
Theory of Design

Michael Leyton

Center for Discrete Mathematics & Theoretical Computer Science (DIMACS),

Busch Campus, Rutgers University, New Brunswick, NJ 08904, USA.

mleyton@dimacs.rutgers.edu

Abstract

This paper gives an introduction to some of the basic concepts in the book, A
Generative Theory of Shape (Michael Leyton, Springer-Verlag, 2001). The book
develops a new mathematical theory of design, and supports this theory with lengthy
analyses of mechanical CAD/CAM, architectural CAD, solid modeling, kinemat-
ics, etc., as well as the principal areas of perception, such as visual grouping. Of
central concern is how complex design tasks are made understandable and struc-
tured intelligently. For this, new classes of algebraic structures are invented that
embody understandability and intelligence. These structures are called unfolding
groups. They unfold structure from a maximally collapsed version of that structure,
in such a way that exploits transfer of existing structure and recoverability of gen-
erative operations. A principal aspect of the theory is that it develops an algebraic
formalization of object-orientedness. The result is what we believe to be the first
object-oriented theory of geometry.

Keywords: Shape, Geometry, Generative, Design, Robotics, Group theory, Sym-
metry, Wreath products.

1 Introduction

This paper gives an introduction to some of the basic concepts in the book A Generative
Theory of Shape (Michael Leyton, Springer-Verlag, 2001). The book develops a new
mathematical theory of design, and supports this theory with lengthy chapters on me-
chanical CAD/CAM, architectural CAD, solid modeling, etc. For instance, it gives an
extensive mathematical theory of the main stages of MCAD/CAM: part-design, assem-
bly and machining. And within part-design, it gives an algebraic analysis of sketching,
alignment, dimensioning, resolution, editing, sweeping, feature-addition, and intent-
management. Related also to CAD, the book develops an algebraic theory of robot
manipulators and relative motion (for perception, animation and physics).

The central concern of the book is the analysis of intelligent shape-generation.
Design should proceed intelligently, and software should support the intelligent needs
of the designer as well as the moments of generative insight.
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At the very basis of the theory, we define two criteria as fundamental to intelligent
design:

(1) Maximization of transfer.
(2) Maximization of recoverability.

These two criteria will be introduced in the following two sections.

2 Maximization of Transfer

Superficially, design seems to involve the successive addition of structure. How else can
one account for the fact that the design object appears to structurally grow? However, a
careful analysis of how designers work, reveals that there is actually very little new struc-
ture added, as design proceeds. What actually happens is that designers tend to create
each additional structural component as a transfer of an already existing component.

To illustrate, consider the way in which an architect draws the plan of an apartment
building which will have studios, one-bedroom apartments and two-bedroom apart-
ments. The following is the typical scenario, as found, for example, in a training
manual for AutoCAD [24]. First the architect will generate the studio by copying and
offsetting lines. For example, a wall can be created by drawing an initial line, and
offsetting it some small parallel distance. Notice that an offset is the transfer of the
initial line. Next, to create the opposite wall of the room, the architect copies this pair of
lines as a single unit to the other position. That is, he transfers the transfer. When the
drawing of the studio is complete, it is then saved in its own computer file. Next, rather
than drawing the one-bedroom apartment from scratch, the architect takes the drawing
for the studio apartment and modifies it until he obtains the one-bedroom apartment.
This will involve copying the single room defining the studio, to make two rooms (living
room and bedroom), adjusting the individual walls, copying and rearranging the closets,
moving the kitchen units, etc. The drawing of the one-bedroom apartment is then saved
in its own computer file. Finally, the two-bedroom apartment is created by applying the
same kind of process to the one-bedroom apartment.

Thus, at all levels, the architect is essentially transferring existing structure. Re-
markably, considering the fact that the studio was itself created merely by offsets of
lines, the entire process of creating the successive apartments takes place by transfer
of transfer.

We shall say that design exploits the following basic principle:

MAXIMIZATION OF TRANSFER. Alternative statements of the principle:

(1) Make one part of the generative sequence a transfer of another part of
the generative sequence, whenever possible.

(2) Exploit existing structure rather than create new structure.

(3) Maximize re-usability.
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A substantial part of our theory of intelligent design will be to develop an algebraic
theory of transfer. For this, we invent a new class of (mathematical) groups called
unfolding groups. As an example, such groups will unfold the studio apartment from
a minimal set of primitive elements, then unfold the one-bedroom apartment from the
studio, and then unfold the two-bedroom apartment from the one-bedroom apartment,
etc. An unfolding group is a group that consists of a subgroup we will call an alignment
kernel that expresses the minimal structural elements needed in the design. The re-
mainder of the unfolding group consists of subgroups that will unfold the full complex
structure outward from the alignment kernel, by hierarchical transfer of transfer.

3 Maximization of Recoverability

A generative theory of shape represents a given data set by a sequence of operations
that generates the set. This sequence of operations must be inferrable from the set.
We shall say that the operations are recoverable from the data set. It will be seen that
recoverability of the generative sequence places strong constraints on the inference rules
by which recovery takes place, and on the generative sequences that can be inferred.
This, in turn, produces a theory of geometry that is very different from the current
theories of geometry.

Essentially, the recoverability of generative operations from the data set means that
the shape acts as a memory store for the operations. More strongly, we will argue that
all memory storage takes place via geometry. In fact, a fundamental proposal of our
theory is this:

Geometry ≡ Memory Storage.

As we shall see, this theory of geometry is fundamentally opposite to that of Klein’s
Erlanger Program, which has dominated most of 20th century geometry and physics.
In Klein’s program, geometric objects are defined as invariant under actions. However,
if an object is invariant under actions, the actions are not recoverable from the object.
Therefore Klein’s theory of geometry concerns memorylessness, and ours concerns
memory retention. We argue that the latter leads to a far more powerful theory of shape.

4 Complex Shape Generation

The primary goal of the book is to handle complex shape. Modern design software
is used to generate enormously complex structures, e.g., the design of an aircraft can
consist of several million objects. The design team is therefore faced with an over-
whelmingly complex task that must be converted into an entirely understandable form.
This exemplifies the general problem that we will investigate:
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(1)The conversion of complexity into understandability:The basic purpose is to give
a generative theory of complex structure such that the complexity is entirely accounted
for, and yet the structure is completely understandable.

(2) Understandability and intelligence:We shall see that understandability of a struc-
ture is achieved by maximizing transfer and recoverability.

(3) The mathematics of understandability: A significant portion of the book is the
development of a mathematical theory of how understandability is created in a structure.

