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Arrangement Problems

Arrangements
Decomposition of space into connected open cells
Fundamental problem in computational geometry 
and related areas

Underlying structure in many 
geometric applications

Swept Volumes
Minkowski Sums
CSG or Boolean operations
Many more…….
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Basic Computational 
Pipeline
• Enumerate a set S of primitives that 

contribute to the final surface

• Compute the arrangement A(S) by 
performing intersection and trimming 
computations

• Traverse the arrangement and extract a 
substructure δA(S)
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Example: CSG Union Operation

Boundary = outer envelope in the 
arrangement of the primitives

UNION
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CSG Operations

Design of 
complex parts
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Boundary Evaluation of 
Complex CSG Models

Bradley Fighting
Vehicle

1200+ solids
8,000+ CSG 
operations 
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Minkowski Sum

A + B = { a+b | a ∈ A, b ∈ B }
OFFSET

+

+

+
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Minkowski Sums: Motivation

Configuration space computation
Offsets
Morphing
Packing and layout
Friction model
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Offset Computation

Offset: 
Minkowski
sum with a 
sphere

Input:
2982 triangles
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Minkowski Computation

Decompose A and B into convex pieces
Compute pairwise convex Minkowski sums
Compute their union

• Issues:
–High combinatorial complexity = O(n6)
–Exact computation almost impractical
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Swept Volume (SV)

Volume generated by sweeping an object 
in space along a trajectory

Goal: Compute a boundary representation 
of SV
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Γ(t)

Γ(t) = Ψ(t) + R(t) Γ,  0≤t≤1
Γ : Generator (polyhedron)

Sweep Equation

Γ

• No scaling, shearing, and deformation

Ψ(t)

Ψ(t) : Smooth vector in R3 (sweeping path)

R(t)

R(t) : Local orientation
Swept Volume of Γ := ∪Γ(t)
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Swept Volume: Applications

Tool and workpiece Material removal

Numerically Controlled  Machine Verification

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Swept Volume: Applications

Collision detection between discrete instances
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Swept Volume Computation

Enumerate ruled and developable surfaces

Boundary of SV = outer envelope of the 
arrangement
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Swept Volume Computation

X-Wing Model
2496 triangles
3931 ruled and developable surfaces
Intersection curves of degree as high as nine

Sweep Trajectory Arrangement Boundary of SV
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Computation of Swept Volumes

• Generate ruled and developable surfaces

• Compute their arrangement

• Traverse the arrangement and extract the 
outermost boundary (outer envelope 
computation)
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Complexity of Arrangements

High computational and combinatorial 
complexity 

Super-quadratic in number of surfaces

Accuracy and robustness problems

No good practical implementations are 
available
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Approximation Pipeline

Enumerate surface primitives
Compute distance fields on a voxel grid
Perform filtering operations on distance fields
Use improved reconstruction algorithms
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Approximation Pipeline

Enumerate surface primitives
Compute distance fields on a voxel grid
Perform filtering operations on distance fields
Use improved reconstruction algorithms
• Max-norm computations for reliable voxelization
• Recover all connected components
• Faithfully reconstruct sharp features
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Organization

Fast distance field computation
Max-norm based voxelization
Boundary reconstruction
Analysis
Applications

Boundary evaluation
Swept volume computation
Medial axis computation
Minkowski sums
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Organization

Fast distance field computation
Max-norm based voxelization
Boundary reconstruction
Analysis
Applications

Boundary evaluation
Swept volume computation
Medial axis computation
Minkowski sums
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Distance Fields

Distance Function 
For a site a scalar function f:Rn -> R representing 

the distance from a point P ε Rn to the site

Distance Field
For a set of sites, the minima of all distance 

functions representing the distance from a 
point P ε Rn to closest site
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Voronoi Diagrams

Given a collection of geometric primitives, it 
is a subdivision of space into cells such that 
all points in a cell are closer to one primitive 
than to any other

Voronoi Site

Voronoi Region
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Ordinary 
Point sites
Nearest Euclidean 
distance

Generalized
Higher-order site geometry
Varying distance metrics

Weighted Distances

Higher-order
Sites

2.0

0.5
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Voronoi Diagram & Distance 
Fields

Minimization diagram of distance functions 
generates a Voronoi Diagram
Projection of lower  envelope of 
distance functions
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Distance Fields: Applications

Collision Detection
Surface Reconstruction
Robot Motion Planning

Non-Photorealistic Rendering
Surface Simplification

Mesh Generation
Shape Analysis
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GPU Based Computation

