
Tight Upper and Lower Bounds for
Leakage-Resilient

Locally Decodable and Updatable
Non-Malleable Codes

Dana Dachman-Soled

University of Maryland

Joint work with:

Mukul Kulkarni and Aria Shahverdi, University of Maryland

Talk is also based on joint work with: Feng-Hao Liu (FAU), Elaine Shi (Cornell) and
Hong-Sheng Zhou (VCU)

Coding Schemes

• A coding scheme has two algorithms: (Encode,
Decode)
– Message m Codeword C Message m

• What properties do we expect from a coding
scheme?
– Error detection: If < 𝑑 bits of the codeword are

modified, either the original message or ⊥ is
outputted

– Error correction: If < 𝑑/2 bits of the codeword are
modified, the original message is outputted

– Non-malleability: Can potentially allow **all bits** of
the codeword to be modified, but a valid message
other than the original message may get outputted.

Encode Decode

Non-Malleable Codes
[Dziembowski, Pietrzak, Wichs ‘10]

• Proposed as a generic way of protecting secret key stored in memory against

tampering.

• Non-malleable codes: by tampering with the codeword, the underlying message
is either the same or unrelated.

• Only certain types of tampering are allowed! (e.g. split-state)

Message
m

Codeword
c=Encode(m)

c
- unchanged

Encode(m’)
- Unrelated m’

Encode

Leakage Resilient Codes
Getting partial information about the codeword
does not reveal the underlying message

Codeword
c=Encode(m)

The
underlying

message ???

Partial codeword

Problem
• Non-malleable codes are entirely unsuitable for

random access computation!

• Message 𝑚 = 𝑚1, … , 𝑚𝑛, encoded as 𝑐 =
c1, … , cN.

– In order to decode and recover some 𝑚𝑖, the entire
codeword needs to be accessed.

– In order to update 𝑚𝑖 → 𝑚′
𝑖
, must re-encode the

entire message 𝑚′ = 𝑚1, … , 𝑚𝑖
′, … , 𝑚𝑛.

• If non-malleable code is used to encode blocks of
RAM individually, security guarantees do not hold.

– Simple attacks against existing schemes.

Solution [D, Liu, Shi, Zhou ‘15]:
Locally Decodable and Updatable Codes

m1 m2 … mnMessage

C1 C2 C3 … CN-1 CNCodeword

Encode

Decode(i):
Take input an index i, read a few

blocks of the codeword and
output mi

Update(j, m’):
Take inputs an index j and a new

message m’, update a few blocks of
the codeword

Defining NM for Locally Decodable Codes

• Trickier to define NM
– Decoding algorithm does not read all positions

– Tampering function could destroy a few block(s) while
keeping the other parts unchanged

– The codeword is modified, but the underlying
message could be very related to the original one, i.e.
Decode(i)’s are the same for most i’s.

C1 C2 C3 … CN-1 CN

More Fine-grained Approach

• Tampering function can only do either:

– Destroy a block (or blocks) of the underlying
messages while keeping the other blocks
unchanged

– If it modifies a block of the underlying messages
to some unrelated string, then it must have
modified all blocks of the underlying messages to
encodings of unrelated messages.

• Achieve all three properties!
• Leakage resilience, non-malleability, locality

• Non-malleability in our setting: Tampering function either:
1. Destroy several blocks (keeps others unchanged), or
2. Change everything to unrelated messages

Putting It Together

C1 C2 C3 … CN-1 CN

Decode(i) outputs “Error” while others unchanged

C’1 C’2 C’3 … C’N-1 C’N

Decodes of all positions become unrelated

Tamper and Leakage Resilience
For RAM Computation

CPU

Random Access Memory (RAM)

Our new code, together with an ORAM scheme, protects against
physical attacks on random access memory.

Store an encoding of Data in RAM-- Encode(ORAM(Data))

Write(j,m’):
Use Update(j,m’)

Read(i):
Use Decode(i)

Previous Work

• LR-LDUNMC with Ω(log n) locality [D, Liu, Shi,
Zhou ’15]

– Allows split-state tampering and split-state,
bounded leakage.

