
n the relationship of traditional and Web Services Security protocols 01

On the relationship

of traditional and

Web Services

Security protocols

E. Kleiner and A.W. Roscoe

n the relationship of traditional and Web Services Security protocols 02

Traditional security protocols

We identify traditional security protocols with the common notation
in the literature in the style of Dolev-Yao in which both the concrete
syntax and the concrete cryptographic algorithms are abstracted as
constructors of a free algebra.

1. A→B : {na, A}PK(B)

2. B→A : {na, nb, B}PK(A)

3. A→B : {nb}PK(B)

n the relationship of traditional and Web Services Security protocols 03

Casper - Compiler for Analysing Security Protocols

Casper adopts this notation as its input.

#Protocol description

0. -> A : B

1. A -> B : {na, A}{PK(B)}

2. B -> A : {na, nb, B}{PK(A)}

3. A -> B : {nb}{PK(B)}

n the relationship of traditional and Web Services Security protocols 04

Modelling a protocol

SY STEM =̂ (|||A∈HonestPA) ‖ INTRUDER(IIK)

A BIntruder

send.A.*

receive.*.A

receive.*.B

send.B.*

S
(server)

send.S.* receive.*.S

n the relationship of traditional and Web Services Security protocols 05

Web Services Security - Overview

WS-Security was initially proposed by Microsoft in October 2001.

In June 2002 WS-Security was submitted to the Oasis standard body
and in March 2004 it became an Oasis Standard.

It defines elements to incorporate security tokens within SOAP
messages.

A security token is an XML illustration of a collection of one or more
claims.

A claim is a statement made by an entity and can be name,
password, identity, key or privileges.

XML-Signature and XML-Encryption are used for achieving integrity
and confidentiality of the security tokens.

n the relationship of traditional and Web Services Security protocols 06

XML-Signature

<Signature>

 <SignatureValue/>
 <KeyInfo>?
 <Object>*
</Signature>

<SignedInfo>
 <Canonicalization Method/>
 <SignedMethod/>

</SignedInfo>

<Reference URI=""?>+
 <Transforms/>?
 <DigestMethod/>
 <DigestValue/>
</Reference>

Algorithms that can be used:
DSA, RSA-SHA1 or
HMAC-SHA1

Transformations to apply
before hashing

Value of SignedMethod
applied to SignedInfo

Value of DigestMethod
applied to Reference

The Data to be signed

Key used by SignedMethod

Additional optional object

Figure 1: Structure of XML-Signature element

n the relationship of traditional and Web Services Security protocols 07

Modelling WS-Security

We construct a mapping φ from SOAP messages to Casper input,
such that if a WS-security protocol contains the messages
m1, m2..., mn then,

1. If an attack is found on φ(m1), φ(m2)..., φ(mn) then a
corresponding attack can be reproduced on m1, m2..., mn.

2. If an attack exists on m1, m2..., mn then it also exists on
φ(m1), φ(m2)..., φ(mn). (MFPS05)

More important of the above properties is (2), since we definitely do
not want to generate a false “proof” of correctness using the
translation.

Any attack found by Casper can be translated back to make sure it is
really present in the original protocol.

n the relationship of traditional and Web Services Security protocols 08

Message M - taken from an Oasis proposed protocol

<Envelope>
 <Header>
 <Security mustUnderstand="1">
 <BinarySecurityToken ValueType="x509v3" Id="myCert"> BV1
 </BinarySecurityToken>
 <Signature>
 <SignedInfo>
 <CanonicalizationMethod Algorithm=.... />
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig\#rsa-sha1"/>
 <Reference URI="#body">
 <Transforms>
 <Transform Algorithm=.... />
 </Transforms>
 <DigestMethod Algorithm=... />
 <DigestValue> BV2 </DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue> BV3 </SignatureValue>
 <KeyInfo>
 <SecurityTokenReference>
 <Reference URI="#myCert" />
 </SecurityTokenReference>
 </KeyInfo>
 </Signature>

n the relationship of traditional and Web Services Security protocols 09

 <EncryptedKey>
 <EncryptedMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
 <KeyInfo>
 <SecurityTokenReference>
 <KeyIdentifier ValueType="X509v3"> BV4
 </KeyIdentifier>
 </SecurityTokenReference>
 </KeyInfo>
 <CipherData>
 <CipherValue> BV5 </CipherValue>
 </CipherData>
 <ReferenceList>
 <DataReference URI="#enc" />
 </ReferenceList>
 </EncryptedKey>
 </Security>
 </Header>
 <Body Id="body">
 <EncryptedData Id="enc" Type="http://www.w3.org/2001/04/xmlenc#content">
 <EncryptedMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />
 <CipherData>
 <CipherValue> BV6 </CipherValue>
 </CipherData>
 </EncryptedData>
 </Body>
</Envelope>

