Homomorphic Secret Sharing

Elette Boyle Niv Gilboa Yuval Ishai
IDC BGU Technion
& UCLA

1970

1980

1990

2000

PKE
Signatures ZK OT

Secure Computation

Factoring

Discrete Log

1970

PKE

Signatures ZK OT | Factoring | Discrete Log

Secure Computation

e Minimize communication?
* Minimize interaction?
* Minimize local computation?

PKE

Signatures ZK OT | Factoring | Discrete Log

Secure Computation

|BE ks ABE Bilinear Maps

FHE _
Lattices

Fully Homomorphic Encryption

[RAD79,Gen09]
P(x)
Function
sk Dec 00 Privacy

°0
[P(x)] O

Compactness:

EvaI |Dec|<< |P| \

[X]

sk Enc

State of the FHE

* The good
— Huge impact on the field
— Solid foundations [BV11,..]
— Major progress on efficiency [BGV12,HS15,DM15,CGGI16]

iven a generic group G:
* Unconditionally secure PKE and even secure

EG
computation
¢ The nOt SO gOOd * Not known to be helpful for FHE

— Narrow set of assumptions and underlying structures,
all related to lattices

* Susceptible to lattice reduction attacks and other attacks

— Concrete efficiency still leaves much to be desired

THERE(HAS GOT,TO/BEA

IN SOME SENSE [[{anid "]\

Recall: FHE

sk

P(x)

Dec

[P(x)]

Eval

[X]

Enc

“1/2 FHE”

|

computationally
hides x

P(x)
sk Dec
[
[P(x)], I [P(x)],
I
Eval I Eval
1
T [X]1 : [X]z T
pk Enc

computationally
hides x

|

(2-Party) Homomorphic Secret Sharing

P(x)

S

[P(x)];

[P(x)],

I
I
I
P Eval I Eval P
0
I
I

[X] 1 [X]Z

Share

(2-Party) Homomorphic Secret Sharing

P(x)

+

[P(x)];

[P(x)],

I
I
I
P Eval I Eval P
0
I
I

[X] 1 [X]Z

Share

HSS vs. FHE

 HSS is generally weaker...
— 2 (or more) shares vs. single ciphertext
— Non-collusion assumption

e ... but has some advantages
— Ultimate output compactness
— Efficient and public decoding
— Can aggregate many outputs

Applications

Delegating Computations to the Cloud

FHE HSS

Applications

Delegating Computations to the Cloud

FHE HSS

Bonus features:

* Multiple clients
e Useful also for small P

sk

Applications

Communication complexity of securely computing C?

(a,b)

&<c 8

C(a,b)

e Classically: > |C| [Yao86,GMWS87,BGWS8S,CCD8S, ..]
... even for restricted classes, such as formulas

e Using FHE: ~ |input|+|output]|

Applications

Succinct Secure Computation

FHE HSS
sk a [a] > b a . b
g : [Cy(a)] g 5 [(a,b)], [(a,b)], g
C(a,b) 1Eva| Evall
Bonus features: [C(a,b)], [C(a,b)],

* Beats FHE for long outputs

» Useful for generating correlations
C(a,b)

HSS for Circuits from LWE via FHE

* From multi-key FHE [LTV12,CM15,MW16,DHRW16]

— “Additive-spooky” encryption
[Dodis-Halevi-Rothblum-Wichs16]

* From threshold FHE [AJLTVW12,BGI15,DHRW16]

-

_

~

HSS without FHE?

J

° 0

O
20t century
assumptions?