Point Line Triangle

HAVOC2D, HAVOC3D [Hoff et al. 99,01]
Evaluate distance at each pixel for all sites
Evaluate the distance function using graphics hardware
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Approximating the Distance 
Function

Point Line Triangle

Avoid per-pixel distance evaluation
Point-sample the distance function
Reconstruct by rendering polygonal mesh
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Triangular mesh approximation of distance 
functions
Render distance meshes using graphics 
hardware

GPU Based Computation
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Meshing the Distance Function

Shape of distance function for 
a 2D point is a cone

Need a bounded-error 
tessellation of the cone
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Rasterization to reconstruct distance values

Depth test to perform minimum operator

Graphics Hardware 
Acceleration

Perspective, 3/4 view Parallel, top view
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Results in the Frame Buffer

Distance Field

Depth Buffer

Voronoi Regions

Color Buffer
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3D Voronoi Diagrams

Graphics hardware 
can generate one 
2D slice at a time

Sweep along 3rd

dimension (Z-axis) 
computing 1 slice 
at a time

Distance Field of the Teapot Model
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Shape of 3D Distance 
Functions

Slices of the distance 
function for a 3D point site

Distance meshes used to 
approximate slices
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Shape of 3D Distance 
Functions
Point Line segment Triangle

1 sheet of a 
hyperboloid

Elliptical cone Plane
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Bottlenecks in HAVOC3D

Rasterization: 
Distance mesh can fill entire slice
Complexity for n sites and k slices = O(kn) 
Lot of Fill !

Readback:
Stalls the graphics pipeline
Not suitable for interactive applications

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Improved Distance Field 
Computation (DiFi)

Use graphics hardware
Exploit spatial coherence between slices
Use the programmable hardware to 
perform computations

[Sud and Manocha 2003]
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Improved Distance Field 
Computation (DiFi)

Reduce fill: Cull using estimated 
voronoi region bounds

Along Z: Cull sites whose voronoi 
regions don’t intersect with current slice

In XY plane: Restrict fill per site using 
planar bounds of the voronoi region
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Voronoi Diagram Properties

Within a bounded 
region, all voronoi 
regions have a 
bounded volume

9 Sites, 2D

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Voronoi Diagram Properties

Within a bounded region, 
all voronoi regions have 
a bounded volume

As site density increases, 
average spatial bounds 
decrease

27 Sites, 2D
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Voronoi Diagram Properties

Voronoi regions are 
connected

Valid for l2 , linf etc. 
norms

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Voronoi Diagram Properties

Voronoi regions 
are connected

Valid for l2 , linf
norms

Special cases: 
Overlapping 
features
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Voronoi Diagram Properties

High distance field 
coherence between 
adjacent slices

Change in distance 
function between 
adjacent slices is 
bounded

Distance functions for 
a point site Pi to slice 

Zj
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Voronoi Diagram Properties

High distance field 
coherence between 
adjacent slices

Change in distance 
function between 
adjacent slices is 
bounded

Distance functions for a 
point site Pi to slice Zj+1
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Site Culling: Classification

For each slice 
partition the set 
of sites

S1
S3

Slicej

S4

S2

Sweep Direction

X

Z

S5

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

S4

Site Culling: Classification

For each slice 
partition the set of 
sites using voronoi 
region bounds

Slicej

S1

S2

S3

X

Z
Sweep Direction

S5
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Site Culling: Classification

For each slice 
partition the set 
of sites, using 
voronoi region 
bounds:
Approaching (Aj)

Slicej

S1
S3

S4

S2

X

Z Sweep Direction

Aj

S5
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S4

S2

Site Culling: Classification

For each slice 
partition the set of 
sites, using voronoi 
region bounds:

Approaching (Aj)
Intersecting (Ij)

Slicej

S1
S3

X

Z Sweep Direction

Aj

Ij S5
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S4

S2

Site Culling: Classification

For each slice 
partition the set of 
sites, using voronoi 
region bounds:

Approaching (Aj)
Intersecting (Ij)
Receding (Rj)

Slicej

S1
S3

X

Z Sweep Direction

Aj

Ij

Rj

S5
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S4

S2

Site Culling: Classification

For each slice 
partition the set of 
sites, using voronoi 
region bounds: 

Approaching (Aj)
Intersecting (Ij)
Receding (Rj)

Render distance 
functions for 
Intersecting sites 
only

Slicej

S1
S3

X

Z Sweep Direction

Aj

Ij

Rj

S5
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Coherence: Adjacent Slices