n the relationship of traditional and Web Services Security protocols 10

Applying φ on Security element

φ(〈Security〉...〈/Security〉) =

φ(〈BinarySecurityToken〉...〈/BinarySecurityToken〉),
φ(〈EncryptedKey〉...〈/EncryptedKey〉), φ(〈Signature〉...〈/Signature〉)

n the relationship of traditional and Web Services Security protocols 11

Applying φ on Signature element

<Signature>

 <SignatureValue/>
 <KeyInfo>?
 <Object>*
</Signature>

<SignedInfo>
 <Canonicalization Method/>
 <SignedMethod/>

</SignedInfo>

<Reference URI=""?>+
 <Transforms/>?
 <DigestMethod/>
 <DigestValue/>
</Reference>

Algorithms that can be used:
DSA, RSA-SHA1 or
HMAC-SHA1

Transformations to apply
before hashing

Value of SignedMethod
applied to SignedInfo

Value of DigestMethod
applied to Reference

The Data to be signed

Key used by SignedMethod

Additional optional object

φ(〈Signature〉...〈/Signature〉) = {φ(〈Reference...〉...〈/Reference〉), . . .
φ(〈Reference...〉...〈/Reference〉)...}φ(〈KeyInfo〉...〈/KeyInfo〉,SIG)

φ(〈Reference...〉...〈/Reference〉), . . . , φ(〈Reference...〉...〈/Reference〉)...

n the relationship of traditional and Web Services Security protocols 12

Demonstrate the complete derivation of φ(M)

φ(M)

⇒ φ(〈Header〉...〈/Header〉),φ(〈Body〉...〈/Body〉)
⇒ φ(〈Security〉...〈/Security〉),φ(〈Body〉...〈/Body〉)
⇒ φ(〈BinarySecurityToken〉...〈/BinarySecurityToken〉),
φ(〈EncryptedKey〉...〈/EncryptedKey〉), φ(〈Signature〉...〈/Signature〉),
φ(〈Body〉...〈/Body〉)
⇒ φ(〈EncryptedKey〉...〈/EncryptedKey〉), φ(〈Signature〉...〈/Signature〉),
φ(〈Body〉...〈/Body〉)
⇒ φ(〈ReferenceList〉...〈/ReferenceList〉,{K}), {K}φ(〈KeyInfo〉...〈/KeyInfo〉,ENC),

φ(〈Signature〉...〈/Signature〉), φ(〈Body〉...〈/Body〉)
⇒ φ(〈DataReference URI=#enc /〉,{K}), {K}φ(〈KeyInfo〉...〈/KeyInfo〉,ENC),

φ(〈Signature〉...〈/Signature〉), φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}φ(〈KeyInfo〉...〈/KeyInfo〉,ENC), φ(〈Signature〉...〈/Signature〉),
φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}φ(〈SecurityTokenReference〉...〈/SecurityTokenReference〉,ENC),

φ(〈Signature〉...〈/Signature〉), φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}φ(〈KeyIdentifier〉...〈/KeyIdentifier〉,ENC),

φ(〈Signature〉...〈/Signature〉), φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}PK(B), {φ(〈Reference URI=#body〉...〈/Reference〉)},

n the relationship of traditional and Web Services Security protocols 13

{φ(〈KeyInfo〉...〈/KeyInfo〉),SIG}, φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}PK(B),

{φ(〈DigestMethod.../〉)(φ(body))}φ(〈KeyInfo〉...〈/KeyInfo〉,SIG), φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}PK(B), {sha1(φ(body))}φ(〈KeyInfo〉...〈/KeyInfo〉,SIG),

φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}PK(B),

{sha1({Body}φ(〈EncryptedData Id=“enc”〉...〈/EncryptedData〉))}φ(〈KeyInfo〉...〈/KeyInfo〉,SIG),

φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}PK(B), {sha1({Body}K)}φ(〈KeyInfo〉...〈/KeyInfo〉,SIG),

φ(〈Body〉...〈/Body〉)
⇒
Context(enc,{K}), {K}PK(B),

{sha1({Body}K)}φ(〈SecurityTokenReference〉...〈/SecurityTokenReference〉,SIG),

φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}PK(B), {sha1({Body}K)}φ(〈Reference URI=#myCert.../〉,SIG),

φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}PK(B), {sha1({Body}K)}SK(A), φ(〈Body〉...〈/Body〉)
⇒ Context(enc,{K}), {K}PK(B), {sha1({Body}K)}SK(A), {Body}K

⇒ {K}PK(B), {sha1({Body}K)}SK(A), {Body}K

n the relationship of traditional and Web Services Security protocols 14

Oasis proposed protocol

1. A→B: M

2. B→A: M’

After applying φ to both of the messages we get the following
protocol.

