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A Channel Assignment Problem [F. Roberts, 1988]

Find an efficient assignment of channels f(x) ∈ R to

sites x ∈ R
2 so that two levels of interference are avoided:

|f(x) − f(y)| ≥

{

2d if ‖x − y‖ ≤ A

d if ‖x − y‖ ≤ 2A

>=1

2.2

4.3

0 6.2

1.1

2.5

0 d=1

>=2

We must minimize span(f):= maxx f(x) − minx f(x).
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We consider the analogous problem for graphs G = (V, E)
[G., 1989]. The problem can be reduced to the case d = 1
and labelings f : V → {0, 1, 2, . . .} such that

|f(x) − f(y)| ≥

{

2 if dist(x, y) = 1

1 if dist(x, y) = 2

Such an f is called a λ-labeling and λ(G):=minf span(f).
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The graph problem differs from the “real” one
when putting vertices u ∼ v corresponding to
“very close” locations u, v.

close

but not 
very close

close, 
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y

A Network of Transmitters with a Hexagonal Cell Covering
and the corresponding Triangular Lattice Γ4
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Complete Graphs Kn.

6 2

4

0

span=6

λ(Kn) = 2n − 2
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Cycles Cn.

span=403

1

4

4

2

0

λ(Cn) = 4 for n ≥ 3.
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Cycles Cn.

span=403

1

4

4

2

0

λ(Cn) = 4 for n ≥ 3.
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Problem. Bound λ(G) in terms of ∆.

∆ = 2 =⇒ λ ≤ 4, paths or cycles

∆ = 3

Example Petersen Graph.
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Problem. Bound λ(G) in terms of ∆.

∆ = 2 =⇒ λ ≤ 4, paths or cycles

∆ = 3

Example Petersen Graph. λ = 9.
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Conjecture. ∆ = 3 =⇒ λ ≤ 9.

More generally, we have the

∆2 Conjecture. [G.-Yeh, 1989]

For all graphs of maximum degree ∆ ≥ 2,

λ(G) ≤ ∆2.
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Results. ∆-Bounds on λ:

λ ≤ ∆2 + 2∆ by first-fit [G.]

∃ G with λ ≥ ∆2 − ∆
for infinitely many values ∆ [G.-Yeh, 1990]

λ ≤ ∆2 + ∆ [Chang and Kuo, 1995]

λ ≤ 11 for ∆ = 3 [Jonas, 1993]

λ ≤ ∆2 + ∆ − 1 [Král’ and Skrekovski, 2003]

λ ≤ ∆2 + ∆ − 2 [Gonçalves, 2005]

In particular, λ ≤ 10 for ∆ = 3
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Georges and Mauro investigated many connected graphs
with ∆ = 3.

They suspect that for such graphs, λ ≤ 7, unless G is the
Petersen graph (λ = 9).

Kang verified λ ≤ 9 when G is cubic and Hamiltonian.
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Among many results verifying the conjecture for special
classes of graphs, we have

Theorem [G-Yeh, 1992].

For graphs G of diameter 2, λ ≤ ∆2,

and this is sharp iff ∆ = 2, 3, 7, 57(?).
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Determining λ, even for graphs of diameter two,
is NP-complete [G.-Yeh]: Is λ ≤ v − 1?

[Fiala, Kloks, and Kratochvíl, 2001] Fix k. Is λ = k?

Polynomial: k ≤ 3.

NP-Complete: k ≥ 4. via homomorphisms to

multigraphs.
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Trees. Let ∆ := maximum degree (= A in Figures).

Example. λ = ∆ + 1 (left) and λ = ∆ + 2 (right).

A+1

10 A-1

A+2

0 1 0 0A-2 A-3 A-3 A-2

A+1 A-1

Theorem [Yeh, 1992]. For a tree T , λ(T ) = ∆ + 1 or ∆ + 2.

It is difficult to determine which, though there is a
polynomial algorithm [Chang-Kuo 1995].
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General Version [G. 1992].

Integer L(k1, k2, · · · , kp)-labelings of a graph G:

k1, k2, . . . , kp ≥ 0 are integers.

