DIMACS Secunity \& Cryptography Crash Course - Day 1
 Hashing

Prof. Amir Herzberg

Computer Science Department, Bar Ilan University
http://amir.herzberg.name
© Amir Herzberg, 2003. Permission is granted for academic use without modification. For other use please contact author.

Outline

- Crypto-Hash properties
- Using and Collecting Randomness
- Randomness of Hash
- Confidentiality of Hash
- One-way functions
- Random Oracle
- Integrity \& Collision

Resistance

* Collision Resistant Hash Functions (CRHF)
* Design of CRHF
* Merkle-Damgard construction
* Standard hash functions
* Conclusions

\section*{Crypto-Hash Functions - `Wish List`}

- Compression
- Unbounded/Long input
- Short (finite) output
- Confidentiality
- Can't find x from $h(x)$
- Collision-resistance

- 'Strong': can't find x, x ' s.t. $h(x)=h(x$ ')
- 'Weak': given x, can't find $x^{\prime} \neq x$ s.t. $h(x)=h(x$ ')
- Randomness: uniform output distribution

Collecting Randomness

- Use available sources with some randomness
- Different `unpredictable, unobservable` events
- Extract random seed (n bits)
- In practice: usually using cryptographic hash function`
- Use PRG to generate sufficient random bits
- Certainly Ok if hash was a random function...

Random Oracle Methodology

- Analyze as if hash $h()$ is a random function
- Of course an invalid assumption as $h()$ is fixed!
- Whenever $h()$ is used, we call oracle for the random function (black box containing random function)
- Good for screening insecure solutions
- Security under random oracle implies security to many (not all!!) attacks
- Not a complete proof of security, but a good argument/evidence of security.

Confidentiality of Hash

- Hash has no secret key
- Cannot use to send secret message
- But hash should hide input
- Cannot learn input given output ('one way function`)
- f is OWF (One Way Function) if:
- f is computed by some PPT algorithm,
- yet for any PPT alg. $A: P_{A}(n)=\operatorname{Prob}\left\{f(A(f(x)))=f(x): x \epsilon_{R}\{0,1\}^{n}\right\} \approx_{p} 0$
- PPT: Probabilistic Polynomial Time algorithm
- Time complexity $<p(n)$ for some polynomial p ()
- $P_{A}(n) \approx_{p} 0$:
- Every polynomial $p(n)$, exists some $I_{\text {min }}$ s.t. if $n>I_{\text {min }}$ and $x \in \epsilon_{R}\{0,1\}^{n}$ then $P_{A}(n)<1 / p(n)$.
- Asymptotic definition; says nothing about any fixed input length
- Worse - maybe f exposes partial info on input?
- Most works use `random oracle` to simplify security analysis

Collision Resistance

- Simplified (Strong) Collision Resistance Assumption: assume that it is hard (infeasible) to find a collision, i.e. $\langle x, x \gg$ such that $x \neq x^{\prime}$ yet $h(x)=h\left(x^{\prime}\right)$.
- Natural definition, but problematic:
- h is fixed
- Adversary can simply output a specific collision in it.
- Possible fix: (public) key
- Holds for a random function (oracle)

Weak CRHF

- Weakly Collision Resistant Hash Function: it is hard to find a collision with a specific (random)
\underline{x}.
- A function h is a Weakly CRHF if:
- for every length $l \geq n$,
- given $x \epsilon_{R}\{0,1\}^{l}$,
\square it is infeasible to find $x^{\prime} \neq x$ s.t. $f\left(x^{\prime}\right)=f(x)$.
- Property also called

2nd pre-image resistanice.

Applying Weakly CRHF

- Weakly Collision Resistant Hash Function: it is hard to find a collision with a specific (random) \underline{x}.
- Uniformly distributed input (not chosen by Adversary!)
- Alice sends message to Bob, and signs its hash
- Bob knows that Alice sent the message
- Only if the message is uniformly distributed!
- Can Bob prove Alice sent (signed) the message?

Weakly CRHF may be too weak..