1. MSG 1 .A→B : {K}PK(B), {sha1({Body}K)}SK(A), {Body}K

2. MSG 2. B→A : {K2}PK(A), {sha1({Body2}K2)}SK(B),
{Body2}K2

n the relationship of traditional and Web Services Security protocols 15

An attack

Using FDR the following authentication attack was found.

1. MSG 1. I → Bob : {K}PK(Bob), {sha1({Body}K)}SK(I), {Body}K

2. MSG 2. Bob → I : {K2}PK(I), {sha1({Body2}K2)}SK(Bob),
{Body2}K2

3. MSG 1. Alice → IBob : {K3}PK(Bob),
{sha1({Body3}K3)}SK(Alice), {Body3}K3

4. MSG 2. IBob → Alice : {K2}PK(Alice),
{sha1({Body2}K2)}SK(Bob), {Body2}K2

n the relationship of traditional and Web Services Security protocols 16

Contribution and Ramifications

• Any WSS protocol can be analysed in the traditional model
after it was transformed by φ

• We would like to emphasise that although this proof is based on
the theory of CSP, it is valid for any tool regardless to its
underlying theory.

• φ’s input is the SOAP messages of the protocol to be analysed.
This fact allows the unprofessional user to analyse complex WSS
protocols in a few minutes time.

• It was suggested that φ can be used for making the semantics of
WSS clearer.

n the relationship of traditional and Web Services Security protocols 17

Proof of a WS-SecureConversation based protocol

WS-SecureConversation Background

• WS-Security defines security tokens to provide different security
properties to the claims that these tokens encapsulate.

• Yet, the process of verifying these tokens against the security
policy has to be repeated for each SOAP message.

• WS-SecureConversation addresses this issue. It is built upon
WS-Security and WS-Trust to allow a requestor and a Web
Service to set up a mutually authenticated security context.

• After the security context establishment, the parties may use this
shared secret with WS-Security for signing and encrypting
messages.

n the relationship of traditional and Web Services Security protocols 18

Establishing security context

WS-Trust defines three ways to establish security context

• Security Context Token is created by a security token
service (STS)

1. A –> STS : RST (may contain an Entropy (e.g. secret key))

2. STS –> A : RSTR (contains an Entropy and SCT)

If MSG 1. includes an Entropy then SCT = p–sha1(kA, KSTS)
else SCT = KSTS

• Security Context is created by one of the agents and
propagated with a message

• Security Context created by negotiation

n the relationship of traditional and Web Services Security protocols 19

STS

Client

RST

RSTR

Web Server

SCs

SOAP exchange
encrypted/signed by SCT

Note that WS-SecureConversation and WS-Trust do not define how
to secure the RST, RSTR and SCT.

n the relationship of traditional and Web Services Security protocols 20

Modelling WS-SecureConversation

1. Extend φ to capture the new tokens (e.g. RST, RSTR, SCT etc)

2. Prove by induction that the extension of φ does not harm the
safety of φ

n the relationship of traditional and Web Services Security protocols 21

Example - WSE’s WS-SecureConversation

The protocol after applied to φ:
1. A→B: RST, UMI1, anonymous, B, ts1,

{sha1(ts1), sha1(SecurityToken-b8...,{K1}PK(B)),

sha1(RST), sha1(UMI1), sha1(anonymous), sha1(B)}p-sha1(pass(A),NA+ts1),

sha1(password(A),NA,ts1), NA, ts1,{K1}PK(B)

2. B→A: RSTR, UMI2, UMI1, anonymous, ts2,

{sha1(RSTR), sha1(UMI2), sha1(UMI1), sha1(anonymous),

(sha1(ts2),sha1(uuid1, ts2’, {K2}K1)}SK(B),uuid1, ts2’, {K2}K1

3. A→B: UMI3, anonymous, B, ts3, (uuid1, ts2’), {sha1(UMI3), sha1(anonymous),

sha1(B), sha1(ts3), sha1(body1)}p-sha1(K1,K2),{body1}p-sha1(K1,K2)

4. B→A: UMI4, UMI3, A, ts4, (uuid1, ts2’),{sha1(UMI4), sha1(UMI3),

sha1(anonymous),sha1(ts4),sha1(body2)}p-sha1(K1,K2),

{body2}p-sha1(K1,K2)

n the relationship of traditional and Web Services Security protocols 22

After applying some simplifying transformations...