A labeling f : vertex set V (G) → {0, 1, 2, . . .} such that

for all u, v, |f(u) − f(v)| ≥ ki if dist(u, v) = i in G

The minimum span λ(G; k1, k2, · · · , kp):= minf span(f).
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More History of the Distance Labeling Problem

Hale (1980) :
Models radio channel assignment problems
by graph theory.

Georges, Mauro, Calamoneri, Sakai, Chang, Kuo,
Liu, Jha, Klavzar, Vesel et al.
investigate L(2, 1)-labelings, and more general
integer L(k1, k2)-labelings with k1 ≥ k2.
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We introduce Real L(k1, k2, · · · , kp)-labelings of a

graph G:

Let
−→
k = (k1, . . . , kp) with each ki ≥ 0 real.

Given graph G = (V, E), possibly infinite, define

L(G;
−→
k ) to be the set of labelings f : V (G) → [0,∞) such

that |f(u) − f(v)| ≥ kd whenever d = distG(u, v).

span(f):= supv{f(v)} − infv{f(v)}.

λ(G; k1, k2, · · · , kp)= inf
f∈L(G;

−→
k )

span(f).
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An advantage of the concept of real number labelings.

SCALING PROPERTY. For real numbers d, ki ≥ 0,
λ(G; d · k1, d · k2, . . . , d · kp) = d · λ(G; k1, k2, . . . , kp).

Example. λ(G; k1, k2) = k2λ(G; k, 1)

where k = k1/k2, k2 > 0,
reduces it from two parameters k1, k2 to just one, k.
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Theorem. [G-J; cf. Georges-Mauro 1995] For the path Pn

on n vertices, we have the minimum span λ(Pn; k, 1).

2

1

k+2

k+1

2k

2k

2

k543210

P4
P3

P5,P6
Pn, n>=7

P2

3k

k

1

3

6

5

4
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Theorem. [G-J; cf. Georges-Mauro 1995] For the cycle
Cn on n vertices, we have the minimum span λ(Cn; k, 1)

0

2k

3k

k+24k

2k

 C5
 C3

4

2

k+1

 C4

1/2

k+2

10

9

8

7

6

5

4

3

2

1

k54321

λ(Cn; k, 1), n = 3, 4, 5.
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(ctd.) The minimum span λ(Cn; k, 1), n ≥ 6,
depending on n (mod 3) and (mod 4).

6

7

8

9

10

0(mod 4)

2(mod 4)

1(mod 2)

k54310

5

3k
2

0(mod 4)
k+1

k+2

2k

2k

k+3

k+2

0(mod 3)
2k

1

2

3

4

2
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THE D-SET THEOREM for REAL LABELINGS.
(G.-J., 2003)

Let G be a graph, possibly infinite, of bounded degree.
Let reals k1, . . . , kp ≥ 0. Then there exists an optimal

L(k1, k2, . . . , kp)-labeling f∗

with smallest label 0

with all labels f∗(v) in the D-set

Dk1,k2,...,kp
:= {

∑p
i=1 aiki : ai ∈ {0, 1, 2, . . .}}.

Hence, λ(G; k1, k2, . . . , kp) ∈ Dk1,k2,...,kp
.
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(ctd.) Moreover, if G is finite, each label of f ∗ is of the
form

∑

i aiki, where the coefficients ai ∈ {0, 1, 2, · · · } and
∑

i ai < n, the number of vertices.

∗ ∗ ∗ ∗ ∗ ∗ ∗

Corollary. If all ki are integers, then λ(G; k1, k2, . . . , kp)

agrees with the former integer λ’s.

Note. The D-set Thm. allows us to ignore some labels.
Example. For (k1, k2) = (5, 3), it suffices to consider

labels f(v) in D5,3 = {0, 3, 5, 6, 8, 9, 10, . . .}.
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Theorem. For the triangular lattice we have λ(Γ4; k, 1):

6k

(1,6)

k

2k+6

(4,14)

(2,8)

(4/3,8)

4/31/2 543211/30
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5k+2
(1/2,9/2)

9k

(4/5,6)

(9/22,9/2)

(1/3,11/3)
(3/7,27/7)

2k+3

(3,11)
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(11/4,11)

4k

11k
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A Manhattan Network and the Square Lattice Γ¤
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Theorem. For the square lattice we have λ(Γ¤; k, 1):

3k

(8/3,8)
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Equilateral Triangle Cell Covering and the Hexagonal
Lattice ΓH
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Theorem. For the hexagonal lattice we have λ(ΓH ; k, 1):
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Piecewise Linearity

PL Conjecture. For any integer p ≥ 1 and any graph G

of bounded maximum degree, λ(G;
−→
k ) is PL,

i.e., continuous and piecewise-linear, with finitely many

pieces as a function of
−→
k = (k1, k2, . . . , kp) ∈ [0,∞)p.