5 Object-Oriented Theory of Geometry

Object-oriented programming is basic to geometric applications of computers, e.g.,
computer-aided design, solid modeling, kinematic simulation, etc. One of the general
motivations for object-orientedness is re-usability; e.g., the decomposition of software
into re-usable components called objects (classes), the decomposition of an object into
data and re-usable actions on data, the passing of re-usable properties from parent to
child in an inheritance hierarchy, etc.

According to section 2, our algebraic theory of transfer is an algebraic theory of re-
usability. We will show, therefore, that the algebraic theory of transfer gives a powerful
mathematical formalization of object-oriented programming.

Most crucially, we will be able to give a new theory of geometry that is object-
oriented. To our knowledge, this is the first object-oriented theory of geometry to have
been developed.

6 Transfer

Our two basic principles of intelligent design are maximization of transfer and maxi-
mization of recoverability. We will now begin our theory of transfer, and later go onto
the theory of recoverability, showing how they inter-relate in the algebraic structure.

It will be argued that the appropriate formulation of transfer is as follows: A situation
of transfer involves two levels: a fiber group, which is the group of actions to be
transferred; and a control group, which is the group of actions that will transfer the fiber
group. The justification for these structures algebraically being groups will be given
later, but the theory of transfer will work equally for semi-groups, which is the most
general case one would need to consider for generativity.

Now, one can think of transfer as the control group moving the fiber group around
some space; i.e., transferring it. This is illustrated in Fig 1. The transferred versions
of the fiber group are shown as the vertical copies, and will be called the fiber-group
copies. The control group acts from above, and transfers the fiber-group copies onto
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Figure 1: The control group transferring the fiber group.

each other, as indicated by the arrow. This will often be referred to as a structure of
nested control.

A basic part of our approach is this:

(1) Give an algebraic theory of transfer.

(2) Reduce complex situations down to structures of transfer.

Transfer will be modeled by a group-theoretic construct called a wreath product, to
be explained. Intuitively, a wreath-product is a group that contains the entire structure
shown in Fig 1; that is, it has an upper subgroup that will be called a control group,
and a system of lower subgroups that will be called the fiber-group copies. The control
group sends the fiber-group copies onto each other. It does so simply by conjugating
them onto each other.

The entire group, the wreath product, will be notated in the following way:

Fiber Group w© Control Group.

It should be emphasized that the upper group, the control group, is shown to the right
of the lower group, the fiber group.

Formulating transfer in terms of wreath products has enormous advantages, as fol-
lows: (1) A wreath product is a group that contains all the transferred versions of the
fiber group. Thus, rather than thinking of the transferred versions as separate algebraic
entities, they are all integrated within a single algebraic structure. (2) This single alge-
braic structure also encompasses the control group. Thus the wreath product contains
the network of algebraic connectivity that relates the control group to the fiber group.
This algebraic connectivity will explain an enormous amount in design.
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Figure 2: The generation of a side, using translations.

7 Initial Examples

Although we will look at highly complex shape later, it is best to begin with a simple
example of how wreath products can be used to model transfer: Let us consider the
generation of a square. The primary scenario for drawing a square, on a sheet of paper,
is to draw the sides in sequence around the figure. The intelligent thing is to notice that
this scenario can be broken down into one of transfer, as follows:

The first side is generated by starting with a corner point, and applying translations
to trace out the side, as shown in Fig 2. Next, this translational structure is transferred
from one side to the next - rotationally around the square. In other words, there is
transfer of translations by rotations. This is illustrated in Fig 3.

Figure 3: Transfer of translation by rotation.

Therefore, we argue that the transfer structure is defined as the wreath product:

Translations w© Rotations

where Translations is the fiber group and Rotations is the control group. Recall that, in
any transfer situation, the control group moves the fiber group around.
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The translation group will be denoted by the additive group R. The rotation group
is Z4, the cyclic group of order 4, represented as

Z4 = { e, r90, r180, r270 }

where rθ means clockwise rotation by θ degrees. Thus the transfer structure illustrated
in Fig 3, is this:

R w© Z4. (1)

Now observe that the group at (1) gives generative coordinatesto the square, as
follows. Any point on the square can be described by a pair of coordinates:

(t, r) ∈ R w© Z4

where t ∈ R and r ∈ Z4. The first coordinate gives the generative (translational)
distance along a side, and the second coordinate gives the generative (rotational) distance
of a side from the first generated side. Therefore a point is given a complete generative
description from the origin.

Fig 4 illustrates this by giving the coordinates of four of the points.
The crucial thing to observe is that the coordinates maximize transfer. Fig 5 illus-

trates this by showing that the coordinates on one side are a transfer of the coordinates
of another side.

Now, deformed shapes are handled in our system by adding extra layers of transfer.
For example, to obtain a parallelogram, one adds the general linear group GL(2, R)
onto the two-level group of the square thus:

R w© Z4 w© GL(2, R). (2)

Notice that the operation used to add GL(2, R) on to the lower structure R w©Z4 is, once
again, the wreath-product w©which means that GL(2, R) acts by transferring R w©Z4, as
follows: Since the fiber group R w©Z4 represents the structure of the square, this means
that GL(2, R) transfers the structure of the square onto the parallelogram. In particular,
it transfers the generative coordinates of the square onto the parallelogram. For example,
GL(2, R) transfers the four points on the square in Fig 4 onto the corresponding four
points on the parallelogram, as shown in Fig 6.

More deeply still, the fiber group R w©Z4 in expression (2) is itself a transfer structure,
as seen in Fig 5, where rotation transferred the translation process from the top side
onto the right side. This transfer structure is itself transferred, by GL(2, R), onto the
parallelogram, as shown in Fig 7. That is, we have transfer of transfer . This recursive
transfer is encoded by the successive w© operations in expression (2).

The theory is equally applicable to 3-dimensional shape. For example, consider
the structure of a cylinder. In computer vision and graphics, cylinders are described
generatively as the sweeping of the circular cross-section along the axis, as shown in
Fig 8. To our knowledge, the group of this sweeping structure has never been given.
We propose that the appropriate group is:

SO(2) w© R. (3)
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Figure 4: The coordinates of four points.

Figure 5: The control-nested structure of those coordinates.
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Figure 6: The transferred coordinates from a square.

Figure 7: The transfer of transfer.
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Figure 8: The sweep structure of a cylinder.

Notice that it uses the wreath-product operation w© rather than the direct product ×
(which is the classical definition). The operation w© means that this new group has a
fiber-control structure, in which SO(2) is the fiber group and R is the control group.
This is exactly what is seen in the sweeping structure shown in Fig 8. The cross-section
is generated first as a fiber, and then its position is controlled by translation.

