DIMACS Security & Cryptography Crash Course – day 4 Internet Cryptography Tools, Part II: IP-Sec

Prof. Amir Herzberg

Computer Science Department, Bar Ilan University

http://amir.herzberg.name

© Amir Herzberg, 2003. Permission is granted for academic use without modification. For other use please contact author.

Sources

- Partial but readable coverage in Stalling's book, Cryptography and Network Security
 `Cryptography and Network Security`
- IP-Sec is defined in <u>Internet Engineering Task</u> Force (IETF) RFC Documents:
 - Architecture RFC 2401
 - Authentication Header (AH) RFC 2402
 - Encapsulating Security Payload (ESP) RFC 2406
 - IKE Internet Key Exchange RFC 2409

Outline

- Internet LayerSecurity
- IPsec Architecture
- The ESP Header
- The AH Header

- IPsec Modes of Operation
- IPsec and NAT

IKE

Internet Layer Security

Characteristics

- Connectionless, Unreliable
- IP addresses can be easily spoofed
- Routers and gateway might be sniffed

Requirements

- Data source authentication
- Integrity protection
- Replay protection
- Access control
- Confidentiality and privacy
- Clogging prevention (Availability)

IPsec - IP Security Protocol

Designed for IPv4 and IPv6

Mandatory to implement in IPv6

Security Services

- Confidentiality
- Integrity
- Data source authentication (source IP address??)
- Replay protection
- Access Control
- Can protect from...
- Syn attack
- Session hijacking

IPsec Protocols (<u>RFC2401</u>)

- Two separate layers
- IP-Sec Setup: IKE Internet Key Exchange
 - Compare to SSL Handshake protocol; application layer
 - Negotiate and establish `Security Association`
 - Run once per `IP-sec connection` not `real-time`
- IP-Sec sub-layer: traffic encapsulation & protection
 - Compare to SSL record protocol
 - Between IP and Transport layers
 - AH Authentication Header (no secrecy)
 - ESP Encapsulating Security Payload
 - Signal to IKE when detecting traffic that requires IP-sec but without established IP-sec connection

Adding Crypto-Security – Where? Internet Layer – Secure IP? Pros:

- Protection against DOS (clogging)
- Protect all applications, data
- Implemented by operating systems, Routers, ...

Cons:

- Hard to implement
- Rarely available at destination
 - Compatible algorithms
 - Key management

Standard TCP/IP Encapsulation

IP-Sec Implementation Options

- 1. Native: implement IP-sec as part of IP implementation in Operating System
 - E.g. in Windows 2000, XP
- BITS (Bump In The Stack) intercept IP traffic to/from network driver
 - Implementations on host w/o changing OS
 - E.g. Checkpoint's firewall implementation
- BITW (Bump In The Wire) intercept IP traffic by tunneling via security gateway
 - Single gateway can protect multiple hosts
 - Only `tunnel mode` of IP-Sec...

IPsec Modes of Operation

Tunnel Mode

- IPsec adds its own IP header
- IPsec encapsulation/decapsulation either by hosts or by gateways along the route
- Transport Mode
 - IPsec uses existing IP header, just changes protocol field to IP-Sec
 - End-to-end IPsec encapsulation by source host, decapsulation by destination host (receiver)

IPsec Tunnel Mode

- Can be applied by Security gateways
 - But also by hosts (at one or both ends)
 - Traffic may be IP-Sec protected already (nested)
- Entire IP packet is payload to IPSEC
- If provided by gateway, transparent to host
- If encryption used, hides hosts' IP address

IPsec Transport Mode

- Supplies end to end security services
- Modifies IP Header, Payload

Does not add another header!

 Requires IP-Sec support by both hosts: native or (at least) BITS (bump in the stack)

IP-Sec transforms the Net to a Secure Virtual Private Network

IP-Sec Sub-Layer (Record) Protocols

- AH Authentication Header (no confidentiality)
- ESP Encapsulating Secure Payload encryption (can be `null`), authentication
- Do not use encryption w/o authentication [Be96]
- Both support multiple security associations (SA)
 - SA=Security parameters: keys, algorithms, counters...
 - Multiple SA btw same peers different protocols/ports
 - Separate btw users to prevent chosen/known text attacks!
 - Simplifies key update just change SA
 - Identify SA by Security Parameter Index (SPI)
 - Each party selects its SPI for each security association
 - Send recipient's SPI in each packet (32 bit)

Both use sequence numbers for FIFO, no-replay

IPsec Replay Protection

- Sequence number zero when SA established
- Increment per outgoing packet
- Receiver identify replay by repeated seq #
 - To avoid dropping legal packets arriving out of order, the receiver maintains in the SA a sliding window (minimal size 32)
- Sequence number field is sent and included in the MAC computation
- Must not wrap during a single key lifetime
 Keys must be changed after 2³² packets

Authentication Header (AH)

