

Collaborators
- Mark Foskey
- Young Kim
- Shankar Krishnan
- Ming C. Lin
- Avneesh Sud
- Gokul Varadhan

Arrangement Problems
Arrangements
- Decomposition of space into connected open cells
andamental problam in computational geometry
and reas
Underlying structure in many
geometric applications
Qwept Volumes
Qinkowski Sums
CSG or Boolean operations
Many more.....

Swept Volume (SV)

- Volume generated by sweeping an object in space along a trajectory
e Goal: Compute a boundary representation of SV

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

(10) Sweep Equation

- $\Gamma(\mathrm{t})=\Psi(\mathrm{t})+\mathrm{R}(\mathrm{t}) \Gamma, 0 \leq \mathrm{t} \leq 1$
$\omega \Gamma$: Generator (polyhedron)
$\theta \Psi(\mathrm{t})$: Smooth vector in R^{3} (sweeping path)
Q $\mathrm{R}(\mathrm{t})$: Local orientation
- Swept Volume of $\Gamma:=\cup \Gamma(\mathrm{t})$

- No scaling, shearing, and deformation

Swept Volume: Applications

Numerically Controlled Machine Verification

Tool and workpiece
Material removal

Swept Volume Computation

Computation of Swept Volumes

- Generate ruled and developable surfaces
- Compute their arrangement
- Traverse the arrangement and extract the outermost boundary (outer envelope computation)
(1.7) Complexity of Arrangements
- High computational and combinatorial complexity
Super-quadratic in number of surfaces

Q Accuracy and robustness problems

- No good practical implementations are available

Approximation Pipeline

- Enumerate surface primitives
- Compute distance fields on a voxel grid
- Perform filtering operations on distance fields
- Use improved reconstruction algorithms

Approximation Pipeline

- Enumerate surface primitives
- Compute distance fields on a voxel grid
- Perform filtering operations on distance fields
- Use improved reconstruction algorithms
- Max-norm computations for reliable voxelization
- Recover all connected components
- Faithfully reconstruct sharp features

(17) Organization

- Fast distance field computation
- Max-norm based voxelization
- Boundary reconstruction
- Analysis
- Applications
- Boundary evaluation
- Swept volume computation
- Medial axis computation
- Minkowski sums
Distance Function
For a site a scalar function $\mathrm{f}: \mathrm{R}^{\mathrm{n}}->\mathrm{R}$ representing
the distance from a point $P \varepsilon \mathrm{R}^{\mathrm{n}}$ to the site
Distance Field
For a set of sites, the minima of all distance
functions representing the distance from a
point $P \varepsilon \mathrm{R}^{n}$ to closest site

GPU Based Computation

e HAVOC2D, HAVOC3D [Hoff et al. 99,01]

- Evaluate distance at each pixel for all sites

Evaluate the distance function using graphics hardware

Point

Line

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

3D Voronoi Diagrams

e Graphics hardware can generate one 2D slice at a time

- Sweep along $3^{\text {rd }}$ dimension (Z-axis) computing 1 slice at a time

Distance Field of the Teapot Model

Shape of 3D Distance Functions

Slices of the distance function for a 3D point site

Distance meshes used to approximate slices The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Bottlenecks in HAVOC3D

Rasterization:

- Distance mesh can fill entire slice
- Complexity for n sites and k slices $=\mathrm{O}(k n)$
- Lot of Fill !

e Readback:

- Stalls the graphics pipeline
- Not suitable for interactive applications

Improved Distance Field Computation (DiFi)

- Use graphics hardware
- Exploit spatial coherence between slices
- Use the programmable hardware to perform computations
[Sud and Manocha 2003]

Improved Distance Field Computation (DiFi)

Reduce fill: Cull using estimated voronoi region bounds

- Along Z: Cull sites whose voronoi regions don't intersect with current slice

In XY plane: Restrict fill per site using planar bounds of the voronoi region

Voronoi Diagram Properties

- Within a bounded region, all voronoi regions have a bounded volume

Within a bounded region,
all voronoi regions have
a bounded volume

As site density increases,
average spatial bounds
decrease

The University of North carolina at chapel hill

Voronoi Diagram Properties

Voronoi regions are connected

- Valid for $I_{2}, l_{\text {inf }}$ etc. norms

Voronoi Diagram Properties

- Voronoi regions are connected
- Valid for I_{2}, $I_{\text {inf }}$ norms
e Special cases: Overlapping features