– Works in the continual setting.

• Information theoretically secure LDUNMC
[Chandran, Kanukurthi, Raghuraman ’16] in
non-continual setting.

Formal Security Definition

Real Game: Round 𝑖

Output at the end of the game:
ℓ1, ⋯ , ℓ𝑟 , 𝑚1, … , 𝑚𝑟 , 𝑢1, … , 𝑢𝑟

𝐴𝑑𝑣 𝐶𝑖𝑔𝑖 ∈ 𝓖

ℓ𝑖 ≔ 𝑔𝑖(𝐶𝑖)

𝑓𝑖 ∈ 𝓕

 𝐶𝑖+ ≔ 𝑓(𝐶𝑖)Define: 𝑚𝑖 ≔

(𝐷𝑒𝑐 𝐶𝑖+
1 , … , 𝐷𝑒𝑐 𝐶𝑖+

𝑛)

𝑈𝑝𝑑𝑎𝑡𝑒𝑟:

𝑢𝑖 , 𝑣𝑎𝑙𝑖
𝑢𝑖

 𝐶𝑖+1 ≔ 𝑈𝑝𝑑𝑎𝑡𝑒 𝐶+
(𝑢𝑖 , 𝑣𝑎𝑙𝑖)

Ideal Game*: Round 𝑖

Output at the end of the game:
ℓ1, ⋯ , ℓ𝑟 , 𝑚1, … , 𝑚𝑟 , 𝑢1, … , 𝑢𝑟

𝐴𝑑𝑣 𝑆𝑖𝑚𝑔𝑖 ∈ 𝓖

ℓ𝑖

𝑓𝑖 ∈ 𝓕

(𝐼𝑖 , 𝑤𝑖)

Define 𝑚𝑖 as follows:
If 𝐼𝑖 ≠ [𝑛], for 𝑗 ∈ 𝐼𝑖 , 𝑚𝑖 𝑗 ≔ ⊥

for 𝑗 ∉ 𝐼𝑖 , 𝑚𝑖 𝑗 ≔ 𝑀𝑖[𝑗]
If 𝐼𝑖 = [𝑛], 𝑚𝑖 = 𝑤𝑖

𝑀𝑖

𝑈𝑝𝑑𝑎𝑡𝑒𝑟:

𝑢𝑖 , 𝑣𝑎𝑙𝑖
𝑢𝑖

𝑀𝑖+1 𝑢𝑖

≔ 𝑣𝑎𝑙𝑖

Outputs:

Formal Definition—Intuition

• At round 𝑖, 𝑆𝑖𝑚 outputs 𝐼𝑖 , 𝑤𝑖

– If 𝐼𝑖 = [𝑛], 𝑆𝑖𝑚 thinks the whole codeword has
been changed to an encoding of 𝑤

– Otherwise, 𝑆𝑖𝑚 thinks only the positions in 𝐼𝑖

have been modified to ⊥, all other positions must
remain 𝑠𝑎𝑚𝑒.

• 𝑠𝑎𝑚𝑒 means most recently updated value in that
position.

Rewind Attack

• Slowly leak part of the codeword corresponding
to some message block 𝑗.

• Wait for an update to occur to message block 𝑗.

• Write back what was leaked.

• When decoding the 𝑗-th block, if original
message is recovered (as opposed to most
recently updated value) then non-malleability is
broken.

How to Prevent Rewind Attacks

• Attacker can only leak a small amount in each
round

• An update also occurs in each round.

• Goal: When the attacker writes back the
leakage either
– The information written back by the attacker is no

longer consistent.

– The information is consistent, but effectively
overwrites the entire codeword.

Our Results—Lower Bound

*Holds for any polynomial block length
**Requires the access patterns for decoding/updating to be
non-adaptive
***Result extends to randomized access patterns
****Lower bound holds even if only single bit is leaked in each round.

Theorem: Let 𝜆 be security parameter and 𝛱 = (Encode,
Decode, Upadate) be a locally decodable and updatable non-
malleable code, in a security model which allows for a rewind
attack.
Then for n = poly(𝜆), 𝛱 has locality 𝛿(n) ∈ 𝜔(1).

