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Motivating example I: pollution propagation (Fukushima)
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Stokes equation and advection diffusion equation
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Motivating example II: Viscous fingering in porous media (EOR)

Enhanced oil recovery from underground reservoirs

14 S. Chaturantabut and D.C. Sorensen

ure 1. The plots of corresponding POD bases are shown in Appendix D. In Figure 2,
the solutions for concentration from POD-DEIM reduced system (62)-(65), with
POD and DEIM of dimension 40, are shown with the corresponding ones from the
full-order system as well as the corresponding absolute error at the grid points. It
shows that POD-DEIM reduces more than 300 times in dimension and reduces the
computational time by factor of O(103) with O(10−3) error as shown in Table 1.
From Figure 3, the plot of the CPU time used in computing POD reduced system
clearly reflects the dependency on the dimension of the original full-order system.
Figure 3 and Table 1 show a significant improvement in computational time of the
POD-DEIM reduced system from both POD reduced system and full-order system.
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Figure 1. Singular values of the solution snapshots and the nonlinear snapshots.

Figure 2. Concentration plots of the injected fluid (from the left half) at time t=100 and t= 250 from
the full-order system of dimension 15000 and from the POD-DEIM reduced system with both POD and
DEIM having dimension 40 (fixed parameters).

6.2. Varying Péclet number: Pe ∈ [110, 120]

Consider the same numerical setup as for the previous case in Section 6.1 except
that we are now interested in the parameter Pe in the interval [110, 120]. The POD
basis used for approximating the solution space is constructed from 398 snapshots

Darcy’s law and advection diffusion equation (twice)
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Motivating example III: VLSI circuits

CMOS Chip 3D Silicon Chip

nanometer details 108 components
several GHz speed several km interconnect
≈ 10 layers

Interconnect analysis: signal distortions & delays ⇒ Maxwell’s equations
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Motivating example IV: A steel cooling model
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Motivating example V: Driven Cavity Flow

A cavity is filled with viscoelastic material and is excited through shearing
forces u(t) of the lid. We are interested in the displacement of the material,
w(x̂ , t), at the center.

x̂r
���w(x̂, t)

� -u(t)∂Ω1

∂Ω0

Ω

⇒ wave equation with hereditary damping
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Introduction

The overall problem

Physical system

⇓

PDEs

⇓

ODEs

⇓

Model reduction
(Reduced number of ODEs)

⇓

Simulation, Design, Control

⇐= DATA
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Introduction

Model reduction via projection

Given is f(ẋ(t),x(t),u(t)) = 0
y(t) = h(x(t),u(t))

or Eẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) .

Common framework for (most) model reduction methods:

Petrov-Galerkin projective approximation.

Choose k -dimensional subspaces, Vk = Range(Vk ),Wk = Range(Wk ) ⊂ Cn.

Find v(t) = Vk xk (t) ∈ Vk , xk ∈ Cr , such that

Ev̇(t)− Av(t)− B u(t) ⊥ Wr ⇒
W∗k (EVk ẋk (t)− AVk xk (t)− B u(t)) = 0, yk (t) = CVk xk (t) + Du(t),

Reduced order system

Ek = W∗k EVk , Ak = W∗k AVk , Bk = W∗k B, Ck = CVk .
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Introduction

The quality of the reduced system depends on the choice of Vr andWr .

Norms:
• H∞-norm:
worst output error
‖y(t)− ŷ(t)‖ for ‖u(t)‖ = 1.

• H2-norm: ‖h(t)− ĥ(t)‖

E,An

n

C

B

D

⇒ Ek ,Akk

k

Ck

Bk

Dk

Consider a system described by implicit nonlinear equations (DAEs):

f (ẋ(t),x(t),u(t)) = 0, y(t) = h(x(t),u(t)),

with: u(t) ∈ Rm, x(t) ∈ Rn, y(t) ∈ Rp.
Approximate by means of a Petrov-Galerkin projection Π = Vk W∗k :

W∗k f (Vk ẋk (t),Vk xk (t), u(t)) = 0, yk (t) = h(Vk xk (t), u(t))

where xk ∈ Rk , k � n. The approximation is ”good” if x− Πx is ”small”.
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Introduction

Issues and requirements

Issues with large-scale systems

1 Storage – Computational speed – Accuracy
2 System theoretic properties

Requirements for model reduction

1 Approximation error small
2 Structure preservation (e.g. stability/passivity)
3 Procedure computationally efficient and automatic
4 In addition: many ports, parameters, nonlinearities, ... .
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Approximation: SVD based methods
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Approximation: SVD based methods

