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Abstract

Geometric shortest paths are a major topic in computational geometry; see the
survey paper by Mitchell [12]. A shortest path between two points in a simple
polygon can be found in linear time using the “funnel” algorithm of Chazelle [3]
and Lee and Preparata [10]. A more general problem is to find a shortest path
between two points in a polygonal domain. In this case the “rubber band” solu-
tion is not unique, or, to put it another way, different paths may have different
homotopy types. When the homotopy type of the solution is not specified, there
are two main approaches, the visibility graph approach, and the continuous Dijk-
stra (or shortest path map) approach [12]. In this paper, we address the problem
of finding a shortest path when the homotopy type is specified. Colloquially, we
have a “sketch” of how the path should wind its way among the obstacles, and
we want to pull the path tight to shorten it.

Homotopic shortest paths are used in VLSI routing [4, 8, 11]. A related prob-
lem is that of drawing graphs with “fat edges”: given a planar weighted graph
G, find a planar drawing such that all the edges are drawn as thickly as possi-
ble and proportional to the corresponding edge weights. Duncan et al. [5] and
Efrat et al. [7] present an O(kn + n3) algorithm for this problem, where n is
the number of edges and k is the maximum of their input and output complexi-
ties. Hershberger and Snoeyink [9] give an algorithm for the homotopic shortest
path problem. Their algorithm assumes a triangulation of size n of the polyg-
onal domain, and finds a shortest path homotopic to a given path of k edges
in time linear in k plus the number of triangles (with repetition) visited by the
input path. This can be nk in the worst case, and our aim is to reduce it when
output size permits. Cabello et al. [2] consider the related problem of testing if
two given paths are homotopically equivalent. Our original work [6] was done
independently of theirs and the idea of the first step of the algorithms is the
same. The current presentation of our work incorporates their more efficient
implementation of this idea.

We now define homotopy, and give a precise description of our problem. Let
α, β : [0, 1] −→ R

2 be two continuous curves parameterized by arc-length. Then
α and β are homotopic with respect to a set of obstacles V ⊆ R

2 if α can
be continuously deformed into β while avoiding the obstacles; more formally, if
there exists a continuous function h : [0, 1]× [0, 1] → R

2 such that:

1. h(0, t) = α(t) and h(1, t) = β(t), for 0 ≤ t ≤ 1
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Fig. 1. (a) Paths π1 and π2 joining terminals t1 to t2 and t3 to t4, respectively. (b) After
vertical shortcuts, π1 consists of 3 monotone pieces: µ1 from t1 to t3, µ2 from t3 to t4,
and µ3 from t4 to t2; π2 consists of one x-monotone piece, µ4, homotopically equivalent
to µ2; (c) Final homotopic shortest paths, σ1 and σ2.

2. h(λ, 0) = α(0) = β(0) and h(λ, 1) = α(1) = β(1) for 0 ≤ λ ≤ 1

3. h(λ, t) /∈ V for 0 ≤ λ ≤ 1, 0 < t < 1

Let Π = {π1, π2, . . . , πn} be a set of disjoint, simple polygonal paths and let
the endpoints of the paths in Π define the set T of at most 2n fixed points in
the plane. Note that we allow a path to degenerate to a single point. We call the
fixed points of T “terminals,” and call the interior vertices of the paths “bends,”
and use “points” in a more generic sense, e.g. “a point on a path.” We assume
that no two terminals/bends lie on the same vertical line. Our goal is to replace
each path πi ∈ Π by a shortest path σi that is homotopic to πi with respect to
the set of obstacles T ; see Fig. 1. Note that σi is unique. Let Σ = {σ1, . . . σn} be
the set of resulting paths. Observe that these output paths may [self] intersect
by way of segments lying on top of each other, but will be non-crossing .

Let kin be the number of edges in all the paths of Π . Let kout be the num-
ber of edges in all the paths of Σ. Note that kin and kout can be arbitrarily
large compared to n, and that kout ≤ nkin . The algorithm of Hershberger and
Snoeyink [9] finds homotopic shortest paths in time O(nkin ). The deterministic
algorithm presented in this paper runs in time O(kout + kin log n + n

√
n), and

the randomized algorithm in time O(kout + kin log n + n(log n)1+ε). These are
improvements except when kin is quite small compared to n.

Our algorithm relies on the algorithm of Bar-Yehuda and Chazelle [1], which
uses linear time polygon triangulation and ideas of linear time Jordan sorting,
and finds a trapezoidization of n disjoint polygonal chains with a total of k edges
in time O(k + n(log n)1+ε). Replacing this by plane sweep makes our algorithm
implementable and yields a running time of O(kout +(n+kin) log(n+kin)) with
an extra O(n

√
n) factor for the deterministic version. The algorithm of Cabello

et al. [2] tests whether two paths are homotopically equivalent under the pin,
pushpin, or tack models in O((n + kin ) log(n + kin )) time as they opt for the
practical plane sweep approach.
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