Now consider deformations of the cylinder. According to our theory, these are
obtained merely by adding a deforming group, e.g., a group of spline tensors, H, onto
the group of the cylinder, as a higher level of transfer, thus:

SO(2) w© R w©H. (4)

The operation used to add H onto the lower structure SO(2)w©R is, once again, the
wreath-product w©. This means that the structure of the straight cylinder is transferred
onto the structure of the bent cylinder. It is this transfer that allows us to see the bent
cylinder as a distorted version of the straight one, i.e., ensuring recoverability.

As another example of this approach to deformation, consider the projectively dis-
torted grid of squares in Fig 9. We propose that the undistorted grid of squares is
generated by the wreath product:

R w© Z4 w© Z
H w© Z

V

where the first two levels R w©Z4 is the square, as before; and the next level Z
H is the

group of horizontal translations; and finally Z
V is the group of vertical translations

("vertical" and "horizontal" mean intrinsic to the grid). Then, to get the projective
distortion, one merely adds the projective group as an extra level of control thus:

R w© Z4 w© Z
H w© Z

V w© PGL(3, R). (5)

Thus the projective group transfers the undistorted grid onto the distorted one; i.e.,
projection is described as transfer. The important thing to notice is that the structure is
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exhaustively generative, from the lowest to the highest level, and that this generativity
has been entirely described as a hierarchy of transfer.

Figure 9: A grid of squares distorted by projection.

8 The Designer’s Detection of Transfer

Now, in the design process, the designer must detect the fact that parts of the generative
sequence can be transferred onto other parts of the generative sequence. Our theory
allows us to algebraically formulate the designer’s detection of transfer.

Let us illustrate this first with a square. Initially, the designer notices that each
side can individually be generated by applying the translation group R. However, these
detections are in parallel, because the designer has not yet noticed that the sides can
be transferred to each other by rotation. Therefore the four translational groups R are
initially independent. We will model this independence, or parallelism, by saying that
the four groups have a direct product relation thus:

R× R× R× R.

Next, the designer notices that the four groups R can be rotated onto each other. We
will model this detection by adding Z4 onto the direct product via a splitting extension,
thus:

[R× R× R× R] s© [Z4].

The splitting extension symbol s©means that Z4 acts as a symmetry group on the group
to its left, i.e., on the product of fiber groups R. The particular symmetry action we
choose here is to have Z4 rotate the fiber groups R onto each other. Therefore:

Detection of transfer is modeled by a splitting extension that identifies
a symmetry in a direct product below.
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Some terminological comments: The full group,

[R× R× R× R] s© [Z4] (6)

is an example of what one calls a wreath product. It can be written either as shown in
(6), where all the fiber-group copies are explicit - and the splitting extension symbol s©
is used. Or it can be written like this:

R w© Z4

where only a single fiber group is shown, and one uses the wreath-product symbol w©.
The two notations mean exactly the same thing.

9 Shape Generation by Group Extensions

One can see from the above discussion that the concept of group extension is basic to
our generative theory. A group extension takes a group G1 and adds to it a second group
G2 to produce a third, more encompassing, group G, thus:

G1 E© G2 = G

where E© is the extension operation. See our book on group extensions, Leyton [22].
It is clear, looking back over the examples given so far, that according to our theory:

Shape generation proceeds by a sequence of group extensions.

That is, shape generation starts with a base group and successively adds groups obtaining
a structure of this form:

G1 E© G2 E© . . . E© Gn.

This approach to shape-generation differs substantially from standard shape-grammar
approaches, which are based on the application of production rules. In our approach,
structural elements correspond to groups, and the addition of structural elements corre-
sponds to group extensions.

Structural elements−→ Groups.

Addition of structural elements −→ Group extensions.

Furthermore, imposing the condition of maximization of transfer demands that the
structure G1 E©G2 E©. . . E©Gn is a wreath product.
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10 Recoverability

Recall that this generative theory of shape is founded on two principles of intelligence:
maximization of transfer, and maximization of recoverability. The previous sections
began to examine transfer, and it is now necessary to bring in recoverability. By recovery,
we mean the following problem:

Given a data set, recover or infer a sequence of operations that generate
the set.

Our previous book [19] was a 600-page analysis of this problem, and one of the main
conclusions of this analysis was the following:

ASYMMETRY PRINCIPLE. The only recoverable operations are symmetry-breaking
ones. That is, a generative program is recoverable only if it is symmetry-breaking on
each of the successively generated states.

In order to build a theory of design, it is worth considering a psychological example
of the above principle. It is extremely useful, when viewing a design, to understand
how the human visual system recovers from it the design operations that were used
in creating it. Psychological results, such as the following, give insight into this: In
a series of experiments [16] [17], we found that, when subjects are presented with a
parallelogram oriented in the picture plane as shown in Fig 10a, they see it as a rotated
version of the parallelogram in Fig 10b, which they then see as a sheared version of the
rectangle in Fig 10c, which they then see as a stretched version of the square in Fig 10d.
The remarkable thing is that the only data that the subjects are actually given is the first
figure, the rotated parallelogram. The experiments found that, on being presented with
this figure, their minds recovered the generative history shown.

The most important thing is that, to carry out this recovery of successively previous
states, their minds were successively removing asymmetries and recovering symmetries.
Thus, subjects conjectured that the generative history was symmetry-breaking in the
forward-time direction, from square to rotated parallelogram.

Now let us consider design, generally. We argue that the most fundamental fact
about design - a fact that has (to our knowledge) never been pointed out - is that design
is inherently a process of symmetry-breaking. For example, the designer in CAD starts
with shape primitives that are symmetric, and successively breaks their symmetry by
deformation and concatenation.

Understanding design as successive symmetry-breaking allows us to develop a deep
theory of the design process, as follows.

11 Shape Primitives

It is first necessary to understand what the shape primitives are with which the design
process starts. No one has precisely defined the nature of primitives, or systematically
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Figure 10: Psychological results found in Leyton [16] [17].

classified them. In the book, we give a rigorous theory of primitives. The basic claim
is this:

STRUCTURAL AND FUNCTIONAL THEORY OF PRIMITIVES. Primitives
are determined by the maximization of transfer and the maximization of recoverability.
To achieve these maximizations, they are structured by iso-regular groups.

An iso-regular group is a structure that was invented particularly for this generative
theory, and is defined thus:

ISO-REGULAR GROUP. This is a group satisfying the following three conditions:

(1) It is an n-fold wreath product, G1 w©G2 w©. . . w©Gn.
(2) Each level Gi is either a cyclic group or a connected 1-parameter Lie
group.
(3) Each level Gi is represented as an isometry group.

This section deals with the transfer aspect of primitives; and section 13 deals with the
recoverability aspect.

Table 1 gives our systematic classification of surface primitives. Each is given by an
iso-regular group. The top half of the table shows what we call the Level-Continuous
Primitives. In these, each level is continuous. Since there are only two connected
1-parameter Lie groups, SO(2) and R, and since we want to maximize transfer, these
primitives are generated simply by taking all possible 2-level wreath products using
SO(2) and R.
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LEVEL-CONTINUOUS

Plane R w© R

Sphere SO(2) w© SO(2)
Cross-Section Cylinder SO(2) w© R

Ruled Cylinder R w© SO(2)

LEVEL-DISCRETE

Cube R w© R w© Z2 w© Z3
Cross-Section Block R w© Zn w© R

Ruled or Planar-Face Block R w© R w© Zn

Table 1: Classification of primitives by maximizing transfer and recoverability

As an example, consider what the table calls a cross-section cylinder. This was the
cylinder given earlier in Fig 8, that is, the sweeping of a circular cross-section along its
axis. The group we gave for that is:

SO(2) w© R.

The table shows also an alternative generation of a cylinder, which it calls the ruled
cylinder. This time, a straight line within the cylinder surface is transferred around the
cross-section. The transfer again is modeled by a wreath product. This reverses the fiber-
control roles of SO(2) and R from the previous case. Therefore, the wreath-product
hierarchy is this:

R w© SO(2).

Notice now that, by the maximization of recoverability, a cone is not included
because, by the removal of asymmetries, it leads back to a cylinder; i.e., it is not
primitive. The relation between recoverability and primitives is given in section 13.

The lower half of the table gives what we call the level-discrete primitives. These are
primitives in which one level of transfer is a discrete group. The cross-section block and
ruled block correspond to the two cylinder cases just discussed, where the continuous
rotation group SO(2) is replaced by the discrete rotation group Zn, and an extra fiber
level R is wreath sub-appended below the rotation group to correspond to the side.

The remaining entry in the table is the cube, which will be dealt with in the next
section.

Clément, Rivière, & Temmerman, [2], and Srinivasan, [30] [31], have developed a
different group-theoretic method for characterizing primitives. Their approach begins
with the full Euclidean group and successively restricts this to subgroups until they
reach subgroups corresponding to primitive surfaces. One can therefore characterize
their approach as top-down. In contrast, the approach developed in this paper, being
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generative, is bottom-up, successively adding 1-generator groups as layers. We believe
that both the approaches have value in different circumstances.

12 Theory of Reference Objects

Reference objects are an essential part of design. For example, in MCAD, one standardly
begins by selecting a construction plane from the three coordinate planes of the Cartesian
frame, and one then draws a 2D sketch on the selected plane and sweeps the drawing out
from that plane, to create a 3D object. Let us now understand the role of such reference
objects.

First, for convenience, let us introduce the following two simple terms, which will
be useful in the theory. Let us define a process to be an action of a cyclic or 1-parameter
Lie group; and let us define a phase as a sequence of processes.

It is obviously the case that a reference object begins a phase of the shape-generation
procedure. This is because it is used as a reference for the phase.

The crucial factor to now bring into consideration is the Asymmetry Principle which
says that the generation of a shape is recoverable from a data set only if it is symmetry-
breaking on successively generated states. Thus recoverable shape-generation must
proceed from a symmetry ground-state to an asymmetrization of that ground-state.

Thus by using the Asymmetry Principle, we conclude that any phase of shape-
generation must be a progression from symmetry to asymmetry. This leads us to propose
the following:

THEORY OF REFERENCE OBJECTS. Any reference object corresponds to the
symmetry ground-state of a phase. When there is a sequence of phases, a reference
object occurs at a phase-transition. It corresponds to the point of maximal symmetry
(start point) of the new phase and the point of maximal asymmetry (end point) of the
previous phase.

Using this theory, let us now understand the role of construction planes: First observe
that Table 1 gives a cube essentially as the group Z2 w© Z3 where the fiber Z2 represents
the reflectional symmetry between two opposite faces, and the control Z3 transfers
this reflectional symmetry between the three pairs of opposite faces of the cube. In
fact, for convenience, consider the slightly larger group Z2 w© Σ3, where Σ3 is the full
permutation group on three elements; i.e., this will permute the three pairs of opposite
sides of the cube. We will call Z2 w© Σ3 the hyperoctahedral wreath group. The
structure of the group is this:

[Z2 × Z2 × Z2] s© Σ3 (7)

which explicitly shows the three reflection fibers Z2 to the left of the extension symbol
s©. These three fibers correspond to the three pairs of opposite faces of the cube. The
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group Σ3 to the right of the symbol s©will transfer the three reflectional pairs onto each
other.

This group is particularly important in the generative theory: It is our claim that
it gives the main structure of the 3D Cartesian frame as a datum object, and that any
construction plane is the selection of one of the reflection fibers. Thus, consider again
the standard procedure of part-design in MCAD: The software presents the designer
with the 3D Cartesian frame, as shown in Fig 11. The designer then selects one of the
three planes as the construction plane, and draws a 2D sketch on the selected plane. He
then sweeps the drawing out from that plane, to create a 3D object.

Figure 11: The designer chooses one of the 3 Cartesian planes as a construction plane.

According to our theory, what is going on here is as follows: The initial 3D Cartesian
frame, i.e., with three planes, has a symmetry structure given by the hyperoctahedral
wreath group, where the three planes correspond to the three reflection fibers. The
designer then selects one of the three reflection fibers as construction plane, makes
the drawing within the fiber, and then sweeps the fiber in the perpendicular direction.
This breaks the reflectional symmetry of the fiber as well as the full hyperoctahedral
wreath group. Therefore, these actions accord with our theory that reference objects are
symmetry-ground states of phase transitions, and that the phases break the symmetries
of those ground-states.

13 Externalization Principle

Let us now return to the problem of recoverability; i.e., inferring from a given data
set (such as a design) the past generative operations that produced the data set. It is
necessary to distinguish between two types of inference:
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External inference. The data set contains a record of only one state (e.g., only a single
photograph). Therefore the "spatial arrangement" in the data set represents part of the
structure of an individual state.

Internal inference. The data set contains records of several states (e.g., several pho-
tographs taken along the generative history). Therefore some of the "spatial arrange-
ment" in the data set, represents structure between successive states.