Updating Ij

Ij+1 = Ij …

Slicej+1

S1
S3

Previously intersecting

S4

S2

X

Z Sweep Direction
Ij

S5

Slicej
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S4

S2

Coherence: Adjacent Slices

Updating Ij

Ij+1 = Ij

+ (Aj – Aj+1) …

Slicej+1

S1
S3

X

Z Sweep Direction

Approaching Intersecting

Aj-Aj+1

S5

Slicej
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S4

S2

Coherence

Updating Ij

Ij+1 = Ij

+ (Aj – Aj+1) 
– (Rj+1 – Rj)

Slicej+1

S1
S3

X

Z Sweep Direction

Rj+1-Rj

Intersecting Receding

S5

Slicej
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S4

S2

Coherence

Updating Ij

Ij+1 = Ij

+ (Aj – Aj+1) 
– (Rj+1 – Rj)

Slicej+1

S1
S3

X

Z
Sweep Direction

S5

Aj+1
Ij+1

Rj+1



15

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Estimate Potentially 
Intersecting Set (PIS)

Computing exact intersection set = Exact 
voronoi computation
Conservative Solution: 

Use hardware based occlusion queries
Determine number of visible fragments
Computes potentially  intersecting sites 
(PIS) Î

jj II ⊇ˆ
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Application to Medial Axis   
Computation   
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Blum Medial Axis

Locus of centers of maximal 
contained balls
Well-understood medial 
representation
Applications

Shape analysis
Mesh generation
Motion planning

Exact computation is hard

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

A subset of the full medial axis M

Relies on separation angle from points on the 
medial axis to the boundary

More stable than Blum medial axis

[Foskey, Lin and Manocha 2002]

Θ -Simplified Medial Axis Mθ
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Separation Angle

Angle separating the 
vectors from x to 
nearest neighbors

If more than 2 
nearest neighbors, 
maximum angle is 
used

x S(x)

p1

p2
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Large Separation Angle

Point is roughly 
between its nearest 
neighbor points

x

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Small Separation Angle

Point is off to one 
side of its nearest 
neighbor points

x

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mθ = {x ∈ M | S(x) > θ }

Start with medial axis M
Eliminate portions with S(x) ≤ θ

Simplified Medial Axis
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3D Example: Triceratops

θ = 15°

θ = 30° θ = 60°

5600 polygons

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

15° 30° 60°

120°90° 150°Shape Simplification using Simplified Medial Axis

90° 120° 150°

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Direction Field
Gradient of Distance 
Field
Direction image 
rendered for each 
slice (constant z)
Direction vectors 
encoded as RGB 
triples
Length encoded in 
depth buffer

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Simplified MAT Computation 
using GPUs

Render Distance 
Field Readback Filter Distance 

Field

Results

GPU
Render Direction 

Field
Noise, 

Separation Filter

Render using 
Quads

Copy to Float 
Texture

Frag. Prog: Add 
Voxel Faces

Volume Render 
with 3D Tex

Computation using DiFi [Sud et al. 2003]
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Simplified MAT Computation 
using Graphics Hardware
Real-time Capture from a Dell Laptop with NVIDIA 

GeForce4 To Go graphics card  

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Simplified MAT Computation 
using Graphics Hardware
Real-time Capture from a Dell Laptop with NVIDIA 

GeForce4 To Go graphics card  
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Direction Field Computation

47.901102.0194x128x9690879Cassini

36.21212.71128x126x10069451Bunny

13.6052.4779x106x12821764Head

3.3831.69128x126x1264460Shell Charge

DiFi
(s)

HAVOC
(s)ResolutionPolysModel

4 -20 times speedup over HAVOC3D
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Surface Reconstruction

2 - 75 times speedup

0.17.5994x128x96Cassini

0.130.68128x126x100Bunny

0.080.1879x106x128Head

0.143.50128x126x126Shell Charge

GPU
(s)

CPU
(s)ResolutionModel
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Reconstruction: CPU vs. GPU

Depends on grid size
2 - 75 times speedup via GPUs

7.59

0.68

0.18

3.50

T(GPU) 
(s)

T(CPU) 
(s)ResolutionModel

0.194x128x96Cassini

0.13128x126x100Bunny

0.0879x106x128Head

0.14128x126x126Shell Charge

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CPU Growth Rate

GPU Growth Rate

Benefits of using GPUs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Organization

Fast distance field computation
Max-norm based voxelization
Boundary reconstruction
Analysis
Applications

Boundary evaluation
Swept volume computation
Medial axis computation
Minkowski sums
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Max-Norm (l∞)  Computation

Max-Norm
Natural metric for axis-aligned voxels

|| p ||∞ = max (|x|, |y|, |z|)