- Sending signed agreement:
- Alice reaches agreement with Bob
- Alice signs hash of agreement
- Bob can verify Alice signed the agreement
- But: agreement not uniformly distributed!
- Maybe Bob/Alice chose it to have collision?
- Solutions:
- Signer ensures contract is `randomized` (possibly use hash with random public key)
- Or: keyless hash with `Simplified (Strong) Collision Resistance Assumption`
- Signer responsible for any properly signed version

Designing CRHF

- Problem: Variable Input Length (VIL)
- Hard to design and test (by cryptanalysis)
- Idea: build VIL CRHF from FIL CRHF
- FIL CRHF are also called compression function: comp : $\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$

Constructing VIL CRHF from FIL CRHF

- Idea: use iterative process, compressing block by block
- Let the input x be l blocks of n bits
- Pad the last block if necessary
- Let $y_{0}=I V$ be some fixed/random n bits (IV=Initialization Value)
- For $i=1, . . l$, let $y_{i}=c\left(x[i], y_{i-1}\right)$
- Output $h(x)=y_{l+1}$
- Prefix attack: Pick prefix p and random $I V=v$. Let $z=h_{v}(p)$ with $I V=v$. Then for any x holds: $h_{z}(x)=h_{v}(p \| x)$.

Medkle-Damgard FIL \rightarrow VIL Hash

- Build h from compression function: $c:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$
- Let the input x be l blocks of n bits
- Pad the last block if necessary
- Add extra block, $x[l+1]=|x|$
- Let $y_{0}=I V$ be some fixed n bits (IV=Initialization Value)
- For $i=1, . . l+1$, let $y_{i}=c\left(x[i], y_{i-1}\right)$
- Output $h(x)=y_{l+1}$

Claim: given $h(x)=h\left(x^{\prime}\right)$,
for $x \neq x$, we can find $z \neq z$,
s.t. $c(z)=c\left(z^{\prime}\right)$.

Standard hash functions

- Several hash standards are widely-used standards
- Allowing security by evidence of failed cryptanalysis
- Many efficient, free/inexpensive, interoperable implementations
- All existing standards are for unkeyed hash functions:
- MD5 (MD = Message Digest)
- SHA-1 (SHA = Secure Hash Algorithm)
- RIPEMD
- Stated Goals:
- Collision-Resistance: `strong CRHF` and `weak CRHF`
- Confidentiality: one-way function
- All are very efficient, e.g. cf. to encryption
- All use Merkle-Damgard iterative construction + ...

Conclusion

- Crypto-Hash functions are useful for
- Providing short `digest` of long documents
- Extracting randomness
- Confidentiality: hiding pre-image (original document)
- Integrity: detecting changes
- Proving knowledge of pre-image
- Be careful in definition/assumption used
- One-way property may expose some (of the) input
- Random oracle analysis - simple argument of security
- Prefer cryptanalysis-tolerant constructions

Extras...

Finding Collisions - Birthday Paradox

- Compute hashes of $2 * 2^{n / 2}$ random values
- With probability > $1 / 2$, there will be a collision
- Why? - `birthday paradox`(Proof omitted)
- Intuition: probability of a collision to given x is roughly $1 / 2^{n}$; but we allow any collision
- Conclusion: for collision resistance we need double the `effective key length`
- In practice: searching 2^{64} values required one month with 10M\$ machine in 1994 [OW94]
- Expected cost today: less than $100,000 \$$
- \rightarrow Consider weaker notions

Secunity of MD Construction

- Theorem: if comp is collision-resistant, then h is collision resistant.
- Proof: we use collision in h to find collision in comp. Suppose $h(x)=h(x)$ for $x \neq x$ '.
- Denote $l=|x|$; note $x[i+1]=l$. Hence $h(x)=\operatorname{comp}\left(l \| y_{l}\right)=\operatorname{comp}\left(l{ }^{\prime}| | y_{l}^{\prime}{ }_{l},\right)$. Hence assume $l=l$ ' and $y_{l}=y_{l}^{\prime}$ (or collision in comp).
- Recursively for $j=l$ to l, we have $y_{j}=y_{j}^{\prime}$, i.e. $\operatorname{comp}\left(x[j]\left|\mid y_{j-1}\right)=\operatorname{comp}\left(x^{\prime}[j] \| y_{j-1}^{\prime}\right)\right.$. Hence $x[j]=x x^{\prime}[j]$ and $y_{j-1}=y_{j-1}^{\prime}$. But $x \neq x$!

