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Degree sequence d(G) = (d1, ..., dn), nonincreasing.

G is split ⇐⇒
∑m

=1
d =m(m− 1) +

∑n

=m+1
d,

where m =mx{k : dk ≥ k − 1}.

[Hammer–Simeone, 1981]

Degree sequence characterization gives a linear time
recognition algorithm.
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Pseudosplit [Maffray–Preissmann, 1994]

{2K2, C4}-free ⇐⇒ split or
∑q

=1 d = q(q+ 4) +
∑n

=q+6
d...
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Let F be a set of graphs.
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contain any member of F as an induced subgraph.

Def. F is degree-sequence-forcing (DSF) if the class of
F-free graphs has a degree sequence characterization.

Ques: Can we characterize the DSF sets?

Are there infinitely many DSF k-sets?
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Complements

Let F = {H : H ∈ F}

Prop. F is DSF set iff F is.

Proof:

Given a graphic sequence d, d has an F-free realization

⇐⇒ d has an F-free realization

d = (n− 1− dn, n− 1− dn−1, ..., n − 1− d1)

⇐⇒ all realizations of d are F-free

⇐⇒ all realizations of d are F-free.

�
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2-Switches
Def. A 2-switch is

=⇒

Thm. If G and H have the same degree sequence, then G
can be obtained through several 2-switches applied to H.



Forests

Prop. Every DSF set contains a forest.

Proof:
Take the graph F ∈ F with the fewest number of cycles.

=⇒

H H′

H′ has fewer cycles than any graph in F .

Contradiction if F had a cycle. �
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Singleton DSF Sets

Prop. {K1}, {K2} and {2K1} are the only singleton DSF
sets.

Proof: F = {F}

F is a forest.

F is a forest.

an extremal result: F has at most 4 vertices.

...and then you check the small cases. �



More Required Classes

Prop. Every DSF set contains a graph from each of the
following classes:

1. forests of stars,

2. disjoint union of complete graphs,

3. complete bipartite graphs.

and a graph from each of the complements.
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Thm. F = {F1, F2} is a DSF pair if and only if F is one of the
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Thm. F = {F1, F2} is a DSF pair if and only if F is one of the
following sets:

1. {A,B}, where A is one of K1, K2, or 2K1, and B is
arbitrary;

2. {P3, K3}, {P3, K3 + K1}, {P3, K3 + K2}, {P3,2K2},
{P3, K2 + K1};

3. {K2 + K1,3K1}, {K2 + K1, K1,3}, {K2 + K1, K2,3},
{K2 + K1, C4};

4. {K3,3K1};

Uninteresting: these classes are unigraphs

5. {2K2, C4}.

Interesting: these are the pseudosplit graphs
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Small Counterexamples

Prop. Let F = {F1, F2, . . . , Fk} not be a DSF set. Then there

exists an “F-breaking pair” (H,H′).

=⇒F F

There exists an F-breaking pair on at most mx{n(F)}+ 2
vertices.
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Number of Vertices and Edges

Let F = {F1, . . . , Fk} be a set, where n(F1) ≤ . . . ≤ n(Fk).

If n(F1) + 2 < n(F2) and {F1} is not a DSF set,

then F is not a DSF set.

Proof: {F1}-breaking pair (H,H′) cannot contain F2, . . . , Fk.

Cor. If F is a DSF set, then n(F+1) ≤ n(F).

A similar statement can be proved stating that the graphs
F1, . . . , Fk can’t differ by more than 2n(F) edges.



Number of DSF k-sets

F must contain both a forest and the complement of a forest.



Number of DSF k-sets

F must contain both a forest and the complement of a forest.

Thm. If F is a DSF set, then

n(F1) ≤ 2k +
1

2
+

È

12k2 − 10k +
1

4
≤ 6k.



DSF Triples

(Partial) Thm. F = {F1, F2, F3} is a DSF triple if F is one of
the following sets:

1. {F1, F2} is a DSF pair not {2K2, C4}, and F3 is any graph;

2. {F1, F2} = {2K2, C4}; and F3 induces 2K2 or C4,
or F3 is one of the following:

C5 P4 Kn Kn − e

K1,3 K1,3 + K1 paw . . .

and complements

3. {F1, F2} is not a DSF pair: bound is n(F1) ≤ 15.

e.g., {3K1,2K2, p}



Future Work

1. Improve the bound on the number of DSF k-sets.

2. Find the degree characterizations of DSF sets.

3. Complete the classification of DSF triples.

4. Can the process of checking the finite cases be
automated?
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