Iso-distance ball 
|| x ||∞ = c
is a cubeO
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Applications of Max-Norm 
Computation

Markov decision processes [Tsitsiklis et al. 96, 
Guestrin et al. 2001]
Discrete objects in supercover model [Andres et 
al. 96]
Image analysis [Lindquist 99]
Volume graphics [Wang & Kaufman 94, Sramek & 
Kaufman 99]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Goal

Efficiently compute max-norm distance 
between a point and a wide class of 
geometric primitives
Motivation

Voxelization

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Voxelization

Represent a scene by a discrete set of voxels

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Voxelization

Reduce to max-norm distance computation

A B 

D C 

Surface intersects voxel ABCD if
l∞ iso-distance cube is 
smaller than the voxel
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Outline
l∞ Distance Computation

Optimization Framework  
Specialized Algorithms

Complex Models
Bounding Volume Hierarchy
Graphics Hardware Approach

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Optimization Framework

R – x+ dominating region
p

Minimize x

subject to 

q lies on the primitive 

q lies within R
q

Non-linear optimization

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Convex Primitives

Non-linear optimization reduces to convex 
optimization

Simpler solution when the query point is inside the 
primitive

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

l∞ Distance Computation
Optimization Framework  
Specialized Algorithms
• Convex Primitives
• Algebraic Primitives
• Triangulated Models

Complex Models
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Algebraic Primitives

Equation solving approach
Applicable to convex and non-convex 
primitives

Vertex Edge Face

x x
x

Solve for the closest point, x

x
z

y

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Equation Solving

Solve above equations for each vertex, edge and face
Solution set is finite in general
Obtain a set X of feasible values for the closest point
Calculate min { ||x-p||∞ | x є X}

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Equation Solving

Quadrics
Quadratic Equation

Torus
Symmetry
Degree 8 polynomial

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

l∞ Distance Computation
Optimization Framework  
Specialized Algorithms
• Convex Primitives
• Algebraic Primitives
• Triangulated Models

Complex Models
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Distance Computation for a 
Triangle

Optimization framework applied to the special case of a 
triangle
Split the triangle with respect to the partitioning triangles

12 partitioning triangles
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Bounding Volume Hierarchy

Large polyhedral model
Naïve algorithm

Minimum over distance to each triangle
Speed it up using a precomputed bounding volume 
hierarchy 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Outline

l∞ Distance Computation
Optimization Framework  
Specialized Algorithms
• Convex Primitives
• Algebraic Primitives
• Triangulated Models

Complex Models
Bounding Volume Hierarchy
Graphics Hardware Approach
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Graphics Hardware 
Approach

Approach similar to [Hoff et al. 1999]
Render distance function for each primitive
Z-buffer holds the distance field
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Linear Distance Functions for 
l∞ Computations

Frustum of 
square pyramid

X
Y

D

4 polygons Plane

Point Line Segment Triangle

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Organization

Fast distance field computation
Max-norm based voxelization
Boundary reconstruction
Analysis
Applications

Boundary evaluation
Swept volume computation
Medial axis computation
Minkowski sums

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Surface Reconstruction

Objective – obtain a triangular mesh 
representation
To extract the surface

Compute the zero-set { p | D(p) = 0 }

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Boolean Operations

A ∩ B

U

DistA
DistB

Min { DistA, Dist B} == 0 Max { DistA, Dist B} == 0
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Isosurface Extraction

Marching Cubes [Lorensen & Cline 87]
Extended Marching Cubes [Kobbelt et al. 01]
Dual Contouring [Ju et al. 02]
Extended Dual Contouring [Varadhan et al. 03]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Marching Cubes

Given the distance field grid,
Reconstruct the surface within each grid cell

Once done with one cell (cube), march to 
the next

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Marching Cubes

D1

Intersection 
point

Surface
Reconstructed

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Marching Cubes

For details, refer to the original paper [Lorensen87]
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Marching Cubes

Handle each cell independently
Because intersection points along grid 
edges are consistent between 
adjacent cells

Reconstructed surface matches at cell 
boundaries and doesn’t leave holes

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Our Approach

1. Generate distance field D for the union
2.   Obtain an approximation by extracting an

• Isosurface { p | D(p) = 0 }

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Issues

Accuracy of the algorithm dependent on 
resolution of the underlying grid

Insufficient resolution can result in unwanted 
handles or disconnected components

MC

MC

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Complex Cells

Complex
Voxel

Complex
Face

Complex
Edge
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Complex Cells

How do you detect them?
Solution: Max-Norm Distance Computation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Complex Cells