Approximation methods: Overview

PPPPPPPPq

���
���

Krylov

• Realization
• Interpolation
• Lanczos
• Arnoldi

SVD

@
@
@R

�
�
�	

Nonlinear systems Linear systems
• POD methods • Balanced truncation
• Empirical Gramians • Hankel approximation
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Approximation: SVD based methods

SVD

Prototype approximation problem: SVD (Singular Value Decomposition):

A = U Σ V∗

Singular values Σ provide trade-off between accuracy and complexity.

original 599× 726 k = 10 k = 50
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Approximation: SVD based methods POD

POD

POD (Proper Orthogonal Decomposition):
Consider: f(ẋ(t),x(t),u(t)) = 0, y(t) = h(x(t),u(t)).

Snapshots of the state: X = [x(t1) x(t2) · · · x(tN)] ∈ Rn×N .

SVD: X = UΣV∗ ≈ Uk Σk V∗k , k � n. Approximation of the state:

xk (t) = U∗k x(t) ⇒ x(t) ≈ Uk xk (t), xk (t) ∈ Rk

Project state and output equations. Reduced order system:

U∗k f(Uk ẋk (t),Uk xk (t),u(t)) = 0, yk (t) = h(Uk xk (t),u(t))

⇒ xk (t) eolves in a low-dimensional space.

Issues with POD: (a) Choice of snapshots, (b) singular values not I/O
invariants, (c) computation of U∗kf costly.
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Approximation: SVD based methods POD

Viscous fingering in porous media

14 S. Chaturantabut and D.C. Sorensen

ure 1. The plots of corresponding POD bases are shown in Appendix D. In Figure 2,
the solutions for concentration from POD-DEIM reduced system (62)-(65), with
POD and DEIM of dimension 40, are shown with the corresponding ones from the
full-order system as well as the corresponding absolute error at the grid points. It
shows that POD-DEIM reduces more than 300 times in dimension and reduces the
computational time by factor of O(103) with O(10−3) error as shown in Table 1.
From Figure 3, the plot of the CPU time used in computing POD reduced system
clearly reflects the dependency on the dimension of the original full-order system.
Figure 3 and Table 1 show a significant improvement in computational time of the
POD-DEIM reduced system from both POD reduced system and full-order system.
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Figure 1. Singular values of the solution snapshots and the nonlinear snapshots.

Figure 2. Concentration plots of the injected fluid (from the left half) at time t=100 and t= 250 from
the full-order system of dimension 15000 and from the POD-DEIM reduced system with both POD and
DEIM having dimension 40 (fixed parameters).

6.2. Varying Péclet number: Pe ∈ [110, 120]

Consider the same numerical setup as for the previous case in Section 6.1 except
that we are now interested in the parameter Pe in the interval [110, 120]. The POD
basis used for approximating the solution space is constructed from 398 snapshots

∇ · u = 0 (incompressibility)
∇π = −µu (Darcy’s law)
∂c
∂t + u · ∇c = α∇2c + β f (c) (convection, diffusion for c)
∂Θ
∂t + u · ∇Θ = γ∇2Θ + δ f (c) (convection, diffusion for Θ)

u: velocity, π: pressure, c: concentration, Θ: temperature, α, β, γ, δ constants,
µ(c,Θ): viscosity of injected fluid, f (c) nonlinear function of c.
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Approximation: SVD based methods Balanced reduction

SVD methods: balanced truncation

Given linear system (E,A,B,C), det E 6= 0, (A,E) stable, use state and
output. This implies the computation of the gramians which satisfy the
generalized Lyapunov equations:

APE∗ + EPA∗ + BB∗ = 0, P > 0, A∗QE + E∗QA + C∗C = 0, Q > 0 ⇒

σi =
√
λi (PE∗QE) : Hankel singular values: provide trade-off between

accuracy and complexity.

