Stephen G. Hartke

Department of Mathematics University of Illinois at Urbana-Champaign hartke@math.uiuc.edu

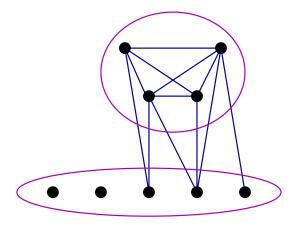
DIMACS/DIMATIA/Rényi Tripartite Conference

April 28, 2006

Joint work with Michael Barrus and Mohit Kumbhat

Split Graphs

Def. A graph *G* is a split graph if the vertex set can be partitioned into a clique and an independent set.



Split Graphs

Def. A graph *G* is a split graph if the vertex set can be partitioned into a clique and an independent set.

G is split \iff G is $\{2K_2, C_4, C_5\}$ -free.

[Földes–Hammer, 1976]

Split Graphs

Def. A graph *G* is a split graph if the vertex set can be partitioned into a clique and an independent set.

G is split \iff G is $\{2K_2, C_4, C_5\}$ -free.

[Földes–Hammer, 1976]

Degree sequence $d(G) = (d_1, ..., d_n)$, nonincreasing.

G is split
$$\iff \sum_{i=1}^{m} d_i = m(m-1) + \sum_{i=m+1}^{n} d_i$$
,
where $m = \max\{k : d_k \ge k-1\}$.

[Hammer–Simeone, 1981]

Degree sequence characterization gives a linear time recognition algorithm.

There are several graph classes with both forbidden induced subgraph and degree sequence characterizations.

Split

[Hammer-Simeone, 1981]

$$\{2K_2, C_4, C_5\}$$
-free $\iff \sum_{i=1}^m d_i = m(m-1) + \sum_{i=m+1}^n d_i$

There are several graph classes with both forbidden induced subgraph and degree sequence characterizations.

Split

[Hammer–Simeone, 1981]

$$\{2K_2, C_4, C_5\}\text{-free} \iff \sum_{i=1}^m d_i = m(m-1) + \sum_{i=m+1}^n d_i$$

Empty

$$\{K_2\}$$
-free $\iff d_1 = \cdots = d_n = 0.$

Complete

$$\{2K_1\}$$
-free $\iff d_1 = \cdots = d_n = n - 1$.

There are several graph classes with both forbidden induced subgraph and degree sequence characterizations.

Split

[Hammer–Simeone, 1981]

$$\{2K_2, C_4, C_5\}\text{-free} \iff \sum_{i=1}^m d_i = m(m-1) + \sum_{i=m+1}^n d_i$$

Empty

$$\{K_2\}$$
-free $\iff d_1 = \cdots = d_n = 0.$

Complete

$$\{2K_1\}$$
-free $\iff d_1 = \cdots = d_n = n - 1.$

Threshold [Hammer-Ibaraki-Simeone, 1978] $\{2K_2, C_4, P_4\}$ -free $\iff \sum_{i=1}^r d_i = r(r-1) + \sum_{i=r+1}^n \min\{r, d_i\}...$

There are several graph classes with both forbidden induced subgraph and degree sequence characterizations.

Split

[Hammer–Simeone, 1981]

$$\{2K_2, C_4, C_5\}\text{-free} \iff \sum_{i=1}^m d_i = m(m-1) + \sum_{i=m+1}^n d_i$$

Empty

$$\{K_2\}$$
-free $\iff d_1 = \cdots = d_n = 0.$

Complete

$$\{2K_1\}$$
-free $\iff d_1 = \cdots = d_n = n - 1.$

Threshold[Hammer-Ibaraki-Simeone, 1978] $\{2K_2, C_4, P_4\}$ -free $\sum_{i=1}^r d_i = r(r-1) + \sum_{i=r+1}^n \min\{r, d_i\}...$ Pseudosplit[Maffray-Preissmann, 1994] $\{2K_2, C_4\}$ -free \Rightarrow split or $\sum_{i=1}^q d_i = q(q+4) + \sum_{i=q+6}^n d_i...$

Let \mathcal{F} be a set of graphs.

The class of \mathcal{F} -free graphs is the set of graphs that do not contain any member of \mathcal{F} as an induced subgraph.

Def. \mathcal{F} is degree-sequence-forcing (DSF) if the class of \mathcal{F} -free graphs has a degree sequence characterization.

Let \mathcal{F} be a set of graphs.

The class of \mathcal{F} -free graphs is the set of graphs that do not contain any member of \mathcal{F} as an induced subgraph.

Def. \mathcal{F} is degree-sequence-forcing (DSF) if the class of \mathcal{F} -free graphs has a degree sequence characterization.

Ques: Can we characterize the DSF sets?

Let \mathcal{F} be a set of graphs.

The class of \mathcal{F} -free graphs is the set of graphs that do not contain any member of \mathcal{F} as an induced subgraph.

Def. \mathcal{F} is degree-sequence-forcing (DSF) if the class of \mathcal{F} -free graphs has a degree sequence characterization.

