
7/23/03 http://Amir.Herzberg.name 1

DIMACS Security & Cryptography
Crash Course – Day 1

Hashing

Prof. Amir Herzberg
Computer Science Department, Bar Ilan University
http://amir.herzberg.name

© Amir Herzberg, 2003. Permission is granted for academic use without
modification. For other use please contact author.

7/23/03 http://Amir.Herzberg.name 2

Outline

! Crypto-Hash properties
! Using and Collecting

Randomness
! Randomness of Hash
! Confidentiality of Hash
! One-way functions
! Random Oracle
! Integrity & Collision

Resistance

" Collision Resistant Hash
Functions (CRHF)

" Design of CRHF

" Merkle-Damgard
construction

" Standard hash functions

" Conclusions

7/23/03 http://Amir.Herzberg.name 3

Crypto-Hash Functions - `Wish List`

! Compression
Unbounded/Long input
Short (finite) output

! Confidentiality
Can�t find x from h(x)

! Collision-resistance
`Strong`: can�t find x,x� s.t. h(x)=h(x�)
`Weak`: given x, can�t find x�≠x s.t. h(x)=h(x�)

! Randomness: uniform output distribution

Pre-image,
e.g. {0,1}* Range,

e.g. {0,1}80

h(x)=h(x�)

Document
x

Document
x�

h()

7/23/03 http://Amir.Herzberg.name 4

Collecting Randomness
! Use available sources with

some randomness
Different `unpredictable,

unobservable` events
! Extract random seed (n bits)

In practice: usually using
`cryptographic hash function`

! Use PRG to generate
sufficient random bits

! Certainly Ok if hash was a
random function�

Crypto
Hash

noise

Measure `noise`

PRG
01001100011110…

Seed

7/23/03 http://Amir.Herzberg.name 5

Random Oracle Methodology
! Analyze as if hash h() is a random function

Of course an invalid assumption as h() is fixed!
Whenever h() is used, we call oracle for the

random function (black box containing random
function)

! Good for screening insecure solutions
! Security under random oracle implies

security to many (not all!!) attacks
! Not a complete proof of security, but a

good argument/evidence of security.

7/23/03 http://Amir.Herzberg.name 6

Confidentiality of Hash
! Hash has no secret key

Cannot use to send secret message
! But hash should hide input

Cannot learn input given output (`one way function`)
! f is OWF (One Way Function) if:

f is computed by some PPT algorithm,
yet for any PPT alg. A: PA(n)=Prob{f(A(f(x)))=f(x) : x∈∈∈∈ R{0,1}n}≈p0

! PPT: Probabilistic Polynomial Time algorithm
Time complexity < p(n) for some polynomial p()

! PA(n)≈p0:
Every polynomial p(n), exists some lmin s.t. if n>lmin and x∈∈∈∈ R{0,1}n

then PA(n)<1/p(n).
! Asymptotic definition; says nothing about any fixed input length
! Worse � maybe f exposes partial info on input?
! Most works use `random oracle` to simplify security analysis

7/23/03 http://Amir.Herzberg.name 7

Collision Resistance
! Simplified (Strong) Collision Resistance

Assumption: assume that it is hard
(infeasible) to find a collision, i.e. <x,x�>
such that x≠x� yet h(x)=h(x�).

! Natural definition, but problematic:
h is fixed
Adversary can simply output

a specific collision in it.
Possible fix: (public) key

! Holds for a random function
(oracle)

Pre-image
Range

x h(x)=
h(x�)

x�

7/23/03 http://Amir.Herzberg.name 8

Weak CRHF
! Weakly Collision Resistant Hash Function: it is

hard to find a collision with a specific (random)
x.

! A function h is a Weakly CRHF if:
for every length l≥≥≥≥n,
given x∈∈∈∈ R{0,1}l,
it is infeasible to find

x�≠x s.t. f(x�)=f(x).
! Property also called

2nd pre-image resistance.

Pre-image
Range

x h(x)=
h(x�)

x�

7/23/03 http://Amir.Herzberg.name 9

Applying Weakly CRHF

! Weakly Collision Resistant Hash Function: it is
hard to find a collision with a specific (random)
x.