Coming Up

* HSS for “simple” functions from OWF
e HSS for branching programs from DDH

* Many open questions

Low-End HSS
from OWF

Function Secret Sharing [BGI15]

* Reverse roles of function/program and input
* Share size can grow with program size

P(x)

_©

[P(x)],

[P(x)],

Eval X

X Eval

[P, | [P1,

Share

Function Secret Sharing [BGI15]

* Reverse roles of function/program and input
* Share size can grow with program size

* Very efficient constructions for “simple” classes from
one-way functions [Gl14,BGI15,BGI16]
- Point functions
- Intervals
- Decision trees

e Applications to privacy-preserving data access
- Reading (e.g., PIR [CGKS95,CG97], “Splinter” [WYGVZ17])
- Writing (e.g., private storage [0S98], “Riposte” [CBM15],
“PULSAR” [DARPA-Brandeis])

Distributed Point Functions

e Point function fa,B:{O,l}”éG

— fopla)=P
— £, p(x)=0 for xza

* DPF = FSS for class of point functions
— Simple solution: share truth-table of f,

— Goal: poly(n) share size
* Implies OWF

— Super-poly DPF implicit in PIR protocols [CGKS95,CG97]

Applications: Reading

* Keyword search [CGN96,FIPR05,0S05,HLOS, ...]

= -

\1 f
y=®; ,(x) y,=®, f,(x)
[Client J o

0
1-bit answers! A
No data structures, no error

Works well on streaming data

Applications: Reading

* Keyword search with payloads

= . f X = . D :
yl @I pl 1(|) fxllz{O,l}”QZZ y2 G_)| p| fZ(XI)

o

ol

0
Get payload of
Y19V, keyword x

Applications: Reading

* Generalized keyword search

ylzzi f1(x)

A

o

[Client

J

Y1tY,

fy
Vz=zi fa(x))

°Q
Q
How many x;
satisfy f(x)=1?

Applications: Reading

* Generalized keyword search with payloads?

X= {(Xlipl)""l(XNle)}

\fl f
y1=zi E(pi)' fl(xi) y2=zi E(pi)'fz(xi)
[Client }o 00
Return (some)
Yitys p; with f(x.)=1

Applications: Writing

* PIR-writing [0S98,...] (“private information storage”)

L Client J 00

"
X1 & X 1Df (i)

Applications: Writing

* Secure aggregahon Subscr|ber2

IIII Subscriber 1

Q; @, a3 Oy A5 O Q7 Qg Og Qg

soad
-',« ;“A\ OO
Rl O a = “msnbc.com”

X, =1

Applications: Writing

* Secure aggregation

oy @, a3 Oy A5 Qg O 0 Og o‘10

w ¢ f/'

fy 1:{0,1}"2Z,

- Client doesn’t need to know
which items are being tracked

- Server work proportional to
number of items being tracked

a = “penisland.com”
X, =1

Applications: Writing

* Large scale MPC over small domains

Applications: Writing

* Anonymous messaging [CBM15]

:

N 7
Client Jo
[Q0
Anonymously
post m

Applications: Writing

* Anonymous messaging [CBM15]

m’ m m’”’
X

fl f2
Anonymously
post m”’
(@) N | W
Client Cliemi .
Q
Client Anonymomljsly
Client post m
y,

PRG-based DPF

* Let <x> denote additive (XOR) secret sharing

— <X>=(X4,X,) S.t. X{-X,=X

* Exploit two simple types of homomorphism
— Additive: <x>, <y> = <x+y> by local addition

— Weak expansion: <x> = <X> by locally applying PRG
o x=0" > X=0%\
 x=random 2 X = pseudo-random

PRG-based DPF

share, share,

Shares define two correlated “GGM-like” trees

PRG-based DPF

share, share,

Invariant for Eval:

For each node v on evaluation path we have <5>|

PRG-based DPF

share, share,

Invariant for Eval:

For each node v on evaluation path we have <5>|
* von special path: S is pseudorandom, b=1
e v off special path: S=0, b=0

PRG-based DPF

share, share,

Invariant for Eval:

For each node v on evaluation path we have <5>|
* von special path: S is pseudorandom, b=1
e v off special path: S=0, b=0

Gadget: Conditional Correction

R,E{0,1}* <R> R,=R,®R
b,£{0,1} b,=b,®b

AE{0,1}*

v v

R,®b;"A <R®b-A> R,®b,A

PRG-based DPF

share, ‘ share,

Correct to ,<0>

Concrete Efficiency of DPF

e Share size = nA, for PRG:{0,1}*=>{0,1}2*+1)
— Slightly better for binary output