Our Results—Upper Bound

*Requires block length 𝜒 = 𝜆1+𝜖

**The access patterns for decoding/updating are non-adaptive
***The access patterns are deterministic
****Allows for leakage of 1 − 𝜖’ ⋅ 𝜒 bits per round.

Theorem: Let 𝜆 be security parameter. Then there exists a
locally decodable and updatable non-malleable code 𝛱 =
(Encode, Decode, Update), in a security model which allows for
a rewind attack, such that 𝛱 has locality 𝛿(𝑛) for any 𝛿 𝑛 ∈
𝜔(1).

Upper and Lower Bound are “tight”.

Roadmap

• Tools for Lower Bound

• Lower Bound: Attack and Analysis

• Upper Bound

• Conclusions

Roadmap

• Tools for Lower Bound

• Lower Bound: Attack and Analysis

• Upper Bound

• Conclusions

Sunflower Lemma

• Consider Σ ≔ 𝑆1, … , 𝑆𝑛

• 𝑆𝑖 is the set of codeword blocks accessed
during decode/update of the 𝑖-th message
block.

• Size of each 𝑆𝑖 is at most constant 𝑐.

• Size of each codeword block is 𝜒 ≔ 𝑝𝑜𝑙𝑦 𝜆

• Set 𝑘 ≫ 𝑐 ⋅ 𝜒

• 𝑛 is polynomial in 𝜆.

Definition: A Sunflower is a collection of sets such
that the intersection of any pair is equal to the core.

Sunflower Lemma (Erdös and Rado): If
𝑛 > 𝑐! 𝑘 𝑐

then Σ contains a sunflower of size 𝑘 + 1.

core

𝑆1
𝑆2

𝑆3

𝑆4

𝑆5

Compression Function
Given 𝑺𝑭 = {𝑆𝑖0 , 𝑆𝑖1 , … , 𝑆𝑖𝑘}, codeword 𝐶

Define 𝐹 𝐶 ⋅ : 0,1, 𝑠𝑎𝑚𝑒 𝑘 → 0,1 𝑐⋅𝜒 as follows:

• On input 𝑥1, … , 𝑥𝑘 ∈ 0,1, 𝑠𝑎𝑚𝑒

• For 𝑗 = 1 to 𝑘

• If 𝑥𝑗 ≠ 𝑠𝑎𝑚𝑒, run 𝑈𝑝𝑑𝑎𝑡𝑒 𝐶(𝑖𝑗 , 𝑥𝑗)

• Output the contents of the core of the Sunflower.

Why is this a compression function?
Recall that we chose 𝑛 sufficiently large to guarantee that

𝑘 ≫ 𝑐 ⋅ 𝜒.

Distributional Stability

Theorem (Informal) [Drucker 12],(see also [Raz 98], [Shaltiel 10]):

Let 𝐹 𝐶 𝑋1, … , 𝑋𝑘 : 0,1, 𝑠𝑎𝑚𝑒 𝑘 → 0,1 ≤𝑡 be a randomized mapping, where
𝑡 ≪ 𝑘 and 𝑋1, … , 𝑋𝑘are independent random variables.

Then w.h.p. over choice of 𝑖 ∼ 𝑘 , the two distributions

𝐹 𝐶 𝑋1, … , 𝑋𝑘 𝐹 𝐶(𝑋1, … , 𝑋𝑖−1, 𝑠𝑎𝑚𝑒, 𝑋𝑖+1, … , 𝑋𝑘)

are statistically close.

Roadmap

• Tools for Lower Bound

• Lower Bound: Attack and Analysis

• Upper Bound

• Conclusions

Attack on Code with Constant Locality 𝑐

Attacker:

• Find the sunflower 𝑺𝑭 = {𝑆𝑖0 , 𝑆𝑖1 , … , 𝑆𝑖𝑘}

• Choose 𝑗 ← [𝑘]

• In the first round, submit leakage function 𝑔 𝐶 ≔ 𝑠𝑒𝑡𝑖𝑗
 𝐶 ∖ 𝒄𝒐𝒓𝒆 .

• Receive back leakage ℓ
• Wait until the (𝑘 + 1)-st round.
• In the (𝑘 + 1)-st round, choose tampering function 𝑓 which replaces the

current contents of 𝑠𝑒𝑡𝑖𝑗
 𝐶 ∖ 𝒄𝒐𝒓𝒆 with ℓ.

Updater:
• Choose 𝑥1, … , 𝑥𝑘 ← 0,1, 𝑠𝑎𝑚𝑒
• In round 𝑗 = 1 to 𝑘

• If 𝑥𝑗 ≠ 𝑠𝑎𝑚𝑒, request 𝑈𝑝𝑑𝑎𝑡𝑒 𝐶(𝑖𝑗 , 𝑥𝑗)

Leak 𝑖𝑗-th

petal

Replace 𝑖𝑗-th

petal

*Small modification needed if adversary can leak only a single bit in each round.

Analysis

Lemma: For the attack and updater specified above:

Case 1: If the original message was 𝑚 = 0, then with
probability at least 0.7, the decoding of position 𝑖𝑗 in round

𝑘 + 1 is 0 in the real game.

Case 2: If the original message was 𝑚 = 1, then with
probability at least 0.7, the decoding of position 𝑖𝑗 in round

𝑘 + 1 is 1 in the real game.

Why is this sufficient to contradict non-malleability?

Proving the Lemma:

Case 1, 𝑚 = 0
Decoding of position 𝑖𝑗 in the (𝑘 + 1)-st round takes as input:

ℓ, 𝑐𝑜𝑟𝑒 = 𝐹 𝐶0
𝑋1, … , 𝑋𝑘

Hybrid Argument:

1. Consider

𝐷𝑒𝑐 ℓ, 𝐹 𝐶0
𝑋1, … 𝑋𝑗−1, 𝑠𝑎𝑚𝑒, 𝑋𝑗+1, 𝑋𝑘

Output must be equal to 0. Why?

2. Consider

𝐷𝑒𝑐 ℓ, 𝐹 𝐶0
𝑋1, … 𝑋𝑗−1, 𝑋𝑗 , 𝑋𝑗+1, 𝑋𝑘

This must also be equal to 0 with high probability. Why?

Case 2, 𝑚 = 1 is analogous.

Roadmap

• Tools for Lower Bound

• Lower Bound: Attack and Analysis

• Upper Bound

• Conclusions

Upper Bound

• Recall the [DLSZ’15] construction:

– Encrypt the data with an AE scheme

– Compute the Merkle hash of the encrypted data

– Encode the secret key, root of Merkle hash using
regular (non-local) NMC.

t-Slice Merkle Tree

ℎℎℎ ℎℎℎ ℎℎℎ

ℎℎℎ

t-Slice Merkle Tree

• t-slice Merkle Tree is a t-ary tree where each node is
hashed into a slice of its parent node.

– We choose 𝑡 = 𝜆𝜖, for constant 0 < 𝜖 < 1.

• Update/Verify need to read only the path from root to
leaf but not the siblings

– Note that Update/Verify take time proportional to the
height of the tree,

– For 𝑛 = 𝑝𝑜𝑙𝑦(𝜆), 𝑡 = 𝑝𝑜𝑙𝑦(𝜆) the height of the tree
< 𝛿(𝑛), for any 𝛿(𝑛) ∈ 𝜔(1).

Roadmap

• Tools for Lower Bound

• Lower Bound: Attack and Analysis

• Upper Bound

• Conclusions

Conclusions

• We showed tight upper and lower bounds on
locality for locally decodable and updatable codes
in security models that allow for a rewind attack.

• Result holds for non-adaptive access patterns
– In this talk: deterministic, non-adaptive access

patterns
– We have extended our result to randomized, non-

adaptive access patterns.

• Future work:
– Extend lower bound to adaptive setting.
– Show an improved upper bound in adaptive setting.

Thank you!