! Uniformly distributed input (not chosen by
Adversary!)

! Alice sends message to Bob, and signs its hash
Bob knows that Alice sent the message

! Only if the message is uniformly distributed!
Can Bob prove Alice sent (signed) the message?

7/23/03 http://Amir.Herzberg.name 10

Weakly CRHF may be too weak...
! Sending signed agreement:

Alice reaches agreement with Bob
Alice signs hash of agreement
Bob can verify Alice signed the agreement

! But: agreement not uniformly distributed!
Maybe Bob/Alice chose it to have collision?

! Solutions:
Signer ensures contract is `randomized` (possibly use

hash with random public key)
! Or: keyless hash with `Simplified (Strong) Collision

Resistance Assumption`
Signer responsible for any properly signed version

7/23/03 http://Amir.Herzberg.name 11

Designing CRHF

! Problem: Variable Input Length (VIL)
Hard to design and test (by

cryptanalysis)
Idea: build VIL CRHF from FIL CRHF
FIL CRHF are also called compression

function: comp : {0,1}2n${0,1}n

comp
x∈∈∈∈ {0,1}n

y∈∈∈∈ {0,1}n

comp(x,y)∈∈∈∈ {0,1}n

7/23/03 http://Amir.Herzberg.name 12

� x[l]x[2]x[1]

Constructing VIL CRHF from FIL CRHF
! Idea: use iterative process, compressing block by block
! Let the input x be l blocks of n bits

Pad the last block if necessary
! Let y0=IV be some fixed/random n bits (IV=Initialization Value)
! For i=1,..l, let yi=c(x[i],yi-1)
! Output h(x)=yl+1

! Prefix attack: Pick prefix p and random IV=v. Let z=hv(p) with
IV=v. Then for any x holds: hz(x)=hv(p||x).

cIV c c h(x)=yl=c(x[l],yl-1)

7/23/03 http://Amir.Herzberg.name 13

� |x|x[l]x[2]x[1]

Merkle-Damgard FIL$VIL Hash
! Build h from compression function: c : {0,1}2n${0,1}n

! Let the input x be l blocks of n bits
Pad the last block if necessary
Add extra block, x[l+1]=|x|

! Let y0=IV be some fixed n bits (IV=Initialization Value)
! For i=1,..l+1, let yi=c(x[i],yi-1)
! Output h(x)=yl+1

cIV c c c h(x)=yl+1=c(|x|,yl)

Claim: given h(x)=h(x�),
for x≠≠≠≠x�, we can find z≠≠≠≠ z�
s.t. c(z)=c(z�).

7/23/03 http://Amir.Herzberg.name 14

Standard hash functions
! Several hash standards are widely-used standards

Allowing security by evidence of failed cryptanalysis
Many efficient, free/inexpensive, interoperable

implementations
All existing standards are for unkeyed hash functions:

! MD5 (MD = Message Digest)
! SHA-1 (SHA = Secure Hash Algorithm)
! RIPEMD

! Stated Goals:
Collision-Resistance: `strong CRHF` and `weak CRHF`
Confidentiality: one-way function

! All are very efficient, e.g. cf. to encryption
! All use Merkle-Damgard iterative construction +�

7/23/03 http://Amir.Herzberg.name 15

Conclusion
! Crypto-Hash functions are useful for

Providing short `digest` of long documents
Extracting randomness
Confidentiality: hiding pre-image (original document)
Integrity: detecting changes
Proving knowledge of pre-image

! Be careful in definition/assumption used
One-way property may expose some (of the) input
Random oracle analysis � simple argument of security
Prefer cryptanalysis-tolerant constructions

7/23/03 http://Amir.Herzberg.name 16

Extras…

7/23/03 http://Amir.Herzberg.name 17

Finding Collisions – Birthday Paradox
! Compute hashes of 2*2n/2 random values
! With probability > ½, there will be a collision
! Why? - `birthday paradox`(Proof omitted)

Intuition: probability of a collision to given x is roughly
1/2n; but we allow any collision

