Xiaohua Izresa ]Il’l




A Channel Assighment Problem [F. Roberts, 1988]

Find an efficient assignment of channels f(z) e Rto
sites z € R? so that two levels of interference are avoided:

2d ifllz —y|| < A
f(x)f(y)>{d if ||z —yl| <24

We must minimize span( f):= max, f(x) — min, f(x).



We consider the analogous problem for graphs G = (V, E)

[G., 1989]. The problem can be reduced to the case d = 1
and labelings f : V — {0,1,2,...} such that

2 if dist(z,y) =1
@) =)l = { 1 if dist(z,y) = 2



We consider the analogous problem for graphs G = (V, E)

[G., 1989]. The problem can be reduced to the case d = 1
and labelings f : V — {0,1,2,...} such that

(2 if dist(z,y) = 1

@) = 1(y)] = S 1 if dist(z,y) = 2

\

Such an f is called a and \(G):=min¢ span(f).



The graph problem differs from the “real” one
when putting vertices u ~ v corresponding to
“very close” locations u, v.

but not
very close
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A Network of Transmitters with a Hexagonal Cell Covering
and the corresponding Triangular Lattice I"



Complete Graphs K,,.
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Complete Graphs K,,.

4 span=6

MNKy) =2n — 2



Cycles C),.



Cycles C),.

1 4
3 0o span=4

ANCy) =4 forn > 3.



Problem. Bound A\(G) in terms of A.



Problem. Bound A\(G) in terms of A.

A=2 — A<4, pathsorcycles



Problem. Bound A\(G) in terms of A.
A=2 — A<4, pathsorcycles

A=3



Problem. Bound A\(G) in terms of A.
A=2 — A<4, pathsorcycles
A=3

Example Petersen Graph.




Problem. Bound A\(G) in terms of A.
A=2 — A<4, pathsorcycles
A=3

Example Petersen Graph.




Problem. Bound A\