







- Enumerate a set S of primitives that contribute to the final surface
- Compute the arrangement A(S) by performing intersection and trimming computations
- Traverse the arrangement and extract a substructure  $\delta A(S)$

































- Enumerate surface primitives
- Compute distance fields on a voxel grid
- Perform filtering operations on distance fields
- Use improved reconstruction algorithms

## **R** Approximation Pipeline

- Enumerate surface primitives
- Compute distance fields on a voxel grid
- Perform filtering operations on distance fields
- Use improved reconstruction algorithms
  - Max-norm computations for reliable voxelization
  - Recover all connected components
  - · Faithfully reconstruct sharp features

#### The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



- Fast distance field computation
- Max-norm based voxelization
- Boundary reconstruction
- Analysis
- Applications
  - Boundary evaluation
  - Swept volume computation
  - Medial axis computation
  - Minkowski sums











Collision Detection Surface Reconstruction Robot Motion Planning Non-Photorealistic Rendering Surface Simplification Mesh Generation Shape Analysis



# Approximating the Distance

- Avoid per-pixel distance evaluation
- Point-sample the distance function
- Reconstruct by rendering polygonal mesh

Line





Triangle

Point

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL













































































| ■ 4 -20 times speedup over HAVOC3D |       |             |         |       |  |
|------------------------------------|-------|-------------|---------|-------|--|
|                                    |       |             |         |       |  |
| Shell Charge                       | 4460  | 128x126x126 | 31.69   | 3.38  |  |
| Head                               | 21764 | 79x106x128  | 52.47   | 13.60 |  |
| Bunny                              | 69451 | 128x126x100 | 212.71  | 36.21 |  |
| Cassini                            | 90879 | 94x128x96   | 1102.01 | 47.90 |  |



2 - 75 times speedup

| Model        | Resolution  | CPU<br>(s) | GPU<br>(s) |
|--------------|-------------|------------|------------|
| Shell Charge | 128x126x126 | 3.50       | 0.14       |
| Head         | 79x106x128  | 0.18       | 0.08       |
| Bunny        | 128x126x100 | 0.68       | 0.13       |
| Cassini      | 94x128x96   | 7.59       | 0.1        |

| <ul> <li>Reconstruction: CPU vs. GPU</li> <li>Depends on grid size</li> <li>2 - 75 times speedup via GPUs</li> </ul> |             |      |      |  |
|----------------------------------------------------------------------------------------------------------------------|-------------|------|------|--|
|                                                                                                                      |             |      |      |  |
| Shell Charge                                                                                                         | 128x126x126 | 3.50 | 0.14 |  |
| Head                                                                                                                 | 79x106x128  | 0.18 | 0.08 |  |
| Bunny                                                                                                                | 128x126x100 | 0.68 | 0.13 |  |
| Cassini                                                                                                              | 94x128x96   | 7.59 | 0.1  |  |







### Markov decision processes [Tsitsiklis et al. 96, Guestrin et al. 2001]

- Discrete objects in supercover model [Andres et al. 96]
- Image analysis [Lindquist 99]
- Volume graphics [Wang & Kaufman 94, Sramek & Kaufman 99]













| T     | Equation Solving                                                                                                                                                                                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 0 0 | Solve above equations for each vertex, edge and face<br>Solution set is finite in general<br>Obtain a set X of feasible values for the closest point<br>Calculate min $\{   x-p  _{\infty}   x \in X \}$ |
|       | The UNIVERSITY of NORTH CAROLINA at CHAPEL F                                                                                                                                                             |











- Approach similar to [Hoff et al. 1999]
- Render distance function for each primitive
- Z-buffer holds the distance field



























**M** Sharp Features

other?

al. 03]

Surface-surface intersection causes many sharp

features on the boundary of the final surface

When do two surfaces S1 and S2 intersect each

Track the bisector surface d1-d2, where d1, d2 are the distance functions for the two surfaces [Varadhan et

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL











Let  $\boldsymbol{S}:$  exact answer of the union or envelope computation  $B(\boldsymbol{S}):$  boundary of S

Our approximation algorithm takes as input  $\epsilon$  > 0, and generates an approximation  $A(\epsilon)$ 

 $B(A(\varepsilon))$ : denote the boundary of the approximation

## **R** Bounds on Approximation

**Theorem 1:** Given any  $\epsilon$  > 0, our algorithm computes an approximation B(A( $\epsilon)$ ) such that

2-Hausdorff(  $B(A(\varepsilon)), B(S)) < \varepsilon$ ,

where 2-Hausdorff is the two sided Hausdorff distance

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL





























- A. Sud and D. Manocha. "DiFi: Fast distance field computation using graphics hardware". UNC-CH Computer Science Technical Report TR03-026, 2003 <u>http://gamma.cs.unc.edu/DiFi</u>
- M. Foskey, M. Lin, and D. Manocha. "Efficient computation of a simplified medial axis". Proc. of ACM Solid Modeling, 2003.
- Y. Kim, G. Varadhan, M. Lin and D. Manocha. "Fast approximation of swept volumes of complex models". *Proc. of ACM Solid Modeling*, 2003.
- G. Varadhan, S. Krishnan, Y. Kim and D. Manocha.
   "Feature-based Subdivision and Reconstruction using Distance Field". *Proc. Of IEEE Visualization,* 2003 (to appear).
   The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL.



## **Acknowledgements**

- Army Research Office
- Intel
- National Science Foundation
- Office of Naval Research