! Conclusion: for collision resistance we need
double the `effective key length`

! In practice: searching 264 values required one
month with 10M$ machine in 1994 [OW94]
Expected cost today: less than 100,000$

! $ Consider weaker notions

7/23/03 http://Amir.Herzberg.name 18

Security of MD Construction
! Theorem: if comp is collision-resistant, then

h is collision resistant.
! Proof: we use collision in h to find collision

in comp. Suppose h(x)=h(x�) for x≠x�.
Denote l=|x|; note x[i+1]=l. Hence

h(x)=comp(l|| yl)= comp(l�|| y�l�). Hence assume
l=l� and yl=y�l (or collision in comp).

Recursively for j=l to 1, we have yj=y�j, i.e.
comp(x[j]||yj-1)=comp(x�[j]||y�j-1).
Hence x[j]=x�[j] and yj-1=y�j-1. But x≠x� ! █

7/23/03 http://Amir.Herzberg.name 19

Doc1 Doc3Doc2 Doc4 Doc5

h(Doc1) h(Doc2) h(Doc3) h(Doc4) h(Doc5)

h(h(Doc1)|�|h(Doc5))

Alternative - Hash Trees
! To hash a long document or many docs�

Hash each document (or part)
Hash all hashes (possibly recursively)
Can use compression function(s) (with finite input)

! Less efficient than MD when validating all inputs
! Requires to keep state (logarithmic in document size)
! Advantages when validating only some inputs:

Efficiency: validate only what you need
Reuse: some recipients may not need all docs
Privacy: some docs may not be shared with all

7/23/03 http://Amir.Herzberg.name 20

Hash with multiple properties
! We saw multiple goals/definitions for

crypto-hash functions:
Confidentiality properties, e.g. OWHF
Randomness properties, e.g. t-resilient PR

hash
Collision resistance properties: weak

CRHF, t-resilient
! Goals:

Hash satisfying multiple goals
! To have standard, `general-purpose` crypto-

hash

7/23/03 http://Amir.Herzberg.name 21

h1

h2

x

h(x)=h2(h1(x)))

Cryptanalysis-tolerance: Cascade
! Construct h by composing candidates: h1, h2,�
! Cascade composition: h(x)= h1(h2(x)).
! Clearly fails for `very weak` h1, h2
! Example: h1(x)=0 % h(x)=h2(0)
! Assume h1, h2:{0,1}*${0,1}L are regular:

For every l>L, y,y�∈∈∈∈ {0,1}L, the number of
pre-images of length l of y and y� is (almost) equal

! Cascading of regular functions ensures
cryptanalysis-tolerance for confidentiality:
If one of h0, h1 is one-way function, then h is one-way

! But� any collision of h2 is a collision of h

7/23/03 http://Amir.Herzberg.name 22

Parallel Composition
! Parallel Composition: h(x)= h1(x) || h2(x)
! Claim: collision for h $ collisions for both h1 and h2

! Proof: suppose h(x)=h(x�), i.e. h1(x) || h2(x) = h1(x�) ||
h2(x�). Hence h1(x) = h1(x�), h2(x) = h2(x�). ■

! % If either h1 or h2 is a (weak / t-resilient) CRHF,
then h is a (weak / t-resilient) CRHF.

! But parallel composition is bad for confidentiality
x `more exposed`
E.g. if h1 not OWHF than h is not OWHF�

! We often require hash with multiple properties

7/23/03 http://Amir.Herzberg.name 23

`Hybrid` composition…
! Cascade h(x)=h1(h2(x)): easier to find collisions�
! Parallel h(x)=h1(x)||h2(x): easier to find pre-image
! What about cascading with input: h(x)= h1(x || h2(x)) ?