MSG 1. A→B: UMI1, {UMI1, B, {K1}PK(B))}p-sha1(pass(A),NA),

sha1(password(A),NA)), NA, {K1}PK(B)

MSG 2. B→A: {UMI1, UMI2, {K2}K1}SK(B),uuid1,{K2}K1

MSG 3. A→B: {UMI3, B, body1}p-sha1(K1,K2),{body1}p-sha1(K1,K2)

MSG 4. B→A: {UMI3, UMI4, body2}p-sha1(K1,K2),{body2}p-sha1(K1,K2)

No Secrecy violation was found by FDR

• Therefore the original WSS protocol is correct in term of secrecy

n the relationship of traditional and Web Services Security protocols 23

An authentication attack

MSG 1α. A → IB : UMI1, {UMI1, B, {K1}PK(B))}p-sha1(pass(Alice),NA),

sha1(password(Alice),NA)), NA, {K1}PK(B)

MSG 1β. I → B : UMI1, {UMI1, B, {K1}PK(B))}p-sha1(pass(I),NA),

sha1(password(I),NA)), NA, {K1}PK(B)

MSG 2β. B → I : {UMI1, UMI2, {K2}K1}SK(B),uuid1,{K2}K1

MSG 2α. IB → A : {UMI1, UMI2, {K2}K1}SK(B),uuid1,{K2}K1

MSG 3α. A → IB : {UMI3, B, body1}p-sha1(K1,K2),{body1}p-sha1(K1,K2)

MSG 3β. I → B : {UMI3, B, body1}p-sha1(K1,K2),{body1}p-sha1(K1,K2)

MSG 4β. B → I : {UMI3, UMI4, body2}p-sha1(K1,K2),{body2}p-sha1(K1,K2)

MSG 4α. IB → A : {UMI3, UMI4, body2}p-sha1(K1,K2),{body2}p-sha1(K1,K2)

n the relationship of traditional and Web Services Security protocols 24

In addition

• UMI1 and NA are not properly authenticated in the WS-Trust
part of the protocol.

• UMI3 and UMI4 are not properly authenticated in the
WS-SecureConversation part of the protocol.

n the relationship of traditional and Web Services Security protocols 25

Conclusion

• That part of SOAP Message Security which lies outside of any
cryptographic operators may be constructed at will by any user,
trustworthy or malicious. There is nothing secret about it.

• Since Kerckhoff’s Known Design Principle is adopted by most if
not all crypto-analysts, the extra information about the structure
of the messages given by the XML-tagging is assumed anyway.

• We have already shown in ARS04 that there are some interesting
ways in which SOAP can assist security by providing degree of
protection against type flaw attacks.

n the relationship of traditional and Web Services Security protocols 26

Related work

• Gordon and Pucella proposed a security abstraction to RPC
services in which requests and responses are encoded as SOAP
messages. This abstraction is modelled using an object calculus
which its semantics is defined by pi-calculus. This approach is
currently limited to checking authentication properties.

• Bhargavan, Fournet, Gordon and Pucella developed a tool
(TulaFale) based on the Blanchet’s ProVerif. The tool
compiles a description of SOAP-based security protocol and its
properties into the pi-calculus and then runs ProVerif to
analyse it.

• TulaFale specification language was extended for modelling
WS-Trust and WS-SecureConversation based protocols.

n the relationship of traditional and Web Services Security protocols 27

Future work

1. We have already automated φ, we intend to write a user
interface for analysing WS-Security protocols.

2. We are interested in “internalising” potential intermediaries and
believe we then be able to model and check protocols with
arbitrary number of intermediaries.

	Traditional security protocols
	Casper - Compiler for Analysing Security Protocols
	Web Services Security - Overview
	XML-Signature

	Modelling WS-Security
	Message M - taken from an Oasis proposed protocol
	Applying on Security element
	Applying on Signature element
	Demonstrate the complete derivation of (M)
	Oasis proposed protocol
	An attack
	Contribution and Ramifications

	Proof of a WS-SecureConversation based protocol
	WS-SecureConversation Background
	Establishing security context
	Modelling WS-SecureConversation
	Example - WSE's WS-SecureConversation
	No Secrecy violation was found by FDR
	An authentication attack
	In addition
	Conclusion
	Related work

	Future work

