Group valued edge-colorings of cubic graphs

Jean-Sébastien Sereni (MASCOTTE, I3S-CNRS/INRIA/UNSA) Daniel Král' (Georgia Institute of Technology, Atlanta) Martin Skoviera (Comenius University, Bratislava) Edita Máčajová (Comenius University, Bratislava) André Raspaud (LaBRI, Université Bordeaux) Ondřej Pangrác (Charles University, Prague)

THE PROBLEM

- cubic graph G, Abelian group A
- an edge coloring $c: E(G) \to A \setminus \{0\}$ such that: $c(e_1) + c(e_2) + c(e_3) = 0$ for any e_1 , e_2 and e_3 sharing a vertex $c(e) \neq c(f)$ for any e and f sharing a vertex
- a proper coloring and a flow-like condition
- a cubic graph G is $\mathbb{Z}_2 \times \mathbb{Z}_2$ -edge-colorable iff it has a nowhere-zero 4-flow
- Is there a group A such that any cubic bridgeless graph is A-edge-colorable?
- What are the necessary conditions for A-edge-colorability?

CLASSIFICATION OF THE GROUPS

	\mathbb{Z}_5	\mathbb{Z}_4	\mathbb{Z}_3	Never
\mathbb{Z}_8	\mathbb{Z}_7	\mathbb{Z}_6	$\mathbb{Z}_2 \times Z_2$	3-edge-colorable
\mathbb{Z}_{11}	\mathbb{Z}_{10}	$\mathbb{Z}_3 imes \mathbb{Z}_3$	$\mathbb{Z}_2 \times \mathbb{Z}_4$	Open
	•	\mathbb{Z}_{12}	$\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$	Always

 \bullet Note that the property of being A-edge-colorable depends on the structure not only on the order of A.

A DIFFERENT VIEW

a coloring by triple systems such that the colors of the edges incident with the same vertex should form a triple (hypergraph homomorphism point of view)

cubic graph[Griggs, Knor and Skoviera, 2004]. There exists a Steiner triple system that edge-colors every

Colorings by the Fano Plane

every cubic bridgeless graph has a coloring using six lines of the Fano plane [Máčajová, Škoviera 2005]

- of the Fano plane? Does every cubic bridgeless graph have an edge-coloring using five lines
- of the Fano plane? Does every cubic bridgeless graph have an edge-coloring using four lines

COVERINGS BY PERFECT MATCHINGS

- Conjecture [Fan and Raspaud]: Every cubic bridgeless graph has three perfect matchings with empty intersection.
- Conjecture [Berge and Fulkerson]: Every cubic bridgeless graph has six perfect matchings covering each edge twice.
- The conjecture of Fan and Raspaud is equivalent to the Four Line Conjecture.

Coverings by Parity Subgraphs

a parity subgraph of G is a subgraph H such that the parities of degrees of vertices in G and H are the same

101

- a perfect matching is a parity subgraph of a cubic graph
- with an empty intersection is equivalent to the Five Line Conjecture The existence of two perfect matchings and a parity subgraph (and thus to $\mathbb{Z}_2 \times \mathbb{Z}_4$ -edge-colorings).

SIX LINE THEOREM

The existence of one perfect matching and two parity subgraphs with an empty intersection is equivalent to the Six Line Theorem.

SOME RESULTS...

- a short proof of the Six Line Theorem
- Rainbow Lemma

each cycle of the complementary 2-factor is incident with the same number can be colored with three colors (red, green and blue) in the following way: modulo two of the red/green/blue edges. Each cubic bridgeless graph contains a perfect matching M such that its edges

- ullet consider a matching M that avoids 3-cuts of the graph G
- contract the complementary 2-factor and find a nowhere-zero 4-flow
- parity conditions on red/green/blue edges
- Each $\mathbb{Z}_2 \times \mathbb{Z}_4$ -edge-colorable cubic graph is also $\mathbb{Z}_3 \times \mathbb{Z}_3$ -, \mathbb{Z}_{10} and \mathbb{Z}_{11} -edge-colorable
- Every cubic bridgeless graph contains two sets of disjoint even cycles such that each vertex is contained in at least one of the cycles.

SUMMARY

Six Line Theorem, edge colorings with groups of order twelve and more

two matchings and parity subgraph with empty intersection \iff Conjecture of Fan and Raspaud \iff Four Line Conjecture

Conjecture of Berge and Fulkerson

• integer edge-colorings $(\pm 1, \dots, \pm 7)$