Site Culling: Classification

For each slice partition the set of sites, using voronoi region bounds:
Approaching (A_{j})

Site Culling: Classification

For each slice partition the set of sites, using voronoi region bounds:

- Approaching (A_{j})
- Intersecting (I_{j})

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Site Culling: Classification

For each slice partition the set of sites, using voronoi region bounds:
e Approaching (A_{j})
e Intersecting (I_{j})
θ Receding (\mathbf{R}_{j})

Site Culling: Classification

- For each slice partition the set of sites, using voronoi region bounds:
Approaching (A_{j}) 0 Intersecting (I_{i}) - Receding (R_{j})
- Render distance functions for Intersecting sites only

e Computing exact intersection set $=$ Exact voronoi computation
- Conservative Solution:
-Use hardware based occlusion queries
- Determine number of visible fragments
- Computes potentially intersecting sites (PIS) Î

$$
\hat{\mathbf{I}}_{\mathbf{j}} \supseteq \mathbf{I}_{\mathbf{j}}
$$

\boldsymbol{O}-Simplified Medial Axis \boldsymbol{M}_{θ}

- A subset of the full medial axis M
- Relies on separation angle from points on the medial axis to the boundary
- More stable than Blum medial axis
[Foskey, Lin and Manocha 2002]

Separation Angle

e Angle separating the vectors from x to nearest neighbors

- If more than 2 nearest neighbors, maximum angle is used

Small Separation Angle

Point is off to one side of its nearest neighbor points

Direction Field Computation

- 4-20 times speedup over HAVOC3D

Model	Polys	Resolution	HAVOC (s)	DiFi (\mathbf{s})
Shell Charge	$\mathbf{4 4 6 0}$	$\mathbf{1 2 8 \times 1 2 6 \times 1 2 6}$	31.69	3.38
Head	$\mathbf{2 1 7 6 4}$	$\mathbf{7 9 \times 1 0 6 \times 1 2 8}$	52.47	13.60
Bunny	$\mathbf{6 9 4 5 1}$	$\mathbf{1 2 8 \times 1 2 6 \times 1 0 0}$	212.71	36.21
Cassini	$\mathbf{9 0 8 7 9}$	$\mathbf{9 4 \times 1 2 8 \times 9 6}$	1102.01	47.90

Surface Reconstruction

- 2-75 times speedup

Model	Resolution	CPU (s)	GPU (s)
Shell Charge	$128 \times 126 \times 126$	3.50	0.14
Head	$\mathbf{7 9 \times 1 0 6 \times 1 2 8}$	0.18	0.08
Bunny	$\mathbf{1 2 8 \times 1 2 6 \times 1 0 0}$	0.68	0.13
Cassini	$\mathbf{9 4 \times 1 2 8 \times 9 6}$	7.59	0.1

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Applications of Max-Norm Computation

e Markov decision processes [Tsitsiklis et al. 96, Guestrin et al. 2001]

- Discrete objects in supercover model [Andres et al. 96]
- Image analysis [Lindquist 99]
- Volume graphics [Wang \& Kaufman 94, Sramek \& Kaufman 99]

Goal

- Efficiently compute max-norm distance between a point and a wide class of geometric primitives
- Motivation
- Voxelization

Voxelization

Represent a scene by a discrete set of voxels

e Reduce to max-norm distance computation

(1r. Outline

- I_{∞} Distance Computation
- Optimization Framework
- Specialized Algorithms
- Complex Models
- Bounding Volume Hierarchy
- Graphics Hardware Approach

Optimization Framework

e Convex Primitives optimization reduces to convex
optimization
e Simpler solution when the query point is inside the
primitive

Outline
I_{∞} Distance Computation Optimization Framework Specialized Algorithms - Convex Primitives - Algebraic Primitives - Triangulated Models - Complex Models

117. Algebraic Primitives

- Equation solving approach
- Applicable to convex and non-convex primitives
- Solve for the closest point, x
y

Equation Solving

- Solve above equations for each vertex, edge and face
- Solution set is finite in general