Altemative - Hash Trees

- To hash a long document or many docs...
- Hash each document (or part)
- Hash all hashes (possibly recursively)
- Can use compression function(s) (with finite input)
- Less efficient than MD when validating all inputs
- Requires to keep state (logarithmic in document size)
- Advantages when validating only some inputs:
- Efficiency: validate only what you need
- Reuse: some recipients may not need all docs
- Privacy: some docs may not be shared with all

Hash with multiple properties

- We saw multiple goals/definitions for crypto-hash functions:
- Confidentiality properties, e.g. OWHF
- Randomness properties, e.g. t-resilient PR hash
- Collision resistance properties: weak CRHF, t-resilient
- Goals:
- Hash satisfying multiple goals
- To have standard, 'general-purpose' cryptohash

Cryptanalysis-tolerance: Cascade

- Construct h by composing candidates: h_{1}, h_{2}, \ldots
- Cascade composition: $h(x)=h_{1}\left(h_{2}(x)\right)$.
- Clearly fails for `very weak` h_{1}, h_{2}
- Example: $h_{l}(x)=0 \rightarrow h(x)=h_{2}(0)$
- Assume $h_{1}, h_{2}:\{0,1\}^{*} \rightarrow\{0,1\}^{L}$ are regular:

- For every $l>L, y, y^{\prime} \in\{0, l\}^{L}$, the number of pre-images of length l of y and y^{\prime} is (almost) equal
- Cascading of regular functions ensures cryptanalysis-tolerance for confidentiality:
- If one of h_{0}, h_{1} is one-way function, then h is one-way
- But... any collision of h_{2} is a collision of h

Parallel Composition

- Parallel Composition: $h(x)=h_{1}(x) \| h_{2}(x)$
- Claim: collision for $h \rightarrow$ collisions for both h_{1} and h_{2}
- Proof: suppose $h(x)=h\left(x^{\prime}\right)$, i.e. $h_{l}(x)\left\|h_{2}(x)=h_{l}\left(x^{\prime}\right)\right\|$ $h_{2}\left(x^{\prime}\right)$. Hence $h_{1}(x)=h_{1}\left(x^{\prime}\right), h_{2}(x)=h_{2}\left(x^{\prime}\right)$. ■
$\square \rightarrow$ If either h_{1} or h_{2} is a (weak / t-resilient) CRHF, then h is a (weak / t-resilient) CRHF.
- But parallel composition is bad for confidentiality
- x `more exposed`
- E.g. if h_{1} not OWHF than h is not OWHF...
- We often require hash with multiple properties

`Hybrid` composition. . .

- Cascade $h(x)=h_{1}\left(h_{2}(x)\right)$: easier to find collisions...
- Parallel $h(x)=h_{1}(x)| | h_{2}(x)$: easier to find pre-image
- What about cascading with input: $h(x)=h_{1}\left(x \| h_{2}(x)\right)$?
- A pre-image of $h()$ provides a pre-image of h_{l}
- Collision in $h()$ implies collision in h_{1}
- Assuming only few collisions in h_{1}, say $h_{l}(x| | y)=h_{1}\left(x^{\prime}| | y^{\prime}\right)$ Requires $y^{\prime}=h_{2}\left(x^{\prime}\right), y=h_{2}(x)$
- This construction offers some confidentiality and some collision-resistance properties...
- Used in `standard` hash functions MD5, SHA-1...