Properties

1 Stability is preserved

2 Global error bound: σk+1 ≤‖ H(s)− Ĥ(s) ‖∞≤ 2(σk+1 + · · ·+ σn)
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Approximation: SVD based methods Balanced reduction

Iterative solution of Lyapunov equations

Drawbacks

1 Dense computations, matrix factorizations and inversions⇒ may be
ill-conditioned; number of operations O(n3)

2 Bottleneck: solution of Lyapunov equations: APE∗ + EPA∗ + BB∗ = 0.
For large A such equations cannot be solved exactly.
Instead, since P > 0⇒ square root L exists: P = LL∗.
Hence compute approximations V to L: P̂ = VV∗: rank V = k � n:

P = L L∗ ≈ V
V∗

= P̂

Iterative solution: ADI, modified Smith (guaranteed convergence).
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Approximation: SVD based methods Balanced reduction

Example

1032 L. DEDE’ AND A. QUARTERONI
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Figure 4. Test 1. Reference domain for the control problem. We report the boundary condi-
tions for the advection–diffusion Equation (10) (a) and for the Stokes problem (64) (b).

where ρw
K , ρp

K and ρu
K are defined in Equations (55) and (61) (for the sake of simplicity, we have dropped the

apex (j) on the error indicators). Results are compared with those obtained on fine grids, that we consider an
accurate guess of the exact solution.

4.1. Test 1: water pollution

Let us consider a first test case that is inspired to a problem of a water pollution. The optimal control problem
consists in regulating the emission rates of pollutants (rising e.g. from refusals of industrial or agricultural plants)
to keep the concentration of such substances below a desired threshold in a branch of a river.

We refer to the domain reported in Figure 4a, that could represent a river that bifurcates into two branches
past a hole, which stands for, e.g., an island. Referring to Equation (10), we obtain the velocity field V as the
solution of the following Stokes problem:






−µ∆V + ∇p = 0, in Ω,
V = (1 − ( y

0.2 )2, 0)T , on Γin
D ,

V = 0, on ΓD,
µ∇V · n− pn = 0, on ΓN ,

(64)

where p stands for the pressure, while Γin
D , ΓD and ΓN are indicated in Figure 4b. Adimensional quantities

are used. Here the Stokes problem serves the only purpose to provide an appropriate velocity field for the
advection–diffusion problem; since the latter governs our control problem, the analysis provided in Section 1
and Section 2 applies. Moreover, for the sake of simplicity, we adopt the method and the a posteriori error
estimate (54) proposed in Section 3. In fact, this approach is not fully coherent, being the velocity field V
computed numerically by means of the same grid adopted to solve the control problem, i.e. we consider Vh

instead of V.
For the Stokes problem we assume µ = 0.1 , for which the Reynolds number reads Re ≈ 10; we solve the

problem by means of linear finite elements with stabilization (see [16]), computed with respect to the same grid
of the control problem. In Figure 5 we report the velocity field and its intensity as obtained by solving the
Stokes problem.

For our control problem we assume ν = 0.015, u = 50 in both the emission areas U1 and U2 and zd = 0.1 in
the observation area D. The initial value of the control function, u = 50, can be interpreted as the maximum
rate of emission of pollutants (divided by the emission area), while the state variable w stands for the pollutant
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Semidiscretized advection diffusion equation (concentration of pollutant c):

∂

∂t
c(ξ, t)−∇(κ∇c(ξ, t)) + v(ξ) · ∇c(ξ, t) = u(ξ, t)

advection v: solution of steady state Stokes equation; diffusivity κ = 0.005.

Original Reduced
m = 16 m = 16

n = 2673 k = 10
p = 283 p = 283
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Approximation: SVD based methods Balanced reduction

Example
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Approximation: Krylov-based or interpolatory methods
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Approximation: Krylov-based or interpolatory methods

Approximation methods: Overview

PPPPPPPPq
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Krylov

• Realization
• Interpolation
• Lanczos
• Arnoldi

SVD
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Nonlinear systems Linear systems
• POD methods • Balanced truncation
• Empirical Gramians • Hankel approximation
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Approximation: Krylov-based or interpolatory methods

Krylov methods: Approximation by moment matching

Given Eẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), expand transfer function
around s0:

H(s) = η0 +η1(s− s0) +η2(s− s0)2 +η3(s− s0)3 + · · · , ηj : moments at s0

Find Ek ẋk (t) = Ak xk (t) + Bk u(t), yk (t) = Ck xk (t) + Dk u(t), with

Hk (s) = θ0 + θ1(s − s0) + θ2(s − s0)2 + θ3(s − s0)3 + · · ·

such that for appropriate s0 and `: ηj = θj , j = 1,2, · · · , ` ⇒

Approximation by interpolation
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Approximation: Krylov-based or interpolatory methods

The general interpolation framework

Goal: produce Hk (s), that approximates a large order H(s), by means of
interpolation at a set of points σi : Hk (σi ) = H(σi ), i = 1, · · · , k .
For MIMO systems interpolation conditions are imposed in specified
directions: tangential interpolation.