 Concrete cost of Eval = n x PRG, Gen = 2 x Eval
— Evaluating on the entire domain [N] = N/A x PRG (N/64 x AES)

e Example: 2-server PIR on 2%° records of length d

— Communication: 2578 bits to each server, d bits in return
— Computation: dominated by reading + XORing all records

Extensions

m-party DPF from PRG [BGI15]

— Near-quadratic improvement over naive solution
... with 2™ overhead

FSS for intervals, decision trees (leaking topology),
d-dimensional intervals [BGI16]

Barrier (?): FSS for class F containing decryption =»
Succinct 2PC for F from OT (w/reusable preprocessing)
— Meaningful even for F=AC°

— May lead to positive results!

Open Problems: FSS from OWF

3-party DPF

— 0(NY/2) key size from OWF?

Limits of 2-party FSS from OWF

— FSS for conjunctions / partial match?

— Stronger barriers

Power of information-theoretic (m,t)-FSS
— Even 2-party FSS with non-additive output
Efficiency of 2-party DPF

— Beat n'A key size?

— Amortizing cost of multi-point DPF?

HSS for
Branching Programs
from DDH

Recall: Homomorphic Secret Sharing

= P()

* Security: x'hides x

e Correctness:
Eval,(x!) + Eval,(x?) = P(x)

= P()

* Security: x'hides x

e O-Correctness: Except with prob. & (over Share),
Eval,(x!) + Eval,(x?) = P(x)

Main Theorem

e 2-party 6-HSS for branching programs
under DDH
— Share: runtime (& share size) = |x|-poly(A)

— Eval: runtime = poly(A,|P|,1/6)
for error probability 6

Living in a log-space world

Multiplication of n n-bit numbers
Streaming algorithms

Min L,-distance from list of length-n vectors

Many numerical / statistical calculations

Finite automata

Undirected graph connectivity
FHE Decryption

The HSS Construction

RMS Programs

Restricted-Multiplication Straight-line programes:
* Vv, <X Load an input into memory.

* v; < vj+v, Add values in memory.

¢ v, & V,*x, Multiply value in memory by an input.

* QOutput v, (mod m)

We will support homomorphic evaluation of RMS programs
over Z s.t. all intermediate values are “small” (e.g., {0,1})

Captures branching programs and log-space computations
(More generally: ReachFewl)

RMS Captures Branching Programs

Program Input: X; X, X3 X;... X,

/0> Program Output:
0)

To evaluate as RMS: Memory variable for each node (whether it’s on red path)

x.=1 ® v,=(1-x) v; + (X3) v; + (1-xy) v,
Vi % ' -
+5 Computable via RMS

Vi@

3 Ways to Share a Number

Let G be a DDH group of size q with generator g
3 levels of encoding Z, elements

—[u] : (g%, g')EGXG “encryption”
— <> 1 (Vy,V,) EZ X Z, s.t. vy=v,+v additive
—{w} : (w,w,) EGxGs.t.w,=w,g¥ multiplicative
Each level is additively homomorphic

—<v> <V>=p<v+v'> {wh{w' = {w+w’}

Natural pairing: pair([u],<v>) = {uv}

— ((8")"vy,(8%)"v,)=(g"*-g",8"*)

Toy Version

Let’s pretend gXis a secure encryption of x

Emulating an RMS program - first attempt: [ul=(g",8")
<v>=(v,+v,V,)

* Share: for each input x;
wi=(w, g™, w,)

— Encrypt as [x]

— Additively secret-share as <x,>

e Eval: //maintain the invariant: V, = <v,> N
— v, & XV < <X;> Need Convert : {w} = <w>
— v € vy V€ VA, [ViE vty Solved by discrete log...
?
— Output v, (mod m): Output V, +(r,r) (mod m) U)

— v, € xv 0 W€ pair([x V) /1 Wi={w} for w=x,-v,

Share Conversion

W
Group G | | {_L\l
g0 gl gz;zl
Group G | | l
g gt g

Goal: Locally convert multiplicative sharing of w
to additive sharing of w

Share Conversion

L I
oo ® o-f_)_% ® o
_':' Convert (g?):
Sis a O-sparse 8" 8) .
“random’” set on G | * Return distance dist,
from g® to S.
fg S=.Ehj Gleql):(h) =O} * Return dist, =0 if
or suitable ¢ distance>(1/0)-log(1/0)
o o @ Ql - o } o
‘ Y
g*?