We will now give a rule that turns out to be fundamental to the entire process of recovering
generative history:

EXTERNALIZATION PRINCIPLE. In a generative sequence inferred by external
inference, the inferred starting state is structured by an iso-regular group.

The Externalization Principle gives the profound basis of CAD, as follows: Computer-
aided design proceeds by a sequence of symmetry-breaking actions. The designer
selects primitives which then undergo deformation and Boolean combination. In accord
with the Externalization Principle, the primitives are characterized by iso-regular groups.
The subsequent deformation and Boolean combination breaks the iso-regularity, as we
shall now see.

Let us first illustrate the fact that Boolean combination destroys iso-regularity. The
left-most diagram in Fig 12 shows two primitives, a cylinder and a cube, both of which
are characterized by iso-regular groups. The three figures to the right show the effects
of applying the three Boolean operations (to the primitives as solids). One can see that
the resulting solid, in each of the three cases, cannot be characterized by an iso-regular
group. Thus the effect of Boolean combination is to destroy iso-regularity.

Section 23 will show how to formulate Boolean combination in more detail. The
next section will show how to formulate deformation.

14 The Meaning of Deformation

Standardly, in mathematics, one describes deformation as a smooth action on some
object. However, for us, the fault of this definition is that it does not ensure recoverability.
For example, mathematically, a straight sheet of paper can be obtained from a twisted
sheet of paper by deformation. However, no one would describe a straight sheet of
paper as a deformed object. The reason is that the deformation is not recoverable from
the straight sheet. This is crucial for CAD: When presented with a design involving
straight surfaces, one does not want to conjecture that they were the result of twisting.
In contrast, when presented with a design such as Frank Gehry’s Guggenheim Museum,
one wants to conjecture that the surfaces were the result of deformation. Thus we need
a definition of deformation that ensures recoverability.
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Figure 12: The Boolean operations.

Note that the basis of this must be the Asymmetry Principle (section 10), which
states that the only recoverable operations are symmetry-breaking ones. In particular,
to fully characterize deformation, one needs the Externalization Principle (section 13)
which is the use of the Asymmetry Principle in all cases of external inference. That is,
we have:

DEFORMATION. Deformation is the smooth breaking of an iso-regular group.

For instance, a parallelogram cannot be described by an iso-regular group. However,
it is generated by breaking the iso-regular group of the square. Similarly, a bent pipe
cannot be described by an iso-regular group. However, it is generated by breaking the
iso-regular group of the straight pipe.

The important thing to understand now is that, in our theory, the breaking of iso-
regularity is itself given by adding levels of transfer onto the existing iso-regular group.
For example, recall from section 7 that a parallelogram is obtained by adding GL(2, R)
onto the iso-regular group R w©Z4 of a square, as a higher level of transfer, thus:

R w© Z4 w© GL(2, R).

Notice that this group sequence is no longer an iso-regular group, since the final control
group GL(2, R) is not an isometry group.

Similarly, a deformed cylinder is obtained by adding a spline tensor group H onto
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the iso-regular group SO(2)w©R of a straight cylinder, as a higher level of transfer, thus:

SO(2) w© R w©H.

Notice that this is no longer an iso-regular group, since the final control groupH is not
an isometry group.

Similarly, a projectively distorted grid of squares is obtained by adding the projective
group PGL(3, R) onto the iso-regular group R w©Z4 w©Z

H w© Z
V of the regular grid, as

a higher level of transfer, thus:

R w© Z4 w© Z
H w© Z

V w© PGL(3, R).

Notice that this is no longer an iso-regular group, since the final control groupPGL(3, R)
is not an isometry group.

The important thing to observe is that the operation used to add the extra group
onto the iso-regular group is, once again, the wreath-product w©. This means that the
non-deformed structure is transferred onto the deformed structure. It is this transfer,
and the fact that it is symmetry-breaking, that allows us to see the deformed structure
as a version of the non-deformed one; i.e., ensuring recoverability.

15 Theory of Symmetry-Breaking

A basic factor emerges from the above discussion: In order to ensure recoverability, the
control group must be symmetry-breaking on its fiber. Notice that this gives a far more
powerful theory of symmetry-breaking than the conventional one that underlies physics
and chemistry.

CONVENTIONAL VIEW OF SYMMETRY-BREAKING. Symmetry-breaking is
a reduction of symmetry group.

Thus the transition from a square to a parallelogram is conventionally given by the
following reduction in symmetry group:

D4 −→ Z2.

However, according to our view, this is inherently weak because it means a loss of
algebraic structure. In our approach, symmetry-breaking actually preserves the original
group. The breaking of a symmetry group G1 is carried out by extending G1 by another
symmetry group G2 via a wreath product thus: G1 w©G2. The original symmetry is given
by the fiber copy of G1 which corresponds to the identity element in the control group
G2. Non-identity elements in G2 break the symmetry of the fiber group. Most crucially,
in our view, symmetry-breaking corresponds to an increase in symmetry group!

20



NEW VIEW OF SYMMETRY-BREAKING. Symmetry-breaking is extension via
a wreath product. The extending group is the symmetry group of the asymmetrizing
action.

16 Algebraic Theory of Inheritance

We shall now go more deeply into the process of design. For this, it is necessary to
introduce some of our algebraic theory of inheritance.

The term inheritance, in object-oriented programming, refers to the passing of prop-
erties from a parent to a child, [23]. The child incorporates these parent properties, but
also adds its own.

This kind of structure covers two types of situation. The first is class inheritance,
which is a static software concept, and the second is a type of dynamic linking created
at run-time. The book gives an algebraic theory of both types of inheritance, but we
will have time to deal here with only the latter.

This run-time inheritance is fundamental to all computer-aided design, assembly,
robotics, animation, etc. A typical example is a child object inheriting the transform
of a parent object, and adding its own. For example, in architectural CAD, a door is
defined as a child of a wall, and moves with the wall if the designer decides to change
the position of the wall. However, the door can also open and close with respect to its
attached position in the wall. This means that the door inherits the movement of the
wall, but adds its personal movement with respect to the latter.

Now for the basic statement of our algebraic theory of inheritance:

ALGEBRAIC THEORY OF INHERITANCE. Inheritance arises from a wreath
product:

Parent ←→ Control group
Child ←→ Fiber group

Notice that this means that the basis of inheritance is transfer. The enormous power of
this theory is that it explains inheritance in all of CAD, robotics, assembly, animation,
and so on, as will be illustrated.

Before going on to applications, let us first consider diagrammatic aspects of cur-
rent programs. Because run-time inheritance is created by the designer, it is usually
represented by diagrams that the designer can view. It will be useful for us to show how
these diagrams can be converted into algebra. A good diagrammatic representation is
used by 3D Studio Max, as illustrated in Fig 13. Here, inheritance is represented by
indentation - i.e., an indented object is a child of the next object above with respect
to which it is indented. Each object, except the World object, has a transform shown
just below it. The transform relates the coordinate frame of the object to the coordinate
frame of its parent. This transform is the "personal" transform of the object. In addition,
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Figure 13: The representation of parent-child relations in 3D Studio Max.

the object inherits the transform of its parent. The object therefore adds its personal
transform to its inherited transform. This means, of course, that via its parent, it inherits
the transform of its parent’s parent, and so on. We shall now show how to convert such
diagrams into algebra.

GROUP OF ENTIRE TRANSFORM STRUCTURE. Consider a set of n + 1
objects: Object 1 to n, and the World. Suppose that they are linked such that Object i
is the child of Object i + 1, and Object n is the child of the World. Then the group of
the entire transform structure is the wreath product:

F1G
F2
1 w© F2G

F3
2 w© . . . w© FnGW

n

where:

(1) Object i has personal transform group Gi and frame Fi.
(2) Personal transform group Gi relates frame Fi+1 of the parent, upper
index, to the personal frame Fi, lower index. (The world frame Fi+1 is
written as W .)

Notice that the subscript i of the group Gi is the same as the subscript i of its lower
index Fi; that is, Gi and Fi are both personal to the Object i defining that level.

17 Theory of Relative Motion

Relative motion is basic to the design of articulated kinematic systems. As an example
of our algebraic theory of inheritance, we are going to give a theory of relative motion in
human perception, classical and quantum mechanics, robotics, and computer animation.
The theory is simply this:

ALGEBRAIC THEORY OF RELATIVE MOTION. A relative motion system cor-
responds to a wreath product in which the relative motion is given by the fiber group
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Figure 14: A relative motion system.

and the absolute motion, to which it is judged, is given by the control group:

relative motion w© absolute motion.

As an example, consider Fig 14, which shows circular motion, which itself is moving
along a line. This occurs, for instance, when a wheel is moving along the ground.
Observe that the circular motion is the relative motion; and the motion along the line is
the absolute motion. The circular motion is given, of course, by the group SO(2), and
the linear motion is given by the translation group R. Most crucially, one can see from
the diagram that the entire system is given by a wreath product in which the circular
motion is the fiber group and the absolute motion is the control group. The reason is
that there is one copy of the fiber group SO(2) for each point in the control group R.
That is, one has the wreath product:

SO(2) w© R.

Our book shows that this theory explains all the main motion examples of Gestalt
perceptual psychology - induced motion, separation of systems, the Johansson motion
phenomena, etc. The rule is this:

Decompose the motion into two symmetry groups, such that one group
transfers the other.

This gives a wreath product where the transferring symmetry group is the control group
and the transferred symmetry group is the fiber group.

This also formulates the standard decompositional procedures in classical and quan-
tum mechanics. For example, it describes the well-known result that the total angular
momentum of a system of particles about an origin O is decomposable into two com-
ponents - the angular momentum of the particles with respect to the center of mass, and
the angular momentum of the center of mass with respect to the origin O. Furthermore,
it gives the well-known re-description of a two-particle system in terms of fictitious
masses - the total mass and the reduced mass.

As illustrations of our theory, let us now consider serial-link manipulators, and then
animation.
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18 Serial-Link Manipulators

Standardly in a serial-link manipulator (such as the human arm), one says that the frames
of two successive links are related by a special Euclidean transformation Ai, and thus
the overall relationship between the hand coordinate frame and the base coordinate
frame is given by the product of matrices

A1A2 . . . An (8)

corresponding to the succession of links.
Now, in setting up the object-oriented structure of such manipulators, one usually

stipulates that a distal link is a child of the next proximal link, and so on, successively
along the manipulator. Our argument is that this arises from the transfer structure: The
distal link has a space of actions that is transferred through the environment by the next
proximal link. This exemplifies our claim that the basis of inheritance is the deeper
notion of transfer. It is this that allows us to formulate inheritance algebraically in terms
of wreath products. Thus, we argue that the group of a serial-link manipulator has the
following wreath-product structure:

SE(3)1 w© SE(3)2 w© . . . w© SE(3)n (9)

where each level SE(3)i is isomorphic to the special Euclidean group SE(3), and the
succession from left to right corresponds to the succession from hand to base (distal to
proximal).

The entire group we have given in (9) for the serial-link manipulator, is very dif-
ferent from the group that is normally given in robotics for serial-link manipulators.
Standardly, it is assumed that, because one is multiplying the matrices in (8) together,
and therefore producing an overall Euclidean motion T between hand and base, the
group of such motions T is simply SE(3). However, we argue that this is not the case.
The group is the much more complicated group given in expression (9). The conven-
tional group SE(3) necessarily models the arm as a rigid structure, whereas the wreath
product (9) models the arm as a structure we call semi-rigid: a group where rigidity
breaks down at a discrete set of points. Most crucially the wreath product models the
object-oriented structure, which is basic to all computation concerning the kinematics.

19 Animation

Now let us consider animation. A basic aspect of animation is the setting up of refer-
ence frames and inheritance relations between those frames. In order to illustrate our
algebraic theory, consider a solar system consisting of the earth revolving around the
sun, and the moon revolving around the earth. The most powerful method of simulating
this is to use not only a frame fixed within each planet, but a dummy frame (within
the planet) that rotates relative to the frame of the planet. Fig 15 shows the inheritance
diagram that would be set up in 3D Studio Max [5].

24



Figure 15: Inheritance hierarchy for a solar system.

Now using our method for converting inheritance diagrams into algebra (section
16), we see that the group of this inheritance structure is the following wreath product:

mT ed w© edSO(2)e w© eT
sd w© sdSO(2)s w© sT

w. (10)

The symbols are as follows: There are two groups involved: T , the 2D translation
group, and SO(2), the rotation group. These two groups alternate down the sequence.
Also, going down the sequence, the respective frame-symbols are w = world; s = sun;
sd = sun-dummy; e = earth; ed = earth-dummy; m = moon.

20 Complex Shape

Let us now turn to the main purpose of the book: the representation of complex shape.
As stated, the goal is to develop a systematic analysis of complex shape, such that
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complexity is converted into understandability. To solve this problem, we develop a
symmetry group for a complex object. Organized in accord with the theory of transfer
and recoverability, this group will contain all the required information for designing the
object, manufacturing it, manipulating it, navigating with respect to it, etc.

