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Abstract

Given a set of points P C R? and value ¢ > 0, an e-
core-set S C P has the property that the smallest ball
containing S is within e of the smallest ball contain-
ing P. This paper shows that any point set has an
e-core-set of size [1/€], and this bound is tight in the
worst case. A faster algorithm given here finds an e-
core-set of size at most 2/e. These results imply the
existence of small core-sets for solving approximate k-
center clustering and related problems. The sizes of
these core-sets are considerably smaller than the previ-
ously known bounds, and imply faster algorithms; one
such algorithm needs O(dn/e+ (1/€)®) time to compute
an e-approximate minimum enclosing ball (1-center) of
n points in d dimensions. A simple gradient-descent
algorithm is also given, for computing the minimum en-
closing ball in O(dn/e?) time. This algorithm also im-
plies slightly faster algorithms for computing approxi-
mately the smallest radius k-flat fitting a set of points.

1 Introduction

Given a set of points P C R% and value ¢ > 0, an e-
core-set S C P has the property that the smallest ball
containing S is within e of the smallest ball containing
P. That is, if the smallest ball containing S is expanded
by 1+ ¢, then the expanded ball contains P. It is a sur-
prising fact that for any given € there is a core-set whose
size is independent of d, depending only on e. This is
was shown by Béadoiu et al.[BHI|, where applications
to clustering were found, and the results have been ex-
tended to k-flat clustering.[HV].

While the previous result was that a core-set has size
O(1/€?), where the constant hidden in the O-notation
was at least 64, here we show that there are core-sets
of size at most [1/€]. This matches a lower bound of
[1/€], as we show simply by considering a regular sim-
plex. Such a bound is of particular interest for k-center
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clustering, where the core-set size appears as an expo-
nent in the running time. A key lemma in the proof of
the upper bound is the fact that the bound for Lowner-
John ellipsoid pairs is tight for simplices.

While the existence proof for these optimal core-sets
is a relatively slow algorithm, we give a fast construc-
tion for a somewhat larger core-set, of size at most 2/¢.
We also give a simple algorithm for computing smallest
balls, that looks something like gradient descent; this al-
gorithm serves to prove a core-set bound, and can also
be used to prove a somewhat better core-set bound for
k-flats. Also, by combining this algorithm with the con-
struction of the core-sets, we can approximate a 1-center
in time O(dn/e + (1/¢€)?).

In the next section, we prove the 2/e core-set bound
for 1-centers, and then describe the gradient-descent al-
gorithm. Next we prove a lower bound, and then the
matching upper bound. In the conclusion, we state the
resulting bound for the general k-center problem.

2 Core-sets for 1-centers

Given a ball B, let cg and rp denote its center and
radius, respectively. Let B(P) denote the 1l-center of
P, the smallest ball containing it.

We restate the following lemma, proved in [GIV]:

Lemma 2.1 If B(P) is the minimum enclosing ball of
P C R, then any closed half-space that contains the
center cg(py also contains a point of P that is at dis-
tance rp(py from cppy. It follows that for any point q
at distance K from cp(py, there is a point ¢’ of P at

distance at least , /r%(P) + K2 from q.

The last statement follows from the first by considering
the halfspace bounded by a hyperplane perpendicular
to pcp(p), and not containing p.

Theorem 2.2 There exists a set S C P of size 2/e
such that the distance between cp(s) and any point p of
P is at most (1 + €)rp(p)-

Proof: We proceed in the same manner as in [BHI]: we
start with an arbitrary point p € P and set Sy = {p}.



Let r; = rp(s,) and ¢; = cp(s,)- Take the point ¢ € P
which is furthest away from c¢; and add it to the set:
Si+1 < S;U{q}. Repeat this step 2/e times. X

Let c = CB(P), R= TB(P); R= (1 + G)R, A = Ti/R,
d; = ||c — ¢l| and K; = ||cit1 — cil]- R

If all the points are at distance at most R from ¢;, then
we are done. Otherwise, there is at least one point ¢ € P
such that ||g—c;|| > R. If K; = 0 then we are done, since
the maximum distance from ¢; to any point is at most R.
If K; > 0, then, as mentioned for the lemma above, let
H be the hyperplane that contains ¢; and is orthogonal
to ¢;iciy1. Let HT be the closed half-space bounded by
H that does not contain ¢;4;. By Lemma 2.1, there
must be a point p € S; () H™ such that ||c; —p|| =7; =

AR, and so llciv1 — p|| > \/)\12]%2 + K2. Also, by the

triangle inequality the distance from the new center to
q is at least R — K, so A\;11R > R — K;. By combining
the two inequalities we get

)\i+1R Z max(]% — Ki7 m) (1)

We want a lower bound on A;y; that depends only on
Ai- Observe that the bound on A;;1 is smallest with

respect to K; when
R—K; =\/)2R? + K?

