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Group Basics

“There are two kinds of people in this world. Those who
like additive group notation, and those who like
multiplicative group notation.”

9,9% g% g*°

inefficient:
discrete log




Bilinear Groups




When Faced with a New Group Assumption:

Is it secret?
Is it safe?

Is it useful?
Is it needed?



Kinds of Assumptions

* Generic group models
* g-type assumptions
* static assumptions

Variants:
Symmetric/Asymetric
Composite Order/ Prime Order
Linear/ Bilinear/ MultiLinear



Kinds of Proof Technigues

* Brute Force basic generic group arguments

e Cancelation BB IBE

* Encoding G06, W05 ...
CM14, W16

* Deja Q



Billinear Diffie-Hellman Assumption

Symmetric group:

geG,e:GXG— G

Given:
9,.9°,9%,9"

Distinguish:

e(g,9)"Y* from e(g, g)"



SXDH Assumption

Asymmetric group:
geG,heHe:Gx H— Gr
Given:
g9,h, g% ¢"
Distinguish:

g® from ¢"



A Basic g-type Assumption

Symmetric group:

geG,e:GXG— G

Given:

3

2
g.9°,9%,9" ,9° ,...,¢

a4

Distinguish:

saq+

e(g, 9) from e(g, g)"



A Driving Example: IBE

PP:g,9% 4" e(g,9)*

OT - Me(g’gyxs gs gs(aID—l—b)
SK - ga—i—r(aID—I—b) g'r

Decryption:

6(97 g)as—I—sr(aID—l—b) —sr(alD+Db)

=e(g,9)"°



Arguing Generic Security

Look at the blinding factor:

Look at exponents you are given in G: /'S

a, b, s, s(alD* +b),
a+ri(alDy +b),r1,...,a+ry(alDy+b),1,

All you can do is take linear combinations of degree at most 2

No way to get as alone when ID* #£ I D,Vi



Proof Challenges Beyond Generic Security

Simulator Attacker

Simulator must balance two competing goals:

answer /I\ N leverage
attacker A\ attacker
P

gueries <= success



Arguing Selective Security

- Embed the challenge as a function of known ID*
a=2xYy, S= =2

a=x, b=—zID" +w

Given:
T U g PP:g,9"=g"9" = (¢") "7 ¢*,e(g,9)" = e(g", g")
9,9 ,9°,9 R ! ? ! ?
OT - gs _ gzjgs(aID*—l—b) _ (gz)'w
Distinguish: Choose . Y /
"=~"ip_1p- "
e(g,9)™"* from e(g, g)" then o+ r(alD +0b) =2y —zy+rw=rw

Simulator can produce key for any ID not equal to ID*!



How to Leverage a g-Type Assumption [example from WO5]

What if we don’t want to fix ID* ahead of time?

To partition small PP with parameter q:

Use a g-size assumption!




Simulation Techniques

Deja Q
[CM13,W16]

Dual pairing vector spaces
[OT08,0T09,...]

SXDH/DLIN
*These arrows are partial and not transitive!




Composite Order Bilinear Groups

How the pairing operates:

N ——

df



Subgroup Decision Assumptions in Composite Order Bilinear Groups

Example: Given

Distinguish



Subgroup Decision in a Multilinear Group?

Here’s what it might look like in a 3-linear group:

Given

Distinguish

from



Deja Q — Basic Example




Deja Q — Basic Example

Mod p Mod ¢
a2

3
2

eat e

Chinese
Remainder
Theorem

=)




Deja Q — Basic Example

Mod p Mod g
ha b,

Subgroup
Decision +
Chinese
Remainder
Theorem

=)

Mod p Mod g
na  thitth,
N T

na b et

nal b b



Deja Q — Basic Example

Subgroup
Decision +
Chinese
Remainder
Theorem

Subgroup
Decision +
Chinese
Remainder
Theorem

Mod p Mod q




Deja Q — Basic Example

Uniformly random
Mod q

Full rank



Deja Q — Basic Example
Mod p Mod ¢

|Identically

t,b3+t,b3+. +tb 3 Distributed to _

2
r,a

3
r,a

t,b, %+ t,b, 9+ .. +t b 9

r,a?




Dual Pairing Vector Spaces

bl,bg <— Zg

& 1,05 8.t b - bT =01if i # j,
b - bF =1

ﬁ
b1

Emulates some features of composite order, asymmetric group:

g’l”‘bl —I—tbg
E __
sz g

sb]+zb5

s e e(g,g) 1t



Emulating Subgroup Decision using SXDH
Asymmetric group: geG,heHe:Gx H— Gy

bl = axrq1 + Io bQ = X9

Given:
* o —1_.% X ok *
g, hagaagb bl —a 2 b2 — 42 axy
can make g%, g%
Distinguish:

can make h"%1, not h"b2

g® from ¢"



Dual System — Using Subgroup Assumptions
for Functional Encryption (wos + too many to cite*]

Most Basic Template:

PP:

CT:

SK:

SF CT:

SF SK:

Unconstrained




Using Subgroup Assumptions for Obfuscation [GBSW 15]

* Reduction will isolate each input.

* Main idea:
* Have poly many “parallel” obfuscations,
each responsible for a bucket of inputs

* Hybrid Type 1: Allocate/Transfer inputs among different
buckets, but programs do not change at all.
Assumption used here.







Kilian Simulation

Towards Obfuscation

e Oblivious Matrix Branching
* n-bit input x=x;x,..x, (e.g.n
* 2k invertible matrices over 7
* Evaluation on x:

~

Owm

L,X(i mod n)
izl k o
e Where B is fixed

* Kilian Randomization:
* Chose Ry, ..., R, random over Z,

~ -1
. KMmsﬁo&sltthgr’elggh X, can statistically
simulate M, matrices knowing only product.

~y




Hybrids Intuition

Co

Co

|\/Il, 1
~ ~
MZ,O I\/|2,1
~y ~
M3,O M3,1
M4,O M4, 1
IVIk,O I\/Ik,l

I\/Il,O

~ ~
MZ,O |\/|2,1
~y ~
M3,O M3,1
M4,0 I\/|4, 1
IVIk,O I\/Ik,l

Ml, 1
MZ,O
MS,O

~

I\/|4, 1
I\/Ik,O