Goal: Convert multiplicative sharing of w
to additive sharing of w

Conversion Error

—0—@ ® —4 .
8
W g
. I \ 1 N
Las Vegas version | _h,;; S
' ' | o
g . O
P O
- | i
! \

Bad cases:
JecBad Zone error™~ ow

Aec error~ O

Error probability depends on w

Toy Version

Let’s pretend gXis a secure encryption of x

Emulating an RMS program: [ul=(g",8")
<v>=(v,+v,V,)

* Share: for each input x;
wi=(wy g™, w,)

— Encrypt as [x]
— Additively secret-share as <x,>

* Eval: //maintain the invariant: V, = <v;>

v <X Ve

© Vv vy VS VY, /] V= <vi+v, >
* v, & xev 0 W, € pair([x],V); vV, <Convert(W)
* Output v, (mod m): Output V. mod m

From Toy Version to Real Version

Pick secret key ceZ, for ElGamal encryption
Encrypt each input x;as [r], [cr+x] (secret-key EIGamal)
Invariant: Each memory value v; shared as <v;>, <cv;>

To multiply x,v;: pair, subtract and get {x,v;}
— Use conversion to get <xv;>
— Problem: Need also <c-x;v;> to maintain invariant
— Solution? Share c-x; in addition to x,
— Problem: Can’t convert {c-xv;} (c'xyv; too big)
— Solution: Break c into binary representation, encrypt x.c,
— Problem: circular security for ElIGamal?
— Solutions: (1) assume it! (2) leveled version (3) use [BHHOOS8]

Public-Key Variant

P(x)

®

[P(x)], ! [P(x)],

pk = EIGamal public key + encryptions of bits c, of secret key
ek =load 1 to memory

ek, [g ek,

pk Enc

Applications

Succinct 2PC for branching programs / logspace / NC!
— Communication |inputs| + |outputs| + poly(A) bits
Sublinear 2PC for “nice” circuits

— Communication O(|C|/log|C|) + ... bits
— O(|C|)+... bits for general circuits

2-server PIR for branching program queries
2-party FSS for branching programs

2-round MPC in PKI model
— 0O(1) parties

Computational Optimizations

* “Conversion-friendly” groups:
g =2is generator & p=2'-(small)
h-g = (shift 1) + small

* Distinguished points:

— Index of minimum value of min-wise hash
Saves log(1/6) factor in worst-case runtime

— Heuristic: sequence 0¢
Fast implementation via circular buffer
+ * vy
shift 32 hg3?2
h

Further Optimizations

Assume circular-secure ElGamal

Elliptic-curve ElIGamal for short ciphertexts
“Small exponent” ElGamal for shorter secret key
Preprocess for fixed-basis exponentiations
Replace binary sk decomposition by base D

Bottom line:

— Orders of magnitude improvement compared to baseline
— Ciphertexts and keys shorter than in FHE

— Fast enough for non-trivial applications [BCGIO17]

Conclusions

e Homomorphic secret sharing from DDH
— Supports branching program computation

— Yields succinct secure computation and other
applications of FHE

— Some applications not implied by standard FHE
— Good concrete efficiency for “shallow” computations

* Not post-quantum
— | have bigger concerns at this moment
— Quantum-friendly cryptography?

Open Questions

Beyond branching programs
— FHE-style bootstrapping?

More than 2 parties

Different assumptions
— Paillier [Gennaro-Jafarikah-Skeith17, Couteaul7]
— QRA? LPN? Better from LWE?

Better time/error tradeoff of conversion?

Fault tolerance at branching program level?

Better concrete efficiency