R? —2K,R+ K2 = \2R2 + K2

K _ (1- )R
2
Using (1) we get that
R—UD2DE gy
i1 > ~2 = d 2
2t : &)

Substituting ~v; = ﬁ in the recurrence (2), we get

Vi1 = =y = vl o g 2 vt 2
Since A\g = 0, we have 79 = 1, so v; > 1+ i/2 and
AN > 1 — %1/2 That is, to get \; > %ﬂ, it’s enough
that i > 2/e. [

3 Simple algorithm for 1-center

The algorithm is the following: start with an arbitrary
point ¢; € P. Repeat the following step 1/€? times: at
step ¢ find the point p € P farthest away from ¢;, and
move toward p as follows: ¢;11 «— ¢; + (p — cl)lJ%1

Claim 3.1 If B(P) is the 1-center of P with center
cp(p)y and radius rg(py, then |lcppy — cil| < rB(p)/\ﬁ
for all i.

Proof: Proof by induction: Let ¢ = CB(P)- Since we
pick ¢; from P, we have that [[c — ci1|]| < R = rp(p).
Assume that ||c — ¢;|| < R/Vi. If ¢ = ¢; then in step i
we move away from ¢ by at most R/(i+1) < R/Vi+ 1,
so in that case ||c — ¢;41|| < R/+i+ 1. Otherwise, let
H be the hyperplane orthogonal to ¢¢; which contains
c. Let H' be the closed half-space bounded by H that
does not contain ¢; and let H— = R\ HT. Note that
the furthest point from ¢; in B(P) (| H~ is at distance
less than /||¢; — ¢||? + R? and we can conclude that for
every point ¢ € P(\H ™, ||c; — ¢q|| < /||ei — ¢|]? + R2.
By Lemma 2.1 there exists a point ¢ € P(H™ such

that [le; — q|] > /|lei — ¢||> + R2. This implies that

p € P H*". We have two cases to consider:

o If ¢;;1 € H™, then the distance between c¢;,1 and
¢ is maximized when ¢; = ¢. Then, as before, we
have ||c;y1 — || < R/(i+ 1) < R/Vi+ 1. Thus,
leivr —cl| S R/Vi+1

e if ¢;11 € H™, by moving ¢; as far away from ¢ and
p on the sphere as close as possible to H™, we only
increase ||c;+1—c||. But in this case, ¢¢; 17 is orthog-
R*/\Vi

R\141/i

onal to ¢;p and we have ||¢;11 — ¢|| =

R/\i+1.

4 A Lower Bound for Core-Sets

Theorem 4.1 Given € > 0, there is a pointset P such
that any e-core-set of P has size at least [1/€].

Proof: We can take P to be a regular simplex with
d + 1 vertices, where d = |1/e|. A convenient repre-
sentation for such a simplex has vertices that are the
natural basis vectors eq,es,...,eq41 oOf R4 where e;
has the ¢’th coordinate equal to 1, and the remaining
coordinates zero. Let core-set S contain all the points
of P except one point, say e;. The circumcenter of the
simplex is (1/(d +1),1/(d +1),...,1/(d + 1)), and its
circumradius is

R=V(0-1/(d+1))2+d/(d+1)2=+/d/(d+1).

The circumcenter of the remaining points is
(0,1/d,1/d,...,1/d), and the distance R’ of that
circumecenter to ej is

R =/1+d/d>=\/1+1/d.

Thus
R/R=14+1/d=1+1/|1/e] >1+F¢,

with equality only if 1/e is an integer. The theorem
follows. u



5 Optimal Core-Sets

In this section, we show that there are e-core-sets of
size at most [1/¢]. The basic idea is to show that the
pointset for the lower bound, the set of vertices of a reg-
ular simplex, is the worst case for core-set construction.

We can assume, without loss of generality, that the
input set is the set of vertices of a simplex; this follows
from the condition that the 1-center of P is determined
by a subset P’ C P of size at most d + 1: that is,
the minimum enclosing ball of P is bounded by the cir-
cumscribed sphere of P’. Moreover, the circumcenter
of P’ is contained in the convex hull of P. That is,
the problem of core-set construction for P is reduced
to the problem of core-set construction for a simplex
T = conv P’, where the minimum enclosing ball B(T)
is its circumscribed sphere.

Lemma 5.1 Let B’ be the largest ball contained in a
simplex T', such that B' has the same center as the min-
imum enclosing ball B(T). Then

rpr < rp(7)/d.