Finite Graph PL Theorem. For any integer p ≥ 1 and

any finite graph G, λ(G;
−→
k ) is PL.
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Theorem (p = 2). For any graph G, possibly infinite, with
finite maximum degree, λ(G; k, 1) is a piecewise linear
function of k with finitely many linear pieces.

Moreover,

λ(G; k, 1) =

{

ak + χ(G2 − G) − 1 if 0 ≤ k ≤ 1/∆3

(χ(G) − 1)k + b if k ≥ ∆3

for some constants a, b ∈ {0, 1, . . . , ∆3 − 1}, where G2 − G is
the graph on V (G) in which edges join vertices that are at
distance two in G.
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We make the stronger

Delta Bound Conjecture For all p and ∆, there is a
constant c := c(∆, p) such that for all graphs G of maximum
degree ∆ and all k1, . . . , kp, there is an optimal labeling

f ∈ L(k1, . . . , kp) in which the smallest label is 0, all labels

are in D(k1, . . . , kp) and of the form
∑

i aiki where all

coefficients ai ≤ c.

Theorem This holds for p = 2.
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Lambda Graphs.

A more general model for graph labelling has been
introduced recently by Babilon, Jelínek, Král’, and Valtr. A
λ-graph G = (V, E) is a multigraph in which each edge is of
one of p types. Given reals k1, . . . , kp ≥ 0, a labelling

f : V → [0,∞) is proper if for every edge e ∈ E, say it is type
i, the labels at the ends of e differ by at least ki.

The infimum of the spans of the proper labellings of G is
denoted by λG(k1, . . . , kp).

We assume implicitly that for every choice of the
parameters ki, the optimal span λG(k1, . . . , kp) is finite. For

example, this holds when χ(G) < ∞.
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Given a graph G, form λ-graph H = Gp in which an edge
joining vertices u, v has type i = distG(u, v), 1 ≤ i ≤ p. Thus,
the real number distance labelling is a special case of
λ-graphs.

Results on distance-labelling, concerning continuity,
piecewise-linearity, and the D-Set Theorem, can be
extended to λ-graphs [Babilon et al.].

35



Given a graph G, form λ-graph H = Gp in which an edge
joining vertices u, v has type i = distG(u, v), 1 ≤ i ≤ p. Thus,
the real number distance labelling is a special case of
λ-graphs.

Results on distance-labelling, concerning continuity,
piecewise-linearity, and the D-Set Theorem, can be
extended to λ-graphs [Babilon et al.].

35



Král’ has managed to prove the PL and Delta Bound
Conjectures, in the more general setting of λ-graphs, in a
stronger form:

Theorem For every p, χ ≥ 1, there exist constants
Cp,χ, Dp,χ such that the space [0,∞)p can be partitioned into

at most Cp,χ polyhedral cones K, on each of which the

optimal span λG(k1, . . . , kp) of every lambda graph G, with p

types of edges and chromatic number at most χ, is a linear
function of k1, . . . , kp.

Moreover, for each K and G, there is a proper labelling f of
λ-graph G in the form f(v) =

∑

i ai(v)ki at every vertex v,

which is optimal for all (k1, . . . , kp) ∈ K, where the integer

coefficients 0 ≤ ai(v) ≤ Dp,χ.
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A surprising consequence is

Corollary [Král’] There exist only finitely many
piecewise-linear functions that can be the λ-function of a
λ-graph with given number of edges k and chromatic
number at most χ.
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Future Work.

The ∆2 Conjecture.

Better bounds Dk,χ on the coefficients.

The “left-right" behavior of λ(G; k, 1) as a function of k.

Cyclic analogues, generalizing circular chromatic
numbers.

Symmetry properties of optimal labellings of lattices.
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Congratulations, Joel!!!
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