Express voxel, face and edge intersection 
tests in terms of 3D, 2D and 1D max-norm 
distance respectively. 
A voxel, face, or edge is complex if it is 
intersecting but does not exhibit a sign 
change (i.e., a different in the 
outside/inside status)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Complex cells

Once detected, how do you handle them?
Subdivide them

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Issues

Many cells in the grid do not contain 
a part of the final surface

Cull them away

For each grid cell, first perform the 
voxel intersection test
If the test fails, do not consider the 
voxel any further
Makes the algorithm output-sensitive
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Issues

Large number of primitives 
Each distance and outside/inside query 
defined in terms of all the primitives

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Local Queries

Perform a local query within each cell by 
considering only the primitives intersecting 
the cell

Preserves correctness of the query
Drastically improves performance

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Sharp Features

Surface-surface intersection causes many sharp 
features on the boundary of the final surface
When do two surfaces S1 and S2 intersect each 
other?

Track the bisector surface d1-d2, where d1, d2 are the 
distance functions for the two surfaces [Varadhan et 
al. 03]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Bisector Surface

Bisector surface (d1-d2) contains the 
intersection curve
It changes sign at intersection

Track sgn(d1-d2)

d1

d2
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Grid Generation

Can reconstruct atmost one sharp feature per 
voxel
Subdivide voxels with more than one sharp 
feature

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Reconstruction algorithm

Extended dual contouring algorithm 
[Varadhan et al. 03]

can reconstruct arbitrary thin features without 
creating handles

Dual contouring Ext Dual contouring

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Organization

Fast distance field computation
Max-norm based voxelization
Boundary reconstruction
Analysis
Applications

Boundary evaluation
Swept volume computation
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Bounds on Approximation

Let S: exact answer of the union or envelope computation
B(S): boundary of S

.
Our approximation algorithm takes as input ε > 0,  and 

generates an approximation A(ε) 

B(A(ε)): denote the boundary of the approximation
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Bounds on Approximation

Theorem 1: Given any ε > 0, our algorithm computes an approximation 
B(A(ε)) such that

2-Hausdorff( B(A(ε)), B(S)) < ε,

where 2-Hausdorff is the two sided Hausdorff distance

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Bounds on Approximation

Theorem 2:Given any ε > 0, our algorithm computes an 
approximation A(ε) to the exact union or envelope S such that A(ε) 
has the same  number of connected components as S

Corollary: S is connected if and only if A(ε) is connected

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
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Swept Volume Computation

Generator Trajectory View 1 of SV View 2 of SV

2,280
triangles

1,152
surfaces

Time = 12 secs

[Kim et al. 2003] 
http://gamma.cs.unc.edu/SV
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Results: Swept Volume

Generator Trajectory View 1 of SV View 2 of SV

2,116
triangles

1,175
surfaces

Input Clutch Model

Time = 21 secs

[Kim et al. 2003] 
http://gamma.cs.unc.edu/SV

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Results

Generator Trajectory View 1 of SV View 2 of SV

10,352
triangles

15,554
surfaces

Pipe Model

Time = 67 secs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Boundary Evaluation of 
Complex CSG Models

Turret Drivewheel Hull

30-40 solids defined using 2-7 Boolean operations
8-13 secs per solid

[Varadhan et al. 2003] 
http://gamma.cs.unc.edu/recons

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Boundary Evaluation of 
Complex CSG Models

Bradley Fighting
Vehicle

1200 solids
8,000 CSG 
operations

Took 2 hours

[Varadhan et al. 2003] 
http://gamma.cs.unc.edu/recons
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Cup: Offset Computation

1000 triangles:
338 convex pieces

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Xwing: Offset Computation

2496 triangles:
1294 convex 

pieces

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Hand: Offset Computation

2982 triangles:
910 convex
pieces

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Minkowski Computation

2982 triangles
910 convex
pieces

Non-convex polyhedra

Red polyhedra: 1134 polygons
Blue polyhedra: 444 polygons 
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Minkowski Computation

2982 triangles
910 convex
pieces

Non-convex polyhedra
Yellow polyhedra: 1134 polygons
Blue polyhedra: 444 polygons 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Worst Case Minkowski Sum

O(n6) 
Combinatorial 
complexity

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Application to Continuous 
Collision Detection

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
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Conclusions

Discretized geometric computations  

Union and envelope comptuations

Fast distance field computation

Max-norm computation algorithms

Application to medial, swept volume, Minkowski and CSG 
computations

Use of GPUs for geometric computations 

Benefits
Improved performance
Robust implementations
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