Merkle-Damgard + Partial Regularity

- MD construction: Build h from compression function: c : $\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$
- Let the input x be l blocks of n bits
- Let $y_{0}=I V$ be some fixed n bits (IV=Initialization Value)
- Partial regularity: if IV is uniformly-distributed, then so is $h(x)$
- How? For $i=1, . . l+1$, let $y_{i}=y_{i-1}+c\left(x[i], y_{i-1}\right)$
- Output $h(x)=y_{l+1}$

Claim: given $h(x)=h\left(x^{\prime}\right)$,
for $x \neq x^{\prime}$, we can find $z \neq z^{\prime}$

MD5

- Developed by RSA Inc.
- Output is 128 bit
- Collisions can be found with 2^{64} time and storage
- Believed feasible (with about 100,000\$ equipment for 1 month)
- Collisions found in the compression function
- But only in the chaining value - so not a collision for MD5 (yet)
- Still widely used, but being `phased out`
- About twice faster than RIPE-MD, SHA-1
- Compression function: Cascade of four $128 b+512 b \rightarrow 128 b$ compression functions

MD5: Compressing block i

MD5 Compression Functions

- All four functions $c_{1}, \ldots c_{4}$ have same structure
- Break 128b `chaining value` Y[i] to four 32bit words: A, B, C, D
- Each function has 16 rounds $r=1 . .16, \ldots 64$
- Single round computation:
- $A_{r+1}=D_{r} C_{r+1}=B_{r} D_{r+1}=C_{r}$
- $B_{r+1}=B_{r}+\ll_{s[l]}\left(A_{r}+g\left(B_{r} C_{r} D_{r}\right)+x[i][r]+T[i]\right)$
- T[i]=int($\left.2^{32} \operatorname{abs}(\sin (i))\right)$
$\square \ll_{s}$ is circular left shift by s; $s[r]$ is a fixed table
- No theory behind design, no analytical proof

SHA-1 (Secure Hash Algonithm)

- Developed by NIST, published as FIPS 180-1
- Output is 160 bit
- New versions: 256b, 384b and 512b proposed
- Widely used; `closed` design process, criteria
- Very similar design to MD5
- 160b chaining block
- Chaining value added $\left(\bmod 2^{32}\right)$ to output of compression

RipeMD-160

- Developed by EU RICE project
- Open design process, criteria
- Variants: 128, 160, 256 or 320 bits
- RIPEMD-160 most common
- Compression function:
- Is RipeMD OWF, assuming one/few blocks are OWF?
- Same for collision-resistance

Towards Cryptanalysis-tolerant Hash

- Goal: provably cryptanalysis-tolerant hash
- $1^{\text {st }}$ idea: combine parallel and serial compositions:
Confidentiality: Ok for regular functions
(cascade).

Collision-resistance: No
Select some $m \neq m$.
Select h_{0} s.t.:
$h_{0}(m)=h_{0}\left(m^{\prime}\right)$
$h_{o}\left(h_{l}(m)\right)=h_{0}\left(h_{l}\left(m^{\prime}\right)\right)$

The E Cryptanalysis-tolerant Composition

- Goal: provably cryptanalysis-tolerant hash
- $2^{\text {nd }}$ idea: combine three functions: $E\left[h_{\theta,} h_{l}, h_{2}\right]$
- Confidentiality: Ok
- Collision-resistance: Ok Why? Collision of $E \rightarrow$ $h_{o}\left(h_{l}(m)\right)=h_{0}\left(h_{l}\left(m^{\prime}\right)\right) \rightarrow$ Collision of either h_{o} or h_{l} - Assuming h_{0}, h_{1}, h_{2} are all regular functions
- Can we avoid this assumption? ... see paper

\section*{Recall `paper, stone, scissors`}

- Confidentiality
- Bob can't know what Ladies firt... Alice chose
- Collision-resistance \square Alice
hand
- Randomness

(x) Bob
$\square h(x)$ appears 'random`
${ }_{\square}$ If $h(x)$ is deterministic, ${ }^{7 z z a x}$ confidentiality

Commitment Schemes

- Commitment \approx Collision resistance + privacy
- Three functions: Commit, Decommit, Validate
- Commit, Decommit have two inputs: message, random
- Validate $(m, \operatorname{Commit}(m, r), \operatorname{Decommit}(m, r))=$ True
- Security properties
- Confidentiality: Commit(m, r) reveals nothing about m
- Collision-resistance: infeasible to find $m, m^{\prime}, d, d^{\prime}, c$ s.t.
$\operatorname{Validate}(m, c, d)=\operatorname{Validate}\left(m^{\prime}, c, d^{\prime}\right)=$ True
- Unfortunately this is impossible...

