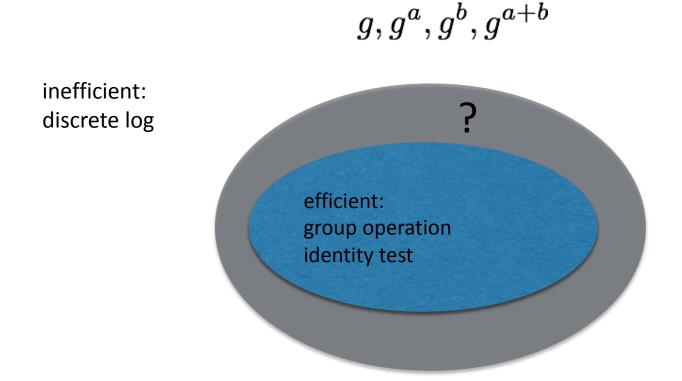
A Survey of Computational Assumptions on Bilinear and Multilinear Maps

Allison Bishop

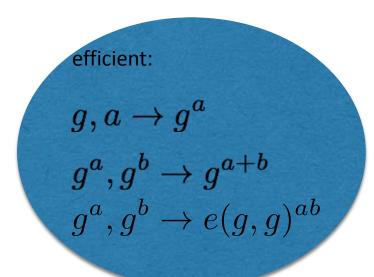
IEX and Columbia University

Group Basics

"There are two kinds of people in this world. Those who like additive group notation, and those who like multiplicative group notation."



Bilinear Groups



When Faced with a New Group Assumption:

Kinds of Assumptions

- Generic group models
- q-type assumptions
- static assumptions

Variants:

Symmetric/Asymetric
Composite Order/ Prime Order
Linear/ Bilinear/ MultiLinear

Kinds of Proof Techniques

Brute Force

basic generic group arguments

Cancelation

BB IBE

Encoding

G06, W'05 ...

Dual System

W09, LW10, LOSTW10,...

• Deja Q

CM14, W16

•

Billinear Diffie-Hellman Assumption

Symmetric group:

$$g \in G, e: G \times G \to G_T$$

Given:

$$g, g^x, g^y, g^z$$

Distinguish:

$$e(g,g)^{xyz}$$
 from $e(g,g)^r$

SXDH Assumption

Asymmetric group:

$$g \in G, h \in H, e : G \times H \to G_T$$

Given:

$$g, h, g^a, g^b$$

Distinguish:

$$g^{ab}$$
 from g^r

A Basic q-type Assumption

Symmetric group:

$$g \in G, e: G \times G \to G_T$$

Given:

$$g, g^s, g^a, g^{a^2}, g^{a^3}, \dots, g^{a^q}$$

Distinguish:

$$e(g,g)^{sa^{q+1}}$$
 from $e(g,g)^r$

A Driving Example: IBE

$$PP: g, g^a, g^b, e(g, g)^{\alpha}$$

$$CT: Me(g,g)^{\alpha s} \quad g^s \quad g^{s(aID+b)}$$
 $SK: \quad g^{\alpha+r(aID+b)} \quad g^r$

Decryption:

$$e(g,g)^{\alpha s + sr(aID+b) - sr(aID+b)}$$
$$= e(g,g)^{\alpha s}$$

Arguing Generic Security

Look at exponents you are given in G:

Look at the blinding factor:

 αs

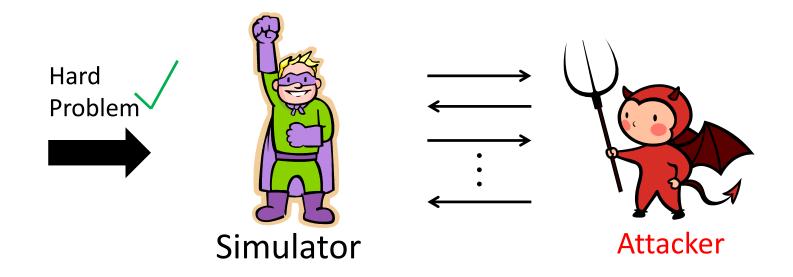
$$a, b, s, s(aID^* + b),$$

 $\alpha + r_1(aID_1 + b), r_1, \dots, \alpha + r_q(aID_q + b), r_q$

All you can do is take linear combinations of degree at most 2

No way to get αs alone when $ID^* \neq ID_i \forall i$

Proof Challenges Beyond Generic Security



Simulator must balance two competing goals:

Arguing Selective Security

- Embed the challenge as a function of known ID*

Given:

$$g, g^x, g^y, g^z$$

Distinguish:

$$e(g,g)^{xyz}$$
 from $e(g,g)^r$

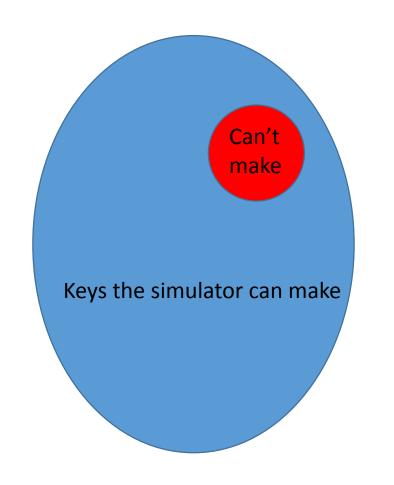
$$\begin{array}{l} \alpha=xy,\;s=z\\ a=x,\;b=-xID^*+w\\ PP:g,g^a=g^x,g^b=(g^x)^{-ID^*}g^w,e(g,g)^\alpha=e(g^x,g^y)\\ CT:g^s=g^z,g^{s(aID^*+b)}=(g^z)^w\\ \\ \text{Choose}\quad r=-\frac{y}{ID-ID^*}+r' \end{array}$$

then $\alpha + r(aID + b) = xy - xy + rw = rw$

Simulator can produce key for any ID not equal to ID*!

How to Leverage a q-Type Assumption [example from W05]

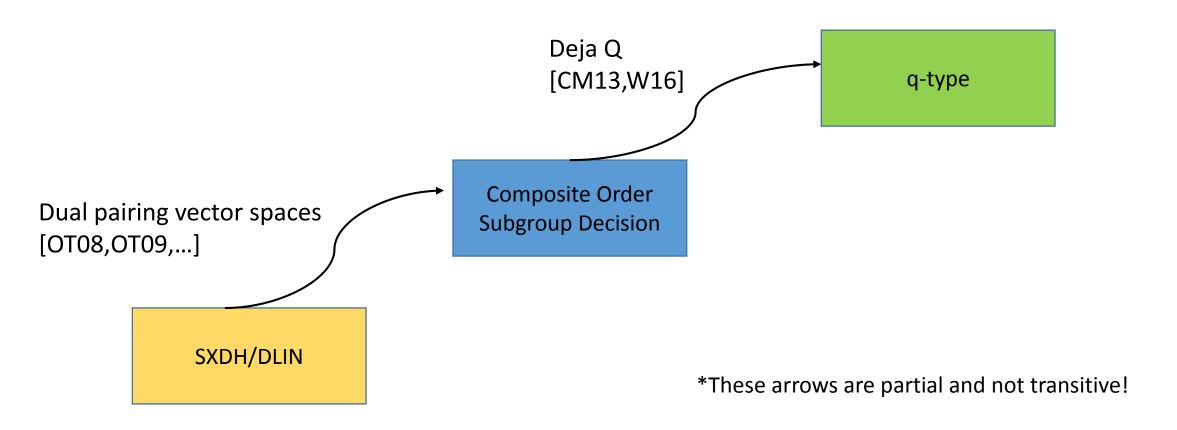
What if we don't want to fix ID* ahead of time?



To partition small PP with parameter q:

Use a q-size assumption!