- Inserted after the IP header
- AH protocol number (in IP header) is 51

IPsec Data Structures

- IPsec is using two data structures (define in the IPsec architecture RFC)
- SAD Security Association Data contains all the active Security Associations (SAs)
 - Incoming: access via SPI in packet
 - SPI in each direction selected by recipient (for efficiency)
 - Outgoing: access via `selectors` in packet
 - IP addresses, TCP/UDP ports and more
 - Built manually or by key management (IKE)
- SPD Security Policy Data contains user defined policy. The user defines which security services, at which level are offered to each IP datagram

The Security Policy Data (SPD)

Contains a list of rules: <select, action>

- Selectors: IP addresses (or range), TCP/UDP ports and more
- Actions:
 - Discard
 - Bypass IPsec
 - Apply IPsec, specifying either (or both):
 - Security services, protocol, and algorithms
 - Pointer to the entry of matching active SA in the SAD
- Packet-filtering (firewall) functionality

IPsec and NAT Incompatibilities

- AH MAC calculation includes IP header, changed by NAT → MAC verification fails
- UDP/TCP checksum: TCP and UDP checksum cover the IP addresses; NAT devices recalculate checksum, but can't after IP-Sec → receiving IP stack drop the packet
 - The problem doesn't occur in Tunnel mode, because only the outer IP header can be modified, while the TCP/UDP checksum is calculated over the inner (encrypted) IP header

UDP Encapsulation of IPsec

 UDP encapsulation of IPsec packets solves the Checksum problem

- The UDP ports are selected by the key management protocol
- Common solution to NAT interoperability

IP-Sec Setup: IKE (Internet Key Exchange)

- Two phases
- 1st phase: setup ISAKMP SA(Internet Security Association and Key Management Protocol)
 - Algorithms, keys, etc. to be used by IKE (not AH/ESP!)
 - Perfect forward secrecy (PFS): exposure of all keys does not expose past traffic [using Diffie-Hellman]
- 2nd phase: Generate IP-Sec SA
 - Protected using the ISAKMP SA
 - Many 2nd phases may share ISAKMP SA (1st phase)
 - E.g. one 1st phase for gateways, then many 2nd phase for each pair of hosts using these gateways
 - More efficient than 1st phase; PFS optional

Why Two IKE Phases?

- To fulfill the PFS requirement, every phase I exchange, performs a DH exchange
- In Phase II, DH execution is optional phase II and the IPsec keys can be derived from phase I exchange
- Phase II is more efficient; many two phase II exchanges can use the same set of phase I keys

Identification of Peer in IKE

- 1st phase identify using one of:
 - Manually pre-shared secret key
 - Exchanged public key certificates, and...
 - Public key signatures, or
 - Public key encryption of challenge (two variants)
- 2nd phase trusts identification in 1st phase
 Uses identities from SPD

Why derive many session keys?

- Why not establish & use one `master key`?
- Ensure reliable separation of sessions
- Restrict use of a single key
 - Make cryptoanalysis harder less available ciphertext
 - Restrict damage of *known key attack*: session key exposure does not expose past or future messages, session keys, or master key
 - Forward secrecy exposing all keys now does not expose past session keys
 - Proactive secrecy security recovered after all keys exposed

Conclusion

- IP Security protocol protects all Internet traffic
- Tunnel mode allows gateways to protect many hosts
- Transport mode allows efficient host-to-host security
 Possible interoperability problems w/ NAT (can tunnel over UDP)
- Support for authentication (AH/ESP) and encryption (ESP)
- Tunneling of IP sec protected traffic is possible
 E.g. to hide identities of source/destination hosts behind gateway
- Flexible policy for security
 - Block, allow (unprotected) or protect traffic
 - Defined on host/port basis not per user!
- Resiliency to clogging (in IKE via cookies)
- Requires no change in applications
- Hard to implement, interoperate

Extras

IKE DOS Protection

- Goal : protect against a DoS where the attacker perform IP spoofing. The attacker floods the victim with IKE requests, and forces him to perform expensive computations
- Solution : before performing expensive computations (e.g. DH), verify that the other party is indeed located in the IP address that appears in the header
- Note: requires the `main mode` of IKE (6 flows, cf. to `aggressive mode of 3 flows)

The Cookies Mechanism

- Any participant in the protocol sends a pseudo random string (Cookie) to the other party
- The other party return the cookie, proving it can receive from its IP address
- Compute cookie by hash (e.g. MD5) of IP addr, UDP ports, local secret value, date and hour
- Efficient generation, memory less verification
- Expensive calculations will be performed only after the other party cookie is received

Exercises

- An organization connects to the Internet from multiple offices, but concerned about:
 - Denial of service attacks from the Internet
 - Protect data on few key applications (mostly web) from unauthorized exposure
 - Efficiency and cost of solution
- IP-Sec uses connections. In what ways are these connections not reliable?
- Consider extranet btw 3 companies, using mostly web services. Present and compare SSL and IPSec designs.