It is worth considering what our research procedure was to create the following
group theory of complex objects: We worked through every single operation in each
of several main CAD, solid modeling, assembly, and animation programs, including
AutoCAD, Architectural Desktop, Mechanical Desktop, ProEngineer, 3D Studio Max,
etc., as well as all the major manuals on each of the programs - approximately 15,000
pages of text. Each individual situation was characterized by a group, and a new class
of groups was invented for any situation that could not be formalized in terms of any
previously created class of groups. Proceeding in this manner, it was eventually found
that three classes of groups could handle any newly created situation:

(1) Telescope groups.
(2) Super-local unfoldings.
(3) Sub-local unfoldings.

Thus our current assumption is that these groups can handle any complexity in shape
generation.

Besides formulating these three classes of groups, we formulated the notion of an
unfolding group, which is the over-arching class that contains these three types.

The basic idea of an unfolding group is that any complex structure such as a design
in CAD, or a scene in computer vision, is unfolded from a maximally collapsed version
of itself, which we call an alignment kernel. The full structure is unfolded outwards
by applying transfer from different parts of the alignment kernel. The following gives
a basic description of unfolding groups:

UNFOLDING GROUPS

Unfolding groups are characterized by the following two properties:

SELECTION:The control group acts selectively on only part
of its fiber.

MISALIGNMENT: The control group acts by misalignment.

Major classes of unfolding groups are structured by starting with a
configuration in which n primitives are maximally aligned. This con-
figuration will be called the alignment kernel. The unfolding causes suc-
cessive misalignment of the primitives. Because this works by transfer,
the unfolding action maps the alignment kernel onto misaligned ver-
sions of itself. We formalize this in the following way:
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(1)There arenobjects which have symmetry groupsG1, . . . , Gn. These
correspond to theprimitives. They are given by iso-regular groups.

(2) One forms the direct product,G1 × . . . × Gn, and makes this the
fiber group of a wreath product, with control group G(C), thus:

[G1 × . . .×Gn] w© G(C).

The direct product G1 × . . . × Gn should not be confused with the
product of fiber-group copies. It is a single fiber group.

(3) In the above wreath product, any fiber-group copy, i.e., any copy
of G1 × . . .×Gn, corresponds to anobject configuration.

(4) Let the fiber-group copy in which the object symmetry groups
G1, . . . , Gn are maximally aligned with each other, be called thealign-
ment kernel. Choose this to be the fiber-group copy corresponding to
the identity element of the control group.

(5) The control group transfers object-configurations[G1× . . .×Gn]g
onto object-configurations[G1 × . . . × Gn]h. In doing so, it pulls the
objects out of alignment with each other. The control group is there-
fore symmetry-breaking on the alignment kernel, by creating misalign-
ment.

21 Telescope Groups

The remainder of the paper gives a basic description of the three crucial types of un-
folding groups and their role in design.

To get an intuitive sense of telescope groups, think of an ordinary telescope. In an
ordinary telescope, you have a set of rings that are initially maximally coincident. Then
you pull them successively out of alignment with each other. A telescope group is a
group structured like this.

Let us look at this in more detail. In a telescope group, the initially coincident
objects are n primitives. The fiber group is a direct product of the symmetry groups of
those primitives:

[G1 × . . .×Gn]T

whereT denotes "telescope". The configuration in which these primitives are maximally
aligned is a copy of this fiber group, called the alignment kernel. Next, the control group
is itself a wreath product G(C)1 w© . . . w©G(C)n−1 of order n− 1, and hence, with the
alignment kernel, the entire unfolding group is a wreath product of order n.

[G1 × . . .×Gn]T w© G(C)1 w© . . . w© G(C)n−1. (11)
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We now stipulate that each control group G(C)i acts on only the left-subsequence G1×
. . . × Gi of the alignment kernel. Therefore the successive control groups downward
act on successively shorter left-subsequences. This gives the telescope opening effect.

As an example, we argue that the serial-link manipulator is best modeled by a
telescope group. Recall that, in section 18, it was proposed that the group of a serial-
link manipulator is the following wreath product:

SE(3) w© . . . w© SE(3) w© SE(3).

Let us now incorporate more structure into this. If one considers carefully the standard
way of encoding the successive link frames along the manipulator (i.e., as related by
successive Euclidean transformations [4], [25]), one realizes that, in fact, the structure of
frames corresponds to an opening telescope effect. That is, the succession of Euclidean
transformations allows one to consider the set of frames as having come from an initial
state (the group identity element in each level) in which the frames were all coincident at
the base; and they were successively pulled out of alignment by those transformations.
Now, according to our theory of reference objects, section 12, we encode any Cartesian
frame by the hyperoctahedral wreath group Z2 w© Σ3 which expresses the symmetry of
the frame.

Thus, the group of a serial-link manipulator is actually the following telescope
group:

[[Z2 w© Σ3]1 × . . .× [Z2 w© Σ3]n × [Z2 w© Σ3]n+1]T
w© SE(3)1 w© . . . w© SE(3)n. (12)

The first line in this expression is the alignment kernel, and the second line is the control
group which will unfold the kernel as an opening telescope. Notice that the successive
misalignments of the hyperoctahedral wreath groups Z2 w© Σ3 in the alignment kernel
shows that the essense of frame assignment in robotics is unfolding via symmetry
breaking.

22 Super-Local Unfoldings

A frequent design situation is this: The designer selects part of the existing design, copies
it, and then drags the copy to some other region of the design, perhaps with modification;
e.g., walls are created not by drawing a new wall each time but by copying, moving,
and modifying existing walls. We will model this by an unfolding group structured in
the following way:

[G1 . . . Gj ] w© GX
n .

The group in brackets represents a shape, e.g., a design, up to the current state. Then,
one wreath appends a group Gn above this, which acts selectively on only some part
X of the structure below. The wreath product operation here indicates that Gn acts
by transferring X in some way. The entire group is called super-local because it is
created by wreath-appending a control group above an existing structure, such that
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the added control group acts selectively on only part of its fiber. Such groups model
situations, for example, in AutoCAD, where one freezes part of the existing structure
and manipulates some unfrozen cross-hierarchy selection of elements; or conversely,
situations, for example, in 3D Studio Max, where the cross-hierarchy selection is locked
and manipulated over a sequence of steps.

23 Sub-Local Unfoldings

Valuable as super-local unfolding groups are, this is nothing compared with the final
class of groups: sub-local unfoldings. We argue that these characterize what is the
most powerful design process in the world today: Constructive Solid Geometry (CSG).
This is the process of generating complex shape by moving, deforming and combining,
primitives.