Ques: Can we characterize the DSF sets?

Are there infinitely many DSF sets?

Let \mathcal{F} be a set of graphs.

The class of \mathcal{F} -free graphs is the set of graphs that do not contain any member of \mathcal{F} as an induced subgraph.

Def. \mathcal{F} is degree-sequence-forcing (DSF) if the class of \mathcal{F} -free graphs has a degree sequence characterization.

Ques: Can we characterize the DSF sets?

Are there infinitely many DSF k-sets?

Complements

Let
$$\overline{\mathcal{F}} = \{\overline{H} : H \in \mathcal{F}\}$$

Prop. \mathcal{F} is DSF set iff $\overline{\mathcal{F}}$ is.

Complements

Let
$$\overline{\mathcal{F}} = \{\overline{H} : H \in \mathcal{F}\}$$

Prop. \mathcal{F} is DSF set iff $\overline{\mathcal{F}}$ is.

Proof:

Given a graphic sequence d, d has an $\overline{\mathcal{F}}$ -free realization

$$\iff \overline{d} \text{ has an } \mathcal{F}\text{-free realization}$$

$$\overline{d} = (n - 1 - d_n, n - 1 - d_{n-1}, \dots, n - 1 - d_1)$$

$$\Rightarrow \text{ all realizations of } \overline{d} \text{ are } \mathcal{T} \text{ free}$$

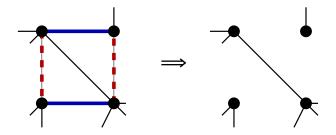
п

 \iff all realizations of *d* are \mathcal{F} -free

 \iff all realizations of *d* are $\overline{\mathcal{F}}$ -free.

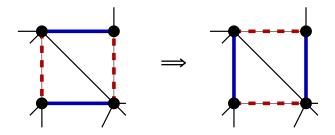
2-Switches

Def. A 2-switch is



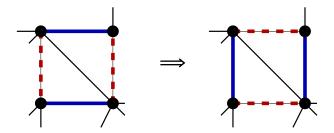
2-Switches

Def. A 2-switch is



2-Switches

Def. A 2-switch is



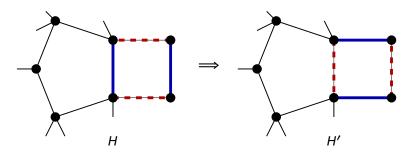
Thm. If *G* and *H* have the same degree sequence, then *G* can be obtained through several 2-switches applied to *H*.

Forests

Prop. Every DSF set contains a forest.

Proof:

Take the graph $F \in \mathcal{F}$ with the fewest number of cycles.



п

H' has fewer cycles than any graph in \mathcal{F} .

Contradiction if *F* had a cycle.

Prop. { K_1 }, { K_2 } and { $2K_1$ } are the only singleton DSF sets.

Proof: $\mathcal{F} = \{F\}$

F is a forest.

Prop. $\{K_1\}$, $\{K_2\}$ and $\{2K_1\}$ are the only singleton DSF sets.

Proof: $\mathcal{F} = \{F\}$

F is a forest.

 \overline{F} is a forest.

Prop. $\{K_1\}$, $\{K_2\}$ and $\{2K_1\}$ are the only singleton DSF sets.

Proof: $\mathcal{F} = \{F\}$

F is a forest.

 \overline{F} is a forest.

an extremal result: F has at most 4 vertices.

Prop. $\{K_1\}$, $\{K_2\}$ and $\{2K_1\}$ are the only singleton DSF sets.

Proof: $\mathcal{F} = \{F\}$

F is a forest.

 \overline{F} is a forest.

an extremal result: F has at most 4 vertices.

п

...and then you check the small cases.

More Required Classes

Prop. Every DSF set contains a graph from each of the following classes:

- 1. forests of stars,
- 2. disjoint union of complete graphs,
- 3. complete bipartite graphs.

and a graph from each of the complements.

DSF Pairs

Thm. $\mathcal{F} = \{F_1, F_2\}$ is a DSF pair if and only if \mathcal{F} is one of the following sets:

- 1. {*A*, *B*}, where *A* is one of *K*₁, *K*₂, or 2*K*₁, and *B* is arbitrary;
- 2. { P_3, K_3 }, { $P_3, K_3 + K_1$ }, { $P_3, K_3 + K_2$ }, { $P_3, 2K_2$ }, { $P_3, K_2 + K_1$ };
- 3. { $K_2 + K_1, 3K_1$ }, { $K_2 + K_1, K_{1,3}$ }, { $K_2 + K_1, K_{2,3}$ }, { $K_2 + K_1, C_4$ };
- 4. { K_3 , 3 K_1 };

5. $\{2K_2, C_4\}$.

