Homomorphic Secret Sharing

Elette Boyle Niv Gilboa Yuval Ishai IDC

BGU

Technion & UCLA

1970

Primitives

PKE

Assumptions

1980

Signatures

ZK OT

Factoring Discrete Log

1990

Secure Computation

2000

2010

Fully Homomorphic Encryption [RAD79,Gen09]

State of the FHE

- The good
 - Huge impact on the field
 - Solid foundations [BV11,...]
 - Major progress on efficiency [BGV12,HS15,DM15,CGGI16]

The not so good

- Given a generic group G:
- Unconditionally secure PKE and even secure computation
- Not known to be helpful for FHE
- Narrow set of assumptions and underlying structures, all related to lattices
 - Susceptible to lattice reduction attacks and other attacks
- Concrete efficiency still leaves much to be desired

Recall: FHE

"1/2 FHE"

(2-Party) Homomorphic Secret Sharing

(2-Party) Homomorphic Secret Sharing

HSS vs. FHE

- HSS is generally weaker...
 - 2 (or more) shares vs. single ciphertext
 - Non-collusion assumption

- ... but has some advantages
 - Ultimate output compactness
 - Efficient and public decoding
 - Can aggregate many outputs

Delegating Computations to the Cloud

Delegating Computations to the Cloud

Communication complexity of securely computing C?

- Classically: > | C | [Yao86,GMW87,BGW88,CCD88,...]
 ... even for restricted classes, such as formulas
- Using FHE: ~ |input|+|output|

Succinct Secure Computation

HSS for Circuits from LWE via FHE

- From multi-key FHE [LTV12,CM15,MW16,DHRW16]
 - "Additive-spooky" encryption[Dodis-Halevi-Rothblum-Wichs16]

From threshold FHE [AJLTVW12,BGI15,DHRW16]

HSS without FHE?

Coming Up

HSS for "simple" functions from OWF

HSS for branching programs from DDH

Many open questions

Low-End HSS from OWF

Function Secret Sharing [BGI15]

- Reverse roles of function/program and input
- Share size can grow with program size

Function Secret Sharing [BGI15]

- Reverse roles of function/program and input
- Share size can grow with program size

- Very efficient constructions for "simple" classes from one-way functions [GI14,BGI15,BGI16]
 - Point functions
 - Intervals
 - Decision trees
- Applications to privacy-preserving data access
 - Reading (e.g., PIR [CGKS95,CG97], "Splinter" [WYGVZ17])
 - Writing (e.g., private storage [OS98], "Riposte" [CBM15], "PULSAR" [DARPA-Brandeis])

Distributed Point Functions

- Point function $f_{\alpha,\beta}:\{0,1\}^n \rightarrow G$
 - $f_{\alpha,\beta}(\alpha) = \beta$
 - $f_{\alpha,\beta}(x)=0$ for x≠α

- DPF = FSS for class of point functions
 - Simple solution: share truth-table of $f_{\alpha,\beta}$
 - Goal: poly(n) share size
 - Implies OWF
 - Super-poly DPF implicit in PIR protocols [CGKS95,CG97]

Keyword search [CGN96,FIPR05,OS05,HL08, ...]

Keyword search with payloads

Generalized keyword search

Generalized keyword search with payloads?

• PIR-writing [OS98,...] ("private information storage")

 Secure aggregation Subscriber 2 Subscriber 1 $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \alpha_6 \alpha_7 \alpha_8 \alpha_9 \alpha_{10}$ α = "msnbc.com" $X_{\alpha}+=1$

Secure aggregation

- Client doesn't need to know which items are being tracked
- Server work proportional to number of items being tracked

 α = "penisland.com" X_{α} +=1

Large scale MPC over small domains

Anonymous messaging [CBM15]

Anonymous messaging [CBM15]

PRG-based DPF

Let <x> denote additive (XOR) secret sharing

$$- < x > = (x_1, x_2) \text{ s.t. } x_1 - x_2 = x$$

- Exploit two simple types of homomorphism
 - Additive: $\langle x \rangle$, $\langle y \rangle \rightarrow \langle x+y \rangle$ by local addition
 - Weak expansion: $\langle x \rangle \rightarrow \langle X \rangle$ by locally applying PRG
 - $x=0^{\lambda} \rightarrow X=0^{2\lambda}$
 - $x = random \rightarrow X = pseudo-random$

PRG-based DPF

Shares define two correlated "GGM-like" trees

PRG-based DPF

Invariant for Eval:

1-bit

For each node v on evaluation path we have <S>|

PRG-based DPF

Invariant for Eval:

For each node v on evaluation path we have <S>|

- v on special path: S is pseudorandom, b=1
- v off special path: S=0, b=0

PRG-based DPF

Invariant for Eval:

For each node v on evaluation path we have <S>|

- v on special path: S is pseudorandom, b=1
- v off special path: S=0, b=0

Gadget: Conditional Correction

PRG-based DPF

Concrete Efficiency of DPF

- Share size \cong n· λ , for PRG: $\{0,1\}^{\lambda} \rightarrow \{0,1\}^{2(\lambda+1)}$
 - Slightly better for binary output

- - Evaluating on the entire domain [N] \approx N/ λ x PRG (N/64 x AES)
- Example: 2-server PIR on 2²⁵ records of length d
 - Communication: 2578 bits to each server, d bits in return
 - Computation: dominated by reading + XORing all records

Extensions

- m-party DPF from PRG [BGI15]
 - Near-quadratic improvement over naive solution
 ... with 2^m overhead
- FSS for intervals, decision trees (leaking topology), d-dimensional intervals [BGI16]

- Barrier (?): FSS for class F containing decryption →
 Succinct 2PC for F from OT (w/reusable preprocessing)
 - Meaningful even for F=AC⁰
 - May lead to positive results!

Open Problems: FSS from OWF

- 3-party DPF
 - $o(N^{1/2})$ key size from OWF?
- Limits of 2-party FSS from OWF
 - FSS for conjunctions / partial match?
 - Stronger barriers
- Power of information-theoretic (m,t)-FSS
 - Even 2-party FSS with non-additive output
- Efficiency of 2-party DPF
 - Beat n·λ key size?
 - Amortizing cost of multi-point DPF?

HSS for Branching Programs from DDH

Recall: Homomorphic Secret Sharing

- Security: xⁱ hides x
- Correctness:

$$Eval_{P}(x^{1}) + Eval_{P}(x^{2}) = P(x)$$

δ-HSS

- Security: xⁱ hides x
- δ -Correctness: Except with prob. δ (over Share),

$$Eval_{P}(x^{1}) + Eval_{P}(x^{2}) = P(x)$$

Main Theorem

- 2-party δ-HSS for branching programs under DDH
 - Share: runtime (& share size) = $|x| \cdot poly(\lambda)$
 - Eval: runtime = poly(λ ,|P|,1/δ) for error probability δ

Living in a log-space world

Multiplication of *n n*-bit numbers

Streaming algorithms

Min L₂-distance from list of length-*n* vectors

Many numerical / statistical calculations

Finite automata

Undirected graph connectivity

FHE Decryption

• • •

The HSS Construction

RMS Programs

Restricted-Multiplication Straight-line programs:

- $v_i \leftarrow x_i$ Load an input into memory.
- $v_i \leftarrow v_i + v_k$ Add values in memory.
- $v_i \leftarrow v_i^* x_k$ Multiply value in memory by an *input*.
- Output v_i (mod m)

We will support homomorphic evaluation of RMS programs over Z s.t. all intermediate values are "small" (e.g., {0,1})

Captures branching programs and log-space computations (More generally: ReachFewL)

RMS Captures Branching Programs

Program Input: $x_1 x_2 x_3 x_4 ... x_n$

To evaluate as RMS: Memory variable for each *node* (whether it's on red path)

$$v_i$$
 v_j
 v_l
 v_l

3 Ways to Share a Number

- Let G be a DDH group of size q with generator g
- 3 levels of encoding Z_a elements

```
-[u]: (g^u, g^u) \in G \times G "encryption"

-\langle v \rangle : (v_1, v_2) \in Z_q \times Z_q \text{ s.t. } v_1 = v_2 + v \text{ additive}

-\{w\}: (w_1, w_2) \in G \times G \text{ s.t. } w_1 = w_2 \cdot g^w \text{ multiplicative}
```

Each level is additively homomorphic

$$- < \lor >, < \lor' > \longrightarrow < \lor + \lor' > \{w\}, \{w'\} \longrightarrow \{w+w'\}$$

• Natural pairing: pair([u],<v>) \rightarrow {uv} - ((gu)^v,(gu)^v)=(guv2\cdotguv,guv2)

Toy Version

Let's pretend gx is a secure encryption of x

Emulating an RMS program – first attempt:

- Share: for each input x_i
 - Encrypt as [x_i]
 - Additively secret-share as <x_i>
- Eval: // maintain the invariant: $V_i = \langle v_i \rangle$
 - $v_i \leftarrow x_j : V_i \leftarrow \langle x_j \rangle$
 - $v_i \leftarrow v_i + v_k : V_i \leftarrow V_i + V_k // V_i = \langle v_i + v_k \rangle$
 - Output v_i (mod m): Output V_i +(r,r) (mod m)
 - $-\mathbf{v_i} \leftarrow \mathbf{x_k} * \mathbf{v_i} : \mathbf{W_i} \leftarrow \mathsf{pair}([\mathbf{x_k}], \mathbf{V_i})$ // $\mathbf{W_i} = \{\mathbf{w}\} \text{ for } \mathbf{w} = \mathbf{x_k} \cdot \mathbf{v_i}$

```
[u]=(g<sup>u</sup>,g<sup>u</sup>)
<v>=(v<sub>2</sub>+v,v<sub>2</sub>)
{w}=(w<sub>2</sub>·g<sup>w</sup>,w<sub>2</sub>)
```

Need Convert : {w} → <w>
Solved by discrete log...

Stuck?

Share Conversion

Goal: Locally convert multiplicative sharing of w to additive sharing of w

Share Conversion

Goal: Convert multiplicative sharing of w to additive sharing of w

Conversion Error

 $\exists \bullet \in \mathsf{Bad} \; \mathsf{Zone} \quad \mathsf{error} \sim \delta \mathsf{w}$

Error probability depends on w

Toy Version

Let's pretend gx is a secure encryption of x

Emulating an RMS program:

- Share: for each input x_i
 - Encrypt as [x_i]
 - Additively secret-share as <x_i>
- Eval: // maintain the invariant: $V_i = \langle v_i \rangle$
- $V_i \leftarrow X_j$: $V_i \leftarrow \langle X_j \rangle$
- $v_i \leftarrow v_j + v_k : V_i \leftarrow V_j + V_k$ // $V_i = \langle v_j + v_k \rangle$
- $v_i \leftarrow x_k * v_j : W_i \leftarrow pair([x_k], V_j); V_i \leftarrow Convert(W_i)$
- Output v_i (mod m): Output V_i mod m

```
[u]=(g^{u},g^{u})
<v>=(v_{2}+v,v_{2})
\{w\}=(w_{2}\cdot g^{w},w_{2})
```

From Toy Version to Real Version

- Pick secret key c∈Z_q for ElGamal encryption
- Encrypt each input x_i as [r], [cr+x_i] (secret-key ElGamal)
- Invariant: Each memory value v_j shared as <v_j>, <cv_j>
- To multiply x_iv_i: pair, subtract and get {x_iv_i}
 - Use conversion to get <x_iv_i>
 - Problem: Need also <c·x_iv_i> to maintain invariant
 - Solution? Share $c \cdot x_i$ in addition to x_i
 - Problem: Can't convert {c·x_iv_i} (c·x_iv_i too big)
 - Solution: Break c into binary representation, encrypt x_ic_k
 - Problem: circular security for ElGamal?
 - Solutions: (1) assume it! (2) leveled version (3) use [BHHO08]

Public-Key Variant

 X_i

Applications

- Succinct 2PC for branching programs / logspace / NC¹
 - Communication |inputs| + |outputs| + poly(λ) bits
- Sublinear 2PC for "nice" circuits
 - Communication O(|C|/log|C|) + ... bits
 - O(|C|)+... bits for general circuits
- 2-server PIR for branching program queries
- 2-party FSS for branching programs
- 2-round MPC in PKI model
 - O(1) parties

Computational Optimizations

"Conversion-friendly" groups:
 g = 2 is generator & p = 2ⁱ - (small)
 h·g = (shift 1) + small

- Distinguished points:
 - Index of minimum value of min-wise hash Saves $log(1/\delta)$ factor in worst-case runtime
 - Heuristic: sequence 0^d
 Fast implementation via circular buffer

Further Optimizations

- Assume circular-secure ElGamal
- Elliptic-curve ElGamal for short ciphertexts
- "Small exponent" ElGamal for shorter secret key
- Preprocess for fixed-basis exponentiations
- Replace binary sk decomposition by base D

- Bottom line:
 - Orders of magnitude improvement compared to baseline
 - Ciphertexts and keys shorter than in FHE
 - Fast enough for non-trivial applications [BCGIO17]

Conclusions

- Homomorphic secret sharing from DDH
 - Supports branching program computation
 - Yields succinct secure computation and other applications of FHE
 - Some applications not implied by standard FHE
 - Good concrete efficiency for "shallow" computations
- Not post-quantum
 - I have bigger concerns at this moment
 - Quantum-friendly cryptography?

Open Questions

- Beyond branching programs
 - FHE-style bootstrapping?
- More than 2 parties
- Different assumptions
 - Paillier [Gennaro-Jafarikah-Skeith17, Couteau17]
 - QRA? LPN? Better from LWE?
- Better time/error tradeoff of conversion?
- Fault tolerance at branching program level?
- Better concrete efficiency