In a sense, sub-local unfoldings are generalized versions of telescope groups. In-
tuitively, if we regard a telescope group as an octopus with one arm, we can think of
a super-local unfolding group as an octopus with several arms; indeed the arms can
themselves have arms, and so on.

In fact, what creates the arm structure is the object-oriented inheritance hierarchy.
Standardly, the design process proceeds by creating main objects, and appending child
objects, and so on. According to our theory of inheritance, parents are control groups
and children are fibers, in a wreath product. Therefore the process of creating a design,
or any complex shape, is a process of adding groups below existing groups, via a wreath
product. This is an essential aspect of sub-local unfolding. It corresponds to the prefix
"sub" in the term "sub-local unfolding". However, there is also the other crucial term
"local". And we now have to understand this.

The power of sub-local unfoldings is that they handle anomalies. We argue:

Complex shape generation is the generation of anomalies.

Anomalies are what create complexity. They are the essense for example of linguistics,
i.e., the phenomenon of markedness; and they are the essense of crystal physics, i.e.,
you can only really see a crystal via its defects. Any environment - e.g., a complex
scene in computer vision, an airplane design in mechanical engineering - is, according
to this theory, a hierarchy of anomalies. It is in order to handle this, that we created the
theory of sub-local unfoldings.

Before describing some of the mathematics of sub-local unfolding, it is necessary
to present more of our algebraic theory of object-oriented programming. First of all,
within that theory, there is an analysis of class structure which says that each geometric
class consists of an internal symmetry group, specified often in the invariants clauses of
the software text for the class, and an external group consisting of command operations,
such as deformations, specified in the feature clauses of the class text. A principle claim
of the theory is that the relation between the internal symmetry group and command
structure, in the software text, is a wreath product, thus:

Gsym w© G(C)
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where Gsym is the internal symmetry group and G(C) is the group of command oper-
ations. This has been a basic proposal of all our previous research, e.g., Leyton [14],
[15], [16], [17], [18], [19].

Now let us turn to cloning. It is important to notice that, when one clones an object,
one is producing a copy with the same instance values. This means that one is essentially
creating a copy that is aligned with the original, as can be seen in such programs as 3D
Studio Max and Viz. This copy can then be manipulated via its command operations,
which will then pull the clone out of alignment, i.e., break the symmetry of the object-
clone pair.

With this in mind, let us now return to design. We want to consider object creation
and feature attachment. Feature attachment is the term used in mechanical design for
the successive addition of structural units and components. It is, of course, the main
process in design, [1], [3], [11], [28], [29], [34].

THEORY OF FEATURE ATTACHMENT

When one creates objects and attaches them in the design structure,
one is entering new instances into the alignment kernel, and positioning
the command group for each new instance in the appropriate wreath
position within the unfolding group corresponding to the inheritance
hierarchy of the structure.

The basic rule for positioning the command group is this: Parallel objects are linked by
a direct product, and dependent objects by a wreath product.1

Let us now show how this works for sub-local unfolding. It is best to use an
illustration.2 Fig 16 shows an eight-room apartment. In this apartment, there is a
central main room, as well as six surrounding rooms, and an anomaly: an extension
room off the 5th surrounding room (bottom right).

First observe that the parent-child structure is this: The central main room is the
ultimate parent within the apartment. The six surrounding rooms are its children, which
are in parallel, and the extension is a child of the 5th surrounding room. Now, let us
give the group of the apartment without the anomalous extension:3

[R w© Z4]U
w©[AGL(2, R)×AGL(2, R)×AGL(2, R)×AGL(2, R)×AGL(2, R)×AGL(2, R)]
w©AGL(2, R). (13)

The affine groups AGL(2, R) are the command groups associated with the object in-
stances. They are arranged in accord with the algebraic theory of inheritance; that is,
a parent-child relationship is given by a wreath product, and a parallel relationship is
given by a direct product. Thus to interpret this group: The affine group on the bottom

1Our book [21] shows that the same theory applies to the feature-recognition process, e.g., in machining,
[6], [7], [8], [9], [10], [12], [13], [26], [27], [32], [33]. For example, the standard features produced by a
cylindrical cutter - i.e., the hole, slot, and pocket - are given by iso-regular groups. These are entered into the
alignment kernel, and successively mis-aligned by the unfolding control groups.

2Purely for ease of exposition, the structures in this example will be described only in plan-view.
3Expression (13) is only a schematic abbreviation of the group. The reader should see [21] for full details.
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Figure 16: An eight-room apartment.

line gives the relation between the main room and the world frame. The six affine groups
on the middle line give the relation between the six surrounding rooms and the main
room. The top line represents the alignmnent kernel, which consists of a direct product
of as many instances of the primitive R w© Z4, as are required.

Now observe that the wreath product symbol at the beginning of the bottom line
says that the relation between the main room in the bottom line, and the six rooms in
the middle line, is that of parent to children. More properly, this is a relation between
the command groups of those object instances. The direct products in the middle line
says that the relation between the command groups of the six surrounding rooms is
parallel. Finally, the wreath product at the beginning of the middle line denotes the
relation between the internal symmetry group and command group in the software text
of the object class.

Now, to add the anomaly, i.e., the extension room off Room 5, we wreath sub-append
an extra affine group to the 5th member of the direct product in the second line.

Thus we see illustrated here how feature creation and attachment is handled: The
command groups of the object instances are moved to the required algebraic position
in the unfolding structure.

The crucial thing is that, in the succession through the lines in the above expression,
one is creating symmetry-breaking by successive misalignment.

Generally, our theory of complex shape can therefore be given a summary description
in the following way:

Complex shape generation proceeds by a series of symmetry-breaking
phase-transitions, that occur byselective misalignment. This is given by
a wreath-product hierarchy in which the fiber groups, representing the
symmetry ground-states, are the alignment states, and the successive
control groups create the selective misalignments by transfer. We call
this process,unfolding.
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The substantial algebraic theory developed for this in the book is applied at length
to mechanical design and manufacturing, architectural design, and robotics (as well
as perception). Using the theory of unfolding groups, we work in detail through the
main stages of mechanical CAD/CAM: part-design, assembly and machining. For
example, in part-design, we give an extensive algebraic analysis of sketching, alignment,
dimensioning, resolution, editing, sweeping, feature-addition, and intent-management.
The equivalent analysis is also done for architectural design. The structure of robot
manipulators and assembly is also a central concern.
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