DSF Pairs

Thm. $\mathcal{F} = \{F_1, F_2\}$ is a DSF pair if and only if \mathcal{F} is one of the following sets:

- 1. {*A*, *B*}, where *A* is one of *K*₁, *K*₂, or 2*K*₁, and *B* is arbitrary;
- 2. { P_3, K_3 }, { $P_3, K_3 + K_1$ }, { $P_3, K_3 + K_2$ }, { $P_3, 2K_2$ }, { $P_3, K_2 + K_1$ };
- 3. { $K_2 + K_1, 3K_1$ }, { $K_2 + K_1, K_{1,3}$ }, { $K_2 + K_1, K_{2,3}$ }, { $K_2 + K_1, C_4$ };
- 4. { K_3 , 3 K_1 };

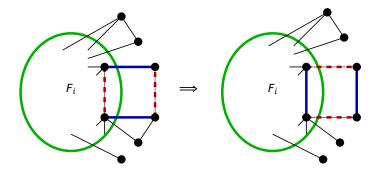
Uninteresting: these classes are unigraphs

5. $\{2K_2, C_4\}$.

Interesting: these are the pseudosplit graphs

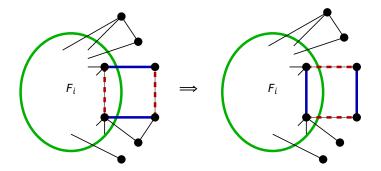
Small Counterexamples

Prop. Let $\mathcal{F} = \{F_1, F_2, \dots, F_k\}$ not be a DSF set. Then there exists an " \mathcal{F} -breaking pair" (H, H').



Small Counterexamples

Prop. Let $\mathcal{F} = \{F_1, F_2, \dots, F_k\}$ not be a DSF set. Then there exists an " \mathcal{F} -breaking pair" (H, H').



There exists an \mathcal{F} -breaking pair on at most max{ $n(F_i)$ } + 2 vertices.

Number of Vertices and Edges

Let $\mathcal{F} = \{F_1, \ldots, F_k\}$ be a set, where $n(F_1) \leq \ldots \leq n(F_k)$.

If $n(F_1) + 2 < n(F_2)$ and $\{F_1\}$ is not a DSF set,

then \mathcal{F} is **not** a DSF set.

Proof: $\{F_1\}$ -breaking pair (H, H') cannot contain F_2, \ldots, F_k .

Number of Vertices and Edges

Let $\mathcal{F} = \{F_1, \ldots, F_k\}$ be a set, where $n(F_1) \leq \ldots \leq n(F_k)$.

If $n(F_1) + 2 < n(F_2)$ and $\{F_1\}$ is not a DSF set, then \mathcal{F} is not a DSF set.

Proof: $\{F_1\}$ -breaking pair (H, H') cannot contain F_2, \ldots, F_k .

Cor. If \mathcal{F} is a DSF set, then $n(F_{i+1}) \leq n(F_i)$.

Number of Vertices and Edges

Let $\mathcal{F} = \{F_1, \ldots, F_k\}$ be a set, where $n(F_1) \leq \ldots \leq n(F_k)$.

If $n(F_1) + 2 < n(F_2)$ and $\{F_1\}$ is not a DSF set, then \mathcal{F} is not a DSF set.

Proof: $\{F_1\}$ -breaking pair (H, H') cannot contain F_2, \ldots, F_k .

Cor. If \mathcal{F} is a DSF set, then $n(F_{i+1}) \leq n(F_i)$.

A similar statement can be proved stating that the graphs F_1, \ldots, F_k can't differ by more than $2n(F_i)$ edges.

Number of DSF k-sets

 ${\mathcal F}$ must contain both a forest and the complement of a forest.

Number of DSF k-sets

 \mathcal{F} must contain both a forest and the complement of a forest.

Thm. If \mathcal{F} is a DSF set, then

$$n(F_1) \le 2k + \frac{1}{2} + \sqrt{12k^2 - 10k + \frac{1}{4}} \le 6k.$$

DSF Triples

(Partial) **Thm.** $\mathcal{F} = \{F_1, F_2, F_3\}$ is a DSF triple if \mathcal{F} is one of the following sets:

1. $\{F_1, F_2\}$ is a DSF pair not $\{2K_2, C_4\}$, and F_3 is any graph;

2. $\{F_1, F_2\} = \{2K_2, C_4\}$; and F_3 induces $2K_2$ or C_4 , or F_3 is one of the following:

 C_5 P_4 K_n $K_n - e$ $K_{1,3}$ $K_{1,3} + K_1$ paw ... and complements

3. $\{F_1, F_2\}$ is not a DSF pair: bound is $n(F_1) \le 15$. e.g., $\{3K_1, 2K_2, paw\}$

Future Work

- 1. Improve the bound on the number of DSF *k*-sets.
- 2. Find the degree characterizations of DSF sets.
- 3. Complete the classification of DSF triples.
- 4. Can the process of checking the finite cases be automated?

Stephen G. Hartke

Department of Mathematics University of Illinois at Urbana-Champaign hartke@math.uiuc.edu

DIMACS/DIMATIA/Rényi Tripartite Conference

April 28, 2006

Joint work with Michael Barrus and Mohit Kumbhat