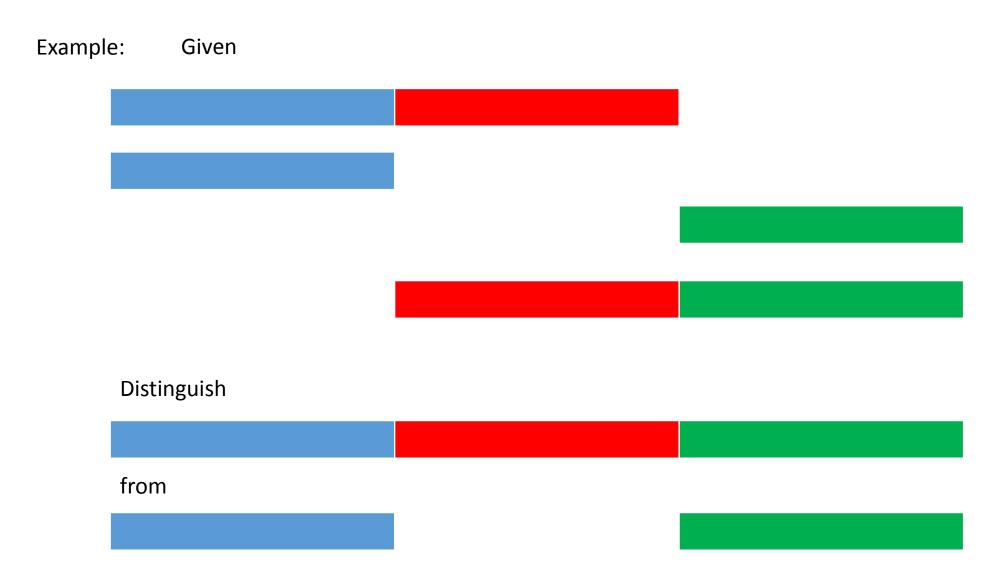
Simulation Techniques



Composite Order Bilinear Groups

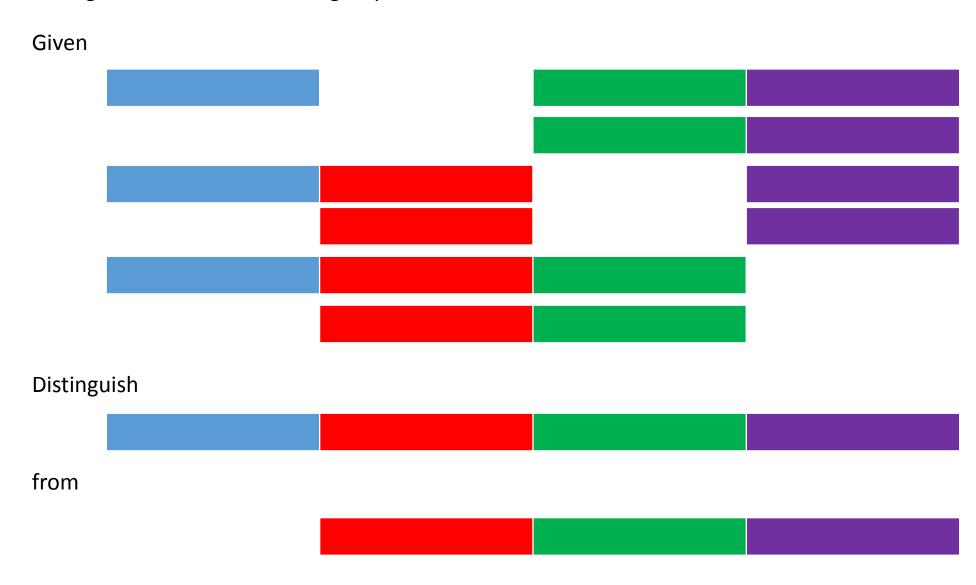
How the pairing operates:

Subgroup Decision Assumptions in Composite Order Bilinear Groups



Subgroup Decision in a Multilinear Group?

Here's what it might look like in a 3-linear group:



r₁a

r₁a²

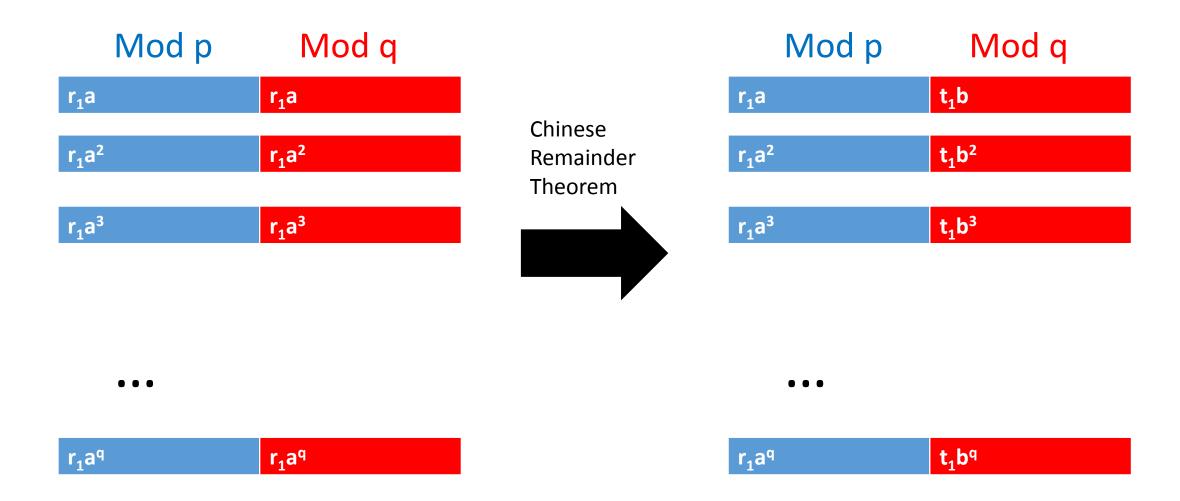
 r_1a^3

r ₁ a	r ₁ a
r ₁ a ²	r ₁ a²
r ₁ a ³	r ₁ a³

• • •

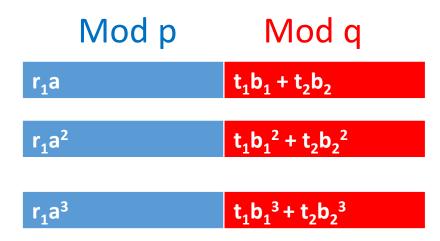
r₁aq

• • •



 $\begin{array}{ccc} \text{Mod p} & \text{Mod q} \\ \hline r_1 a & t_1 b_1 \\ \hline r_1 a^2 & t_1 b_1^2 \\ \hline r_1 a^3 & t_1 b_1^3 \end{array}$

Subgroup
Decision +
Chinese
Remainder
Theorem



• • •

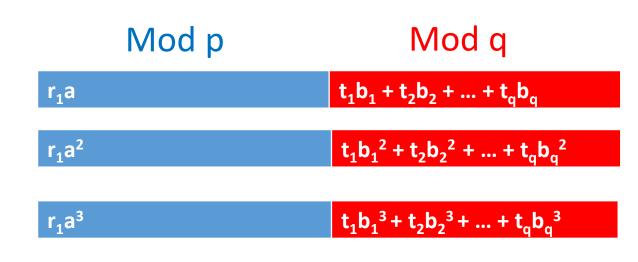
r₁a^q t₁b₁^q

• • •

 r_1a^q $t_1b_1^q + t_2b_2^q$

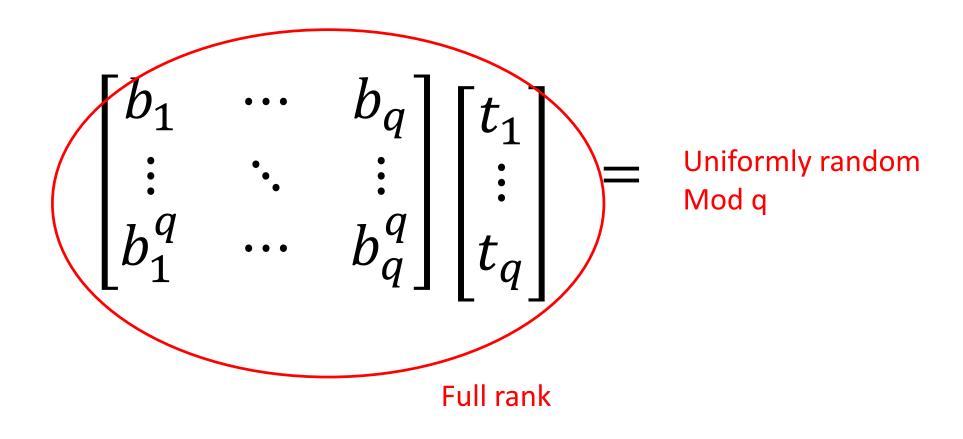
Subgroup
Decision +
Chinese
Remainder
Theorem

Subgroup
Decision +
Chinese
Remainder
Theorem



• • •

$$t_1b_1^q + t_2b_2^q + ... + t_qb_q^q$$



Mod p

Mod q

$$t_1b_1^2 + t_2b_2^2 + ... + t_qb_q^2$$

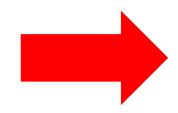
$$t_1b_1^3 + t_2b_2^3 + ... + t_qb_q^3$$

Z₁

Z₂

Identically
Distributed to

Zą



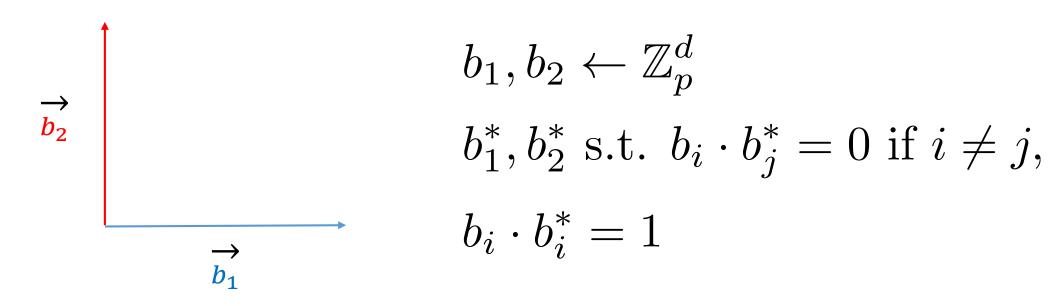
• • •

 $t_1b_1^q + t_2b_2^q + ... + t_q^qb_q^q$

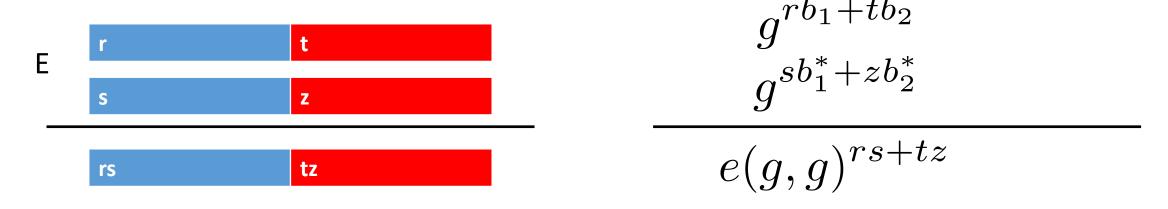
• •

Za

Dual Pairing Vector Spaces



Emulates some features of composite order, asymmetric group:



Emulating Subgroup Decision using SXDH

Asymmetric group: $g \in G, h \in H, e : G \times H \rightarrow G_T$

Given:

$$g, h, g^a, g^b$$

Distinguish:

$$g^{ab}$$
 from g^r

$$b_1 := ax_1 + x_2$$
 $b_2 := x_2$

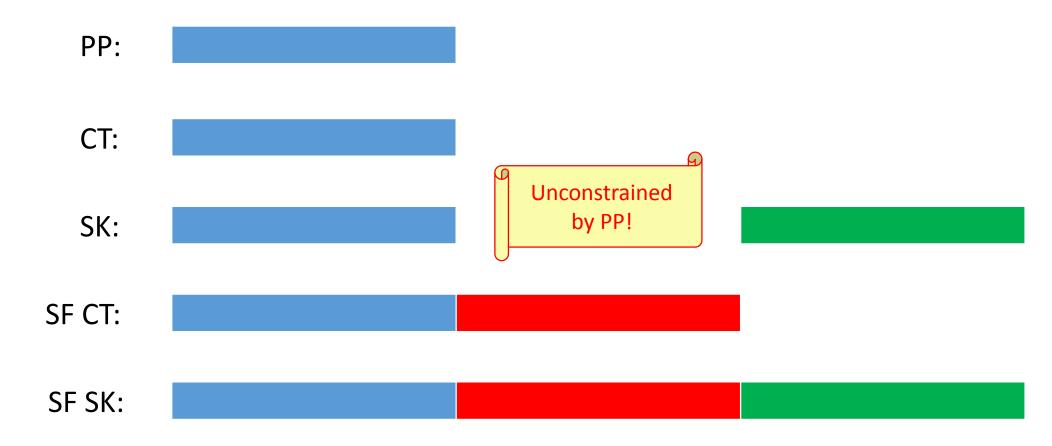
$$b_1^* = a^{-1}x_1^*$$
 $b_2^* = x_2^* - ax_1^*$

can make g^{b_1}, g^{b_2}

can make $h^{rb_1^*}$, not $h^{rb_2^*}$

Dual System – Using Subgroup Assumptions for Functional Encryption [W09 + too many to cite*]

Most Basic Template:



Using Subgroup Assumptions for Obfuscation [GBSW 15]

- Reduction will isolate each input.
- Main idea:
 - Have poly many "parallel" obfuscations, each responsible for a bucket of inputs

 Hybrid Type 1: Allocate/Transfer inputs among different buckets, but programs do not change at all.
 Assumption used here.

Ok So what are these buckets really like?

Simple example:

Want to implement:

$$F(x_1 x_2) = XOR(x_1, x_2)$$

$$M_{1,0} = \begin{vmatrix} & 1 & 0 & 0 \\ & & 1 & 0 & 0 \\ & & 0 & 1 & 0 \end{vmatrix} \qquad M_{1,1} = \begin{vmatrix} & 0 & 1 & 0 \\ & & & 0 & 1 & 0 \\ & & & 1 & 0 & 0 \end{vmatrix}$$

$$M_{2,0} = \begin{vmatrix} & 1 & 0 & 0 \\ & 1 & 0 & 0 \\ & 0 & 1 & 0 \end{vmatrix}$$
 $M_{2,1} = \begin{vmatrix} & 0 & 1 & 0 \\ & 0 & 1 & 0 \\ & 1 & 0 & 0 \end{vmatrix}$

$$M_{2,0} = \begin{vmatrix} & & 1 & 0 & \ddot{0} \\ & & 1 & 0 & \div \\ \dot{e} & 0 & 1 & \emptyset \end{vmatrix}$$

$$B = \begin{matrix} \mathcal{R} & 0 & 1 & \ddot{0} \\ \dot{\varsigma} & 1 & 0 & \varnothing \end{matrix}$$

[Barrington]: All log-depth (NC¹) circuits have poly-size Matrix Branching Programs M_{1,0} $M_{1, 1}$

 $M_{2,0}$ $M_{2,1}$

 $M_{3,0}$ $M_{3,1}$

 $M_{4,1}$

•••

 $M_{k,1}$ $M_{k,0}$

Towards Obfuscation

- Oblivious Matrix Branching P gram for F:
 - n-bit input x=x₁x₂...x_n (e.g. n= here)
 - 2k invertible matrices over Z_N
 - Evaluation on x:

$$\widetilde{O} M_{i,x_{(i \bmod n)}} = \begin{cases}
I & \text{if } F(x) = 0 \\
B & \text{if } F(x) = 1
\end{cases}$$
• Where B is fixed matrix $\neq I$ over \mathbf{Z}_N

- Kilian Randomization:
 - Chose R_1 , ..., R_{k-1} random over Z_N
 - Killen, stolkis the for each x, can statistically simulate M_x matrices knowing only product.

 $\widetilde{\mathsf{M}}_{1,\,0}$ $\widetilde{M}_{1,1}$

~ M_{2, 1} $M_{2,0}$

~ M_{3, 0} M_{3, 1}

~ M_{4, 1} $\widetilde{M}_{4,0}$

•••

 $\tilde{M}_{k,0}$ $M_{k, 1}$

Hybrids Intuition

