t): pressure; 08y L un
V - w = 0 incompressibility constraint; Q
p(7) > 0 is a known “relaxation function”; ,/w'(j )
b(x) - u(t) = 37 bi(x) ui(?).

Q00—
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Approximation: Krylov-based or interpolatory methods Reduction of models in generalized form

Models in generalized form

Semidiscretization with respect to space gives:

t
Mi(t) — nKx(f) —/0 ot — 7)Kx(r) dr +Dp(t) = Bu(t),
D*x(1) =0, and y(t) = Cx(t).

x € R™: discretization of w;

p € R™: discretization of pressure .
M, K > 0.

5 1
=y = o o) SMEGE KBS
C pe T

where H(s) = C(s)K(s)~'B(s). The system is described by
DAEs with hereditary damping.

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 33/42



Approximation: Krylov-based or interpolatory methods Reduction of models in generalized form

Reduction of models in generalized form

We seek a structure preserving reduced model:

M, (1) — 7K, %, () — /Ot ot — 1)K X,(7) dr + D, p, = B,u(t)
D! x,(t) = 0 and y,(t) = C, x,(1).
We construct U, Z, x(t) = Ux,(1), p(t) = Zp,(?):
M, = U"MU, K, = U*KU, D, =U*DZ, B, =U*B, C, = CU.

Thus: no mixing of w, and p,; symmetry and definiteness are preserved.
Reduced model: choose U and Z so that the reduced model
H,(s) = C/(s)K,(s) ' B,(s) interpolates H(s) at given frequency points.

U - —
[ z ] = [K(o)"Blov)by, -+, K(or) " Blor)br]
Then, tangential interpolation holds: H(c;)b; = H/(o;)b;, bjH(o;) = byH, (o).
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Approximation: Krylov-based or interpolatory methods Reduction of models in generalized form

Example e Cavity filled with polymer BUTYL B252 = p(s) = s%, a = 0.519.

e Hg,, using Taylor-Hood FEM discretization with 51,842 displacement and
6,651 pressure degrees of freedom (mesh size h = &);

e H .., fOr a coarse mesh discretization with 29,282 displacement degrees
of freedom and 3721 pressure degrees of freedom (mesh size h = &);

e Hsp, interpolatory reduced order model with 30 displacement and 30
pressure degrees of freedom. Interpolation points: chosen on the imaginary
axis between 10* and 10°.

N Amplitude Bode Plots for x displacement
10

o'

IH(w)!

0

freq (rad/sec)

Amplitude Bode Plots for y displacement

IHGwW)!

. . . T
10° 10* 10° 10 10° 10°

10°
freq (rad/sec)
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Conclusions and References

Outline

0 Conclusions and References
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Conclusions and References

Equations Methods
@ Darcy’s @ POD (SVD)
@ Stokes @ Approximate balanced truncation (SVD)
@ Advection diffusion @ Passivity preserving (interpolatory)
® Maxwell’s @ Optimal H; (interpolatory)
@ Wave @ Generalized interpolatory approach
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Conclusions and References

Conclusions: SVD-based reduction methods

@ POD: method of choice for NL model reduction

@ Chaturantabut, Sorensen, Nonlinear model reduction via discrete
empirical interpolation, SIAM J. Sci. Comp., 32: 2737-2764 (2010).

@ Balanced truncation:

has apriori computable error bound
Applicable to small systems
Bottleneck: solution of the Lyapunov equations

e Reis, Heinkenschlof3, Antoulas, Automatica, 47: 559-564 (2011).
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Conclusions and References

Conclusions: Krylov-based or interpolatory reduction methods

@ Passivity preserving model reduction

o Antoulas, Sorensen: Systems and Control Letters (2005)

@ lonutiu, Rommes, Antoulas: Passivity-Preserving Model Reduction
Using Dominant Spectral-Zero Interpolation, IEEE Trans. CAD
Integrated Circ. Syst., 27: 2250 - 2263 (2008).

@ Optimal Ho model reduction

e Gugercin, Antoulas, Beattie: SIAM J. Matrix Anal. Appl. (2008)

o Kellems, Roos, Xiao, Cox: Low-dimensional, morphologically
accurate models of subthreshold membrane potential, J. Comput.
Neuroscience, 27:161-176 (2009).

@ Interpolatory model reduction

o A.C. Antoulas, C.A. Beattie, and S. Gugercin, Interpolatory model
reduction of large-scale systems, in Efficient modeling and control
of large-scale systems, Springer Verlag, pages 3-58 (2010).

o C.A. Beattie and S. Gugercin, Interpolatory projection methods for
structure preserving model reduction, Syst. Cont. Lett., 58 (2009).

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 39/42



Conclusions and References
(Some) Challenges in model reduction

@ Model reduction from data: Loewner approach

e Mayo, Antoulas, A framework for the solution of the generalized
realization problem, LAA, 425: 634-662 (2007).

o Lefteriu, Antoulas: A New Approach to Modeling Multiport Systems
from Frequency-Domain Data, IEEE Trans. CAD, 29: 14-27 (2010).

Systems depending on parameters

@ Antoulas, lonita, Lefteriu, On two-variable interpolation, LAA (2011).

Sparsity preservation

e lonutiu, Model order reduction for multi-terminal systems with
application to circuit simulation, PhD Thesis 2011.
@ Non-linear systems (besides POD: Astolfi, Krener, Scherpen)
@ Domain decomposition - many inputs/outputs
@ MEMS and multi-physics problems (micro-fluidic bio-chips)
°
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Conclusions and References
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