Problem: Find reduced model satisfying:

`∗i Hk (µi ) = `∗i H(µi ), Hk (λj )rj = H(λj )rj , i, j = 1, · · · , k .

Interpolatory projections

Vk =
[
(λ1E− A)−1Br1, · · · , (λk E− A)−1Brk

]
, W∗k =

 `∗1C(µ1E− A)−1

...
`∗k C(µk E− A)−1

.

• Consequence: Krylov methods match moments without computing them.

Q: How to choose the interpolation points and tangential directions?
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Approximation: Krylov-based or interpolatory methods Choice of interpolation points: Passivity preserving reduction

Choice of interpolation points: Passivity preserving model reduction

Recall: (E,A,B,C,D) is passive ⇔ H(s) is positive real.

⇒ implies spectral factorization H(s) + H∗(−s) = Φ(s)Φ∗(−s). The spectral
zeros are λ such that: Φ(λ), loses rank. Hence ∃ right spectral zero direction,
r, such that (H(λ) + H∗(−λ))r = 0

Method: Interpolatory reduction

Solution: interpolation points = spectral zeros

Passivity preserving tangential interpolation

Given H(s) = C(sE− A)−1B + D, stable and passive, let λ1, · · · , λk be stable
spectral zeros with corresponding right directions r1, · · · , rk .

If a reduced order system Hk (s) is obtained by interpolatory projection with
right data λi , ri , and left data µi = −λi , r∗i for i = 1, · · · , k , then Hk (s) is stable
and passive.
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Approximation: Krylov-based or interpolatory methods Choice of interpolation points: Passivity preserving reduction

Example of passivity presrving reduction

An RLC transmission line
is reduced with dominant
SZM, SPRIM, modal ap-
proximation (MA). Domi-
nant SZM gives the best
approximation.
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Original

Reduced(domSZM)

Reduced(MA)

Reduced(SPRIM/IOPOR)

DomSZM−synthesized

SPRIM/IOPOR−synthesized

System Dim. R C L VCCs States Sim. time
Original 1501 1001 500 500 500 1500 0.50 s

Dominant SZM 2 3 2 0 - 4 0.01 s
SPRIM/IOPOR 2 6 3 1 - 4 0.01 s
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Approximation: Krylov-based or interpolatory methods Choice of interpolation points: OptimalH2 reduction

Choice of interpolation points: Optimal H2 model reduction

Recall: the H2 norm of a stable system Σ is:

‖Σ‖H2 =

(
1

2π

∫ +∞

−∞
trace [H(iω)H∗(−iω)] dω

)1/2

where H(s) = C(sE− A)−1B, is the system transfer function.

Goal: construct a Krylov projector such that Σk = arg min
deg(Σ̂)=k

∥∥∥Σ− Σ̂
∥∥∥
H2

.

The optimization problem is nonconvex. We propose finding reduced order
models that satisfy first-order necessary optimality conditions.
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Approximation: Krylov-based or interpolatory methods Choice of interpolation points: OptimalH2 reduction

First-order necessary optimality conditions

Let Hk solve the optimal H2 problem and let λ̂i denote its poles. Assuming for
simplicity that m = p = 1, the following interpolation conditions hold:

H(−λ̂∗i ) = Hk (−λ̂∗i ) and d
ds H(s)

∣∣
s=−λ̂∗i

= d
ds Hk (s)

∣∣
s=−λ̂∗i

Thus the optimal reduced system Hk matches the first two moments of the
original system at the mirror image of its poles.

1 Make an initial selection of σi , for i = 1, · · · , k

2 W = [(σ1E∗ − A∗)−1C∗, · · · , (σk E∗ − A∗)−1C∗]

3 V = [(σ1E− A)−1B, · · · , (σk E− A)−1B]

4 while (not converged)

Ek = W∗EV, Ak = W∗AV,
σi ←− −λi (Ak , Ek ) + Newton correction, i = 1, · · · , k
W = [(σ1E∗ − A∗)−1C∗, · · · , (σk E∗ − A∗)−1C∗]

V = [(σ1E− A)−1B, · · · , (σk E− A)−1B]

5 Ek = W∗EV, Ak = W∗AV, Bk = W∗B, Ck = CV
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Approximation: Krylov-based or interpolatory methods Choice of interpolation points: OptimalH2 reduction

A numerical algorithm for optimal H2 model reduction

• Global minimizers are difficult to obtain with certainty; current approaches
favor seeking reduced order models that satisfy a local (first-order) necessary
condition for optimality.