Randomness Required for Collision Resistance

- Collision-resistance: infeasible to find $m, m^{\prime}, d, d^{\prime}, c$
s.t. Validate $(m, c, d)=\operatorname{Validate}\left(m^{\prime}, c, d^{\prime}\right)=$ True
- But: for any Commit function there exist collisions:
$<m, r>,<m^{\prime}, r \prime>$ s.t. $c=\operatorname{Commit}(m, r)=\operatorname{Commit}(m, r \prime)$
- So maybe Alice knows such collision?
- And then: Validate $(m, c, d)=\operatorname{Validate}\left(m^{\prime}, c, d^{\prime}\right)=$ True where $d=\operatorname{Decommit}(m, r), d^{\prime}=\operatorname{Decommit}\left(m^{\prime}, r\right.$ ')
- Solutions:
- Use keyed commit function with random (public) key
- Or: ensure input to commitment is randomized
- Recipient confirms proper randomization
- Still need random r for each new commitment!

Keyed Commitment Schemes

- Keyed functions: Commit, Decommit, Validate
- Commit $_{k}$, Decommit ${ }_{k}$ have inputs: key k, message, random
- Validate $_{k}\left(m, \operatorname{Commit}_{k}(m, r)\right.$, Decommit $\left._{k}(m, r)\right)=$ True
- Confidentiality: Commit $_{k}(m, r)$ reveals nothing on m
- Collision-resistance: no adversary ADV, given random k, can efficiently find $m, m^{\prime}, d, d^{\prime}, c$ s.t.
Validate $_{k}(m, c, d)=$ Validate $_{k}\left(m^{\prime}, c, d^{\prime}\right)=$ True $^{\prime}$
- Recipient confirms k is random, not chosen by ADV!
- If recipient adds randomness, we can avoid key!

Interactive Commitment Schemes

- Receiver (Bob) selects random input r_{B}
- Three functions: Commit, Decommit, Validate
- Commit, Decommit have three inputs: message, r_{A}, r_{B}
- Validate $\left(r_{B}, m, \operatorname{Commit}\left(m, r_{A}, r_{B}\right), \operatorname{Decommit}\left(m, r_{A}, r_{B}\right)\right)=\operatorname{True}$
- Security properties
- Confidentiality: Commit $\left(m, r_{A}, r_{B}\right)$ reveals nothing about m
- Collision-resistance: no adversary ADV, given random r_{B}, can efficiently find m, r_{d}, m^{\prime}, d 's.t.
Validate $_{k}\left(r_{B}, m^{\prime}\right.$, Commit $\left._{k}\left(m, r_{A}, r_{B}\right), d^{\prime}\right)=$ True

`Paper, stone, scissors` using Interactive Commitment Scheme

Commitment from Hashing

- `Standard` construction in practice:
- Commit $\left(m, r_{A}, r_{B}\right)=h\left(m\left\|r_{A}\right\| r_{B}\right)$
- $\operatorname{Decommit}\left(m, r_{A}, r_{B}\right)=r_{A}$
- Validate $\left(r_{B}, m, c, d\right)=\operatorname{TRUE}$ if $c=\operatorname{Commit}\left(m, d, r_{B}\right)$
- Justified by:
- Random oracle analysis, or ??? (ongoing work)
- Other provable-secure constructions require weaker h
- But are more complex, not used in practice
- Only keyed versions
- Much theory work, e.g. zero-knowledge proofs,...

Application: Secure Govemment Bid

- Goals:
- Receive `sealed bids` until deadline
- Open all bids, select the best after deadline
- Concerns:
- Leakage of info about bids to other bidders
- Changing of bid after deadline
- Solution:
- Publish RFP with randomizer r
- Bidders send $h\left(b i d, r, r^{\prime}\right)$
- At deadline, government publishes all commitments to bids
- Then participants publish bid and r,