Proof: We want an upper bound on the ratio
r//TB(T); consider a similar problem related to ellip-
soids: let e(T') be the maximum volume ellipsoid inside
T, and E(T) be the minimum volume ellipsoid contain-
ing T. Then plainly

Vol(e(T))
~ Vol(E(T))’

T%/

BT

since the volume of a ball B is proportional to r%, and
Vol(e(T')) > Vol(B’), while Vol(E(T)) < Vol(B(T)).
Since affine mappings preserve volume ratios, we can
assume that T is a regular simplex when bounding
Vol(e(T))/ Vol(E(T)). When T is a regular simplex,
the maximum enclosed ellipsoid and minimum enclos-
ing ellipsoid are both balls, and the ratio of the radii
of those balls is 1/d. [H] (In other words, any simplex
shows that the well-known bound for Lowner-John el-
lipsoid pairs is tight.[J]) Thus,

rd, Vol(e(T)) < 1
rjdg(T) ~ Vol(E(T)) — d¥’
and so
rB’ <1
rB(T) - d’
as stated. [ |

Lemma 5.2 Any simplex T has a facet F such that
T3y = (1= 1/d®)rg .

Proof: Consider the ball B’ of the previous lemma.
Let F be a facet of T such that B’ touches F. Then
that point of contact p is the center of B(F'), since p is
the intersection of F' with the line through cp(7y that
is perpendicular to F'. Therefore

T2B(T) =rp + T2B(F)’

and the result follows using the previous lemma. [ |

Next we describe a procedure for constructing a core-
set of size [1/€].

As noted, we can assume that P is the set of vertices
of a simplex T, such that the circumcenter cp(ry is in
T. We pick an arbitrary subset P’ of P of size [1/e].
(We might also run the algorithm of S2 until a set of
size [1/e] has been picked, but such a step would only
provide a heuristic speedup.) Let R = rp(py. Repeat
the following until done:

e find the point a of P farthest from cp(p:;

e if a is no farther than R(1 + €) from cp(pr), then
return P’ as a core-set;

e Let P” be PU{a};

e find the facet F' of conv P with the largest circum-
scribed ball;

e Let P’ be the vertex set of F.

The first step (adding the farthest point a) will give
an increased radius to B(P"), while the second step
(deleting the point P” \ vert F') makes the set P’ more
“efficient” .

Theorem 5.3 Any point set P C R has an e-core-set
of size at most [1/€].

Proof: Let r be the radius of B(P’) at the beginning
of an iteration, and let »' be the radius of B(P’) if the
iteration completes. We will show that r’ > r.

Note that if r > R(1 — €2), the iteration will exit
successfully: applying Lemma 2.1 to cg(psy and cp(p)
(with the latter in the role of “q¢”), we obtain that there
is a point ¢’ € P’ such that

R? > |leppy — d'II? = r* + llesry — eI,
so that
ER2>R? -2 > ||CB(P’) - CB(P)||27

implying that cp(py is no farther than eR to cp(p), and
so cp(py is no farther than R(1 + €) from any point of



P, by the triangle inquality. We have, if the iteration
completes, that

1—¢2

2 1—¢2) < P2
re < R( e)_R(1+6)2
ol —€
- RS (3)

where R = R(1 + ¢).

By reasoning as for the proof of Theorem 2.2,
R+7r?/R
Ami (4)

and we can use the lower bound of the previous lemma
on the size of B(F) to obtain

TB(PY) =

.
,>R+r/R { 1

e Ty

and so

R .
S R/r+r/R T

T 2

The right-hand side is decreasing in r/ R, and so, since

from (3), r < R\/(1 — €)/(1 + €), we have
, /176_|_ /lie
1>% 1—62:1.
r \

Therefore ' > r when an iteration completes. Since
there are only finitely many possible values for r, we
conclude that the algorithm successfully terminates
with an e-core-set of size [1/€]. [ |

6 Conclusions

We have proven the existence of small core-sets for
k-center clustering. The new bounds are not only
asymptotically smaller but also the constant is much
smaller that the previous results. These results com-
bined with the techniques from [BHI] and [HV] al-
low us to get faster algorithms for the k-center problem
and j-approximate k-flat respectively. We can solve the
k-center problem in 20((k10gk)/€) dp while the previous

bound was 20((k10gk)/e*) gy, Also, the running time for
computing j-approximate k-flat (with or without out-
liers) is dn©*3/*)  while the previous known bound was
dnO(ki/e* log £) By combining the two algorithms above
we get an O(dn/e+ (1/€)°) time algorithm for comput-
ing 1-center which is faster than the previously fastest
algorithm, with running time O(dn/e* 4 (1/€)'%log 1).
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