• The main computational cost of this algorithm involves solving 2k linear
systems to generate V and W. Computing the eigenvectors Y and X, and the
eigenvalues of the reduced pencil λEk − Ak is cheap since k is small.

• The resulting algorithm (IRKA) has been successfully applied to finding
H2-optimal reduced models for systems of order n > 160,000.

• Cooling process in a rolling mill.

Boundary control of 2D heat equation:
finite element discretization ⇒ n = 79,841:

A, E ∈ R79841×79841, B ∈ R79841×7, C ∈ R6×79841.
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Approximation: Krylov-based or interpolatory methods Choice of interpolation points: OptimalH2 reduction

Numerical results

IRKA is compared with:

1 Modal Approximation Hmodal: choose 20 dominant modes of H(s).

2 Hω: interpolation points jω where ‖H(ω)‖ is dominant.
3 Hreal: 20 interpolation points in the mirror images of the poles of H(s).

HIRKA Hmodal Hω Hreal

RelativeH∞ error 0.030 0.103 0.542 0.247

!"
!#

!"
!$

!"
!%

!"
!&

!"
"

!"
!%

!"
!'

!"
!&

!"
!!

()*+,-)./01*23

,4
4,
5
,!
,5

),
44
,

67/*,897:,7(,:;*,*))7),1<1:*=1

,

,

5
>?@A

5
=7/.9

5
BC

5
)*.9

!"
!#

!"
!$

!"
!%

!"
!&

!"
"

!"
!%

!"
!'

!"
!&

()*+,-)./01*23

,4
4,
5
,4
4,

67/*,897:,7(,:;*,(<99,.=/,)*/<2*/,1>1:*?1,(7),<
'
,.=/,>

@

,

,

5
5
ABCD

5
?7/.9

5
EF

5
)*.9

Thanos Antoulas (Rice U. & Jacobs U.) Model reduction of large-scale systems 31 / 42



Approximation: Krylov-based or interpolatory methods Reduction of models in generalized form

Models in generalized form

Forced vibration of an (isotropic) incompressible viscoelastic solid:

∂ttw(x , t)− η∆w(x , t)−
∫ t

0
ρ(t − τ) ∆w(x , τ) dτ +∇π(x , t) = b(x) · u(t),

∇ ·w(x , t) = 0, and y(t) = [w(x̂1, t), · · ·w(x̂p, t)]∗,

w(x , t): displacemet, π(x , t): pressure;

∇ ·w = 0 incompressibility constraint;

ρ(τ) ≥ 0 is a known “relaxation function”;

b(x) · u(t) =
∑m

i=1 bi (x) ui (t).

x̂r���w(x̂, t)

� -u(t)∂Ω1

∂Ω0

Ω
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Models in generalized form

Semidiscretization with respect to space gives:

M ẍ(t) − ηK x(t) −
∫ t

0
ρ(t − τ) K x(τ) dτ + D p(t) = B u(t),

D∗ x(t) = 0, and y(t) = C x(t).

x ∈ Rn1 : discretization of w;
p ∈ Rn2 : discretization of pressure π.
M, K > 0.

⇒ y(s) = [C 0]︸ ︷︷ ︸
C

[
s2M + (ρ(s) + η) K D

D∗ 0

]
︸ ︷︷ ︸

K

−1 [ B
0

]
︸ ︷︷ ︸
B

u(s) = H(s) u(s),

where H(s) = C(s)K(s)−1B(s). The system is described by

DAEs with hereditary damping.
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Reduction of models in generalized form

We seek a structure preserving reduced model:

Mr ẍr (t) − ηKr xr (t) −
∫ t

0
ρ(t − τ) Kr xr (τ) dτ + Dr pr = Br u(t)

D∗r xr (t) = 0 and yr (t) = Cr xr (t).

We construct U, Z, x(t) ≈ Uxr (t), p(t) ≈ Zpr (t):

Mr = U∗MU, Kr = U∗KU, Dr = U∗DZ, Br = U∗B, Cr = CU.

Thus: no mixing of wr and pr ; symmetry and definiteness are preserved.
Reduced model: choose U and Z so that the reduced model
Hr (s) = Cr (s)Kr (s)−1Br (s) interpolates H(s) at given frequency points.[

U
Z

]
=
[
K(σ1)−1B(σ1)b1, · · · , K(σr )−1B(σr )br

]
Then, tangential interpolation holds: H(σi )bi = Hr (σi )bi , b∗i H(σi ) = b∗i Hr (σi ).
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Example • Cavity filled with polymer BUTYL B252⇒ ρ(s) = sα, α = 0.519.
• Hfine, using Taylor-Hood FEM discretization with 51,842 displacement and
6,651 pressure degrees of freedom (mesh size h = 1

80 );
• Hcoarse, for a coarse mesh discretization with 29,282 displacement degrees
of freedom and 3721 pressure degrees of freedom (mesh size h = 1

60 );
• H30, interpolatory reduced order model with 30 displacement and 30
pressure degrees of freedom. Interpolation points: chosen on the imaginary
axis between 104 and 109.
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Summary

14 S. Chaturantabut and D.C. Sorensen

ure 1. The plots of corresponding POD bases are shown in Appendix D. In Figure 2,
the solutions for concentration from POD-DEIM reduced system (62)-(65), with
POD and DEIM of dimension 40, are shown with the corresponding ones from the
full-order system as well as the corresponding absolute error at the grid points. It
shows that POD-DEIM reduces more than 300 times in dimension and reduces the
computational time by factor of O(103) with O(10−3) error as shown in Table 1.
From Figure 3, the plot of the CPU time used in computing POD reduced system
clearly reflects the dependency on the dimension of the original full-order system.
Figure 3 and Table 1 show a significant improvement in computational time of the
POD-DEIM reduced system from both POD reduced system and full-order system.
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Figure 1. Singular values of the solution snapshots and the nonlinear snapshots.

Figure 2. Concentration plots of the injected fluid (from the left half) at time t=100 and t= 250 from
the full-order system of dimension 15000 and from the POD-DEIM reduced system with both POD and
DEIM having dimension 40 (fixed parameters).

6.2. Varying Péclet number: Pe ∈ [110, 120]

Consider the same numerical setup as for the previous case in Section 6.1 except
that we are now interested in the parameter Pe in the interval [110, 120]. The POD
basis used for approximating the solution space is constructed from 398 snapshots
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Conclusions: SVD-based reduction methods

POD: method of choice for NL model reduction

Chaturantabut, Sorensen, Nonlinear model reduction via discrete
empirical interpolation, SIAM J. Sci. Comp., 32: 2737-2764 (2010).

Balanced truncation:

has apriori computable error bound
Applicable to small systems
Bottleneck: solution of the Lyapunov equations

Reis, Heinkenschloß, Antoulas, Automatica, 47: 559-564 (2011).
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Conclusions: Krylov-based or interpolatory reduction methods

Passivity preserving model reduction
Antoulas, Sorensen: Systems and Control Letters (2005)
Ionutiu, Rommes, Antoulas: Passivity-Preserving Model Reduction
Using Dominant Spectral-Zero Interpolation, IEEE Trans. CAD
Integrated Circ. Syst., 27: 2250 - 2263 (2008).

Optimal H2 model reduction
Gugercin, Antoulas, Beattie: SIAM J. Matrix Anal. Appl. (2008)
Kellems, Roos, Xiao, Cox: Low-dimensional, morphologically
accurate models of subthreshold membrane potential, J. Comput.
Neuroscience, 27:161-176 (2009).

Interpolatory model reduction
A.C. Antoulas, C.A. Beattie, and S. Gugercin, Interpolatory model
reduction of large-scale systems, in Efficient modeling and control
of large-scale systems, Springer Verlag, pages 3-58 (2010).
C.A. Beattie and S. Gugercin, Interpolatory projection methods for
structure preserving model reduction, Syst. Cont. Lett., 58 (2009).
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(Some) Challenges in model reduction

Model reduction from data: Loewner approach

Mayo, Antoulas, A framework for the solution of the generalized
realization problem, LAA, 425: 634-662 (2007).
Lefteriu, Antoulas: A New Approach to Modeling Multiport Systems
from Frequency-Domain Data, IEEE Trans. CAD, 29: 14-27 (2010).

Systems depending on parameters

Antoulas, Ionita, Lefteriu, On two-variable interpolation, LAA (2011).

Sparsity preservation

Ionutiu, Model order reduction for multi-terminal systems with
application to circuit simulation, PhD Thesis 2011.

Non-linear systems (besides POD: Astolfi, Krener, Scherpen)

Domain decomposition - many inputs/outputs

MEMS and multi-physics problems (micro-fluidic bio-chips)

· · ·
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