Obtain a set X of feasible values for the closest point

- Calculate $\min \left\{\|x-p\|_{\infty} \mid x \in X\right\}$

Bounding Volume Hierarchy

- Large polyhedral model
- Naïve algorithm
- Minimum over distance to each triangle
- Speed it up using a precomputed bounding volume hierarchy

(1r) Isosurface Extraction

- Marching Cubes [Lorensen \& Cline 87]
e Extended Marching Cubes [Kobbelt et al. 01]
e Dual Contouring [Ju et al. 02]
- Extended Dual Contouring [Varadhan et al. 03]

Marching Cubes

- Given the distance field grid,
- Reconstruct the surface within each grid cell
- Once done with one cell (cube), march to the next

(17) Marching Cubes

e Handle each cell independently

- Because intersection points along grid edges are consistent between adjacent cells
- Reconstructed surface matches at cell boundaries and doesn't leave holes

Our Approach

1. Generate distance field D for the union
2. Obtain an approximation by extracting an

- Isosurface $\{p \mid D(p)=0\}$

(11. Complex Cells

- How do you detect them?
- Solution: Max-Norm Distance Computation

Complex Cells

- Express voxel, face and edge intersection tests in terms of 3D, 2D and 1D max-norm distance respectively.
- A voxel, face, or edge is complex if it is intersecting but does not exhibit a sign change (i.e., a different in the outside/inside status)

Issues

- Many cells in the grid do not contain a part of the final surface - Cull them away
e For each grid cell, first perform the voxel intersection test
θ If the test fails, do not consider the voxel any further
- Makes the algorithm output-sensitive

Issues

Large number of primitives
Each distance and outside/inside query defined in terms of all the primitives

(17) Local Queries

- Perform a local query within each cell by considering only the primitives intersecting the cell

Preserves correctness of the query

- Drastically improves performance

Sharp Features

 features on the boundary of the final surfacee When do two surfaces S1 and S2 intersect each other?

- Track the bisector surface d1-d2, where d1, d2 are the distance functions for the two surfaces [Varadhan et al. 03]

Grid Generation

- Can reconstruct atmost one sharp feature per voxel
- Subdivide voxels with more than one sharp feature

Reconstruction algorithm

e Extended dual contouring algorithm [Varadhan et al. 03]

- can reconstruct arbitrary thin features without creating handles

Ext Dual contouring

Bounds on Approximation

Let \mathbf{S} : exact answer of the union or envelope computation $B(S)$: boundary of S

Our approximation algorithm takes as input $\varepsilon>0$, and generates an approximation $\mathrm{A}(\varepsilon)$
$B(A(\varepsilon))$: denote the boundary of the approximation

- Swept volume computation
e Medial axis computation
- Minkowski sums

Bounds on Approximation

Theorem 1: Given any $\varepsilon>0$, our algorithm computes an approximation $B(A(\varepsilon))$ such that

2-Hausdorff($\mathrm{B}(\mathrm{A}(\varepsilon)), \mathrm{B}(\mathrm{S}))<\varepsilon$,
where 2-Hausdorff is the two sided Hausdorff distance

Bounds on Approximation

Theorem 2:Given any $\varepsilon>0$, our algorithm computes an approximation $\mathrm{A}(\varepsilon)$ to the exact union or envelope \mathbf{S} such that $\mathrm{A}(\varepsilon)$ has the same number of connected components as \mathbf{S}

Corollary: S is connected if and only if $A(\varepsilon)$ is connected

Minkowski Computation

Non-convex polyhedra

References

e A. Sud and D. Manocha. "DiFi: Fast distance field computation using graphics hardware". UNC-CH Computer Science Technical Report TR03-026, 2003 http://gamma.cs.unc.edu/DiFi

- M. Foskey, M. Lin, and D. Manocha. "Efficient computation of a simplified medial axis". Proc. of ACM Solid Modeling, 2003.
- Y. Kim, G. Varadhan, M. Lin and D. Manocha. "Fast approximation of swept volumes of complex models". Proc. of ACM Solid Modeling, 2003.
4 G. Varadhan, S. Krishnan, Y. Kim and D. Manocha. "Feature-based Subdivision and Reconstruction using Distance Field". Proc. Of IEEE Visualization, 2003 (to appear). The University of North Carolina at Chapel hill