A pre-image of h() provides a pre-image of h1
Collision in h() implies collision in h1
Assuming only few collisions in h1, say h1(x||y)=h1(x�||y�) �

Requires y�=h2(x�), y=h2(x)

! This construction offers some confidentiality and
some collision-resistance properties�

! Used in `standard` hash functions MD5, SHA-1�

7/23/03 http://Amir.Herzberg.name 24

� |x|x[l]x[2]x[1]

Merkle-Damgard + Partial Regularity
! MD construction: Build h from compression function: c :

{0,1}2n${0,1}n

! Let the input x be l blocks of n bits
! Let y0=IV be some fixed n bits (IV=Initialization Value)
! Partial regularity: if IV is uniformly-distributed, then so is h(x)
! How? For i=1,..l+1, let yi= yi-1 + c(x[i],yi-1)
! Output h(x)=yl+1

cIV c c c h(x)=yl+1=c(|x|,yl)

Claim: given h(x)=h(x�),
for x≠≠≠≠x�, we can find z≠≠≠≠ z�
s.t. c(z)=c(z�).

7/23/03 http://Amir.Herzberg.name 25

MD5
! Developed by RSA Inc.
! Output is 128 bit

Collisions can be found with 264 time and storage
Believed feasible (with about 100,000$ equipment for 1

month)
! Collisions found in the compression function

But only in the chaining value � so not a collision for
MD5 (yet)

! Still widely used, but being `phased out`
! About twice faster than RIPE-MD, SHA-1
! Compression function: Cascade of four

128b+512b$128b compression functions

7/23/03 http://Amir.Herzberg.name 26

c1

x[i]

y[i] c2

x[i] is 16 words (32 bits each) $ 512b

y[i+1]

12
8

=
4

? ???
32

 b
its

c3 c4 dcba

D
C
B
A

D
C
B
A

Addition mod 232

MD5: Compressing block i

7/23/03 http://Amir.Herzberg.name 27

MD5 Compression Functions
! All four functions c1,�c4 have same

structure
! Break 128b `chaining value` Y[i] to four 32-

bit words: A, B, C, D
! Each function has 16 rounds r=1..16,�64
! Single round computation:

Ar+1=Dr, Cr+1=Br, Dr+1=Cr
Br+1=Br+<<s[r] (Ar+g(Br,Cr,Dr)+x[i][r]+T[i])
T[i]=int(232 abs(sin(i)))
<<s is circular left shift by s; s[r] is a fixed table

! No theory behind design, no analytical proof

7/23/03 http://Amir.Herzberg.name 28

SHA-1 (Secure Hash Algorithm)
! Developed by NIST, published as FIPS 180-1
! Output is 160 bit

New versions: 256b, 384b and 512b proposed
! Widely used; `closed` design process, criteria
! Very similar design to MD5

160b chaining block
Chaining value added (mod 232) to output of compression

m[i]

CV[i] CV[i+1]
160b 160b

512b

160b 160b 160b

7/23/03 http://Amir.Herzberg.name 29

RipeMD-160
! Developed by EU RICE

project
! Open design process,

criteria
! Variants: 128, 160, 256 or

320 bits
! RIPEMD-160 most

common
! Compression function:

Is RipeMD OWF, assuming
one/few blocks are OWF?

Same for collision-resistance

7/23/03 http://Amir.Herzberg.name 30

h0 h1

h0m h(m)||

m0

m1h1

Towards Cryptanalysis-tolerant Hash
! Goal: provably cryptanalysis-tolerant hash
! 1st idea: combine parallel and serial

compositions:

Collision-resistance: No
Select some m≠≠≠≠m�.
Select h0 s.t.:

h0(m)=h0(m�)
ho(h1(m))=h0(h1(m�))

Confidentiality: Ok for
regular functions
(cascade).

7/23/03 http://Amir.Herzberg.name 31

h1 h0

h0

h1

h2

m
E[h0,h1,h2]

||

g0,1

g1,2

h2

g2,0

The E Cryptanalysis-tolerant
Composition
! Goal: provably cryptanalysis-tolerant hash
! 2nd idea: combine three functions: E[h0, h1, h2]
• Confidentiality: Ok
• Collision-resistance: Ok
Why? Collision of E $
ho(h1(m))=h0(h1(m�)) $
Collision of either ho or h1
• Assuming h0, h1, h2 are
all regular functions
• Can we avoid this
assumption? … see paper

7/23/03 http://Amir.Herzberg.name 32

stone

h(paper)

Ladies first…

paper

You won!

Recall `paper, stone, scissors`

! Confidentiality
Bob can�t know what

Alice chose
! Collision-resistance

Alice can�t `change her
hand`

! Randomness
h(x) appears `random`
If h(x) is deterministic,

confidentiality

Bob Alice

7/23/03 http://Amir.Herzberg.name 33

Commitment Schemes

! Commitment ≈ Collision resistance + privacy
! Three functions: Commit, Decommit, Validate

Commit, Decommit have two inputs: message, random
Validate(m,Commit(m,r),Decommit(m,r))=True

! Security properties
Confidentiality: Commit(m,r) reveals nothing about m
Collision-resistance: infeasible to find m, m�, d, d�, c s.t.

Validate(m,c,d)=Validate(m�,c,d�)=True

! Unfortunately this is impossible�

Alice BobCommit(m,r)

7/23/03 http://Amir.Herzberg.name 34

Randomness Required for Collision Resistance
! Collision-resistance: infeasible to find m, m�, d, d�, c

s.t. Validate(m,c,d)=Validate(m�,c,d�)=True
! But: for any Commit function there exist collisions:

<m,r>, <m�,r�> s.t. c=Commit(m,r)=Commit(m�,r�)
! So maybe Alice knows such collision?

And then: Validate(m,c,d)=Validate(m�,c,d�)=True where
d=Decommit(m,r), d�=Decommit(m�,r�)

! Solutions:
Use keyed commit function with random (public) key
Or: ensure input to commitment is randomized
Recipient confirms proper randomization

! Still need random r for each new commitment!

7/23/03 http://Amir.Herzberg.name 35

Keyed Commitment Schemes
! Keyed functions: Commit, Decommit, Validate
! Commitk, Decommitk have inputs: key k, message,

random
! Validatek(m,Commitk(m,r),Decommitk(m,r))=True
! Confidentiality: Commitk(m,r) reveals nothing on m
! Collision-resistance: no adversary ADV, given

random k, can efficiently find m, m�, d, d�, c s.t.
Validatek(m,c,d)=Validatek(m�,c,d�)=True

! Recipient confirms k is random, not chosen by ADV!
! If recipient adds randomness, we can avoid key!

7/23/03 http://Amir.Herzberg.name 36

Interactive Commitment Schemes

! Receiver (Bob) selects random input rB

! Three functions: Commit, Decommit, Validate
Commit, Decommit have three inputs: message, rA , rB

Validate(rB,m,Commit(m,rA,rB),Decommit(m,rA,rB))=True

! Security properties
Confidentiality: Commit(m,rA,rB) reveals nothing about m
Collision-resistance: no adversary ADV, given random rB,

can efficiently find m,rA, m�, d� s.t.
Validatek(rB ,m�,Commitk(m, rA,rB),d�)=True

Alice BobCommit(m,rA ,rB)
rB

7/23/03 http://Amir.Herzberg.name 37

Stone

commit(Paper,rA,rB)

Paper,rA

You won!

Ladies first…
Please use rB

`Paper, stone, scissors` using Interactive
Commitment Scheme

Bob Alice
Decommit
is often
trivial

7/23/03 http://Amir.Herzberg.name 38

Commitment from Hashing
! `Standard` construction in practice:

Commit(m,rA,rB)=h(m||rA||rB)
Decommit(m,rA,rB)=rA

Validate(rB,m,c,d)=TRUE if c=Commit(m,d,rB)

! Justified by:
Random oracle analysis, or ??? (ongoing work)

! Other provable-secure constructions require weaker h
But are more complex, not used in practice
Only keyed versions
Much theory work, e.g. zero-knowledge proofs,�

7/23/03 http://Amir.Herzberg.name 39

Application: Secure Government Bid
! Goals:

Receive `sealed bids` until deadline
Open all bids, select the best after deadline

! Concerns:
Leakage of info about bids to other bidders
Changing of bid after deadline

! Solution:
Publish RFP with randomizer r
Bidders send h(bid, r, r�)
At deadline, government publishes all commitments to bids
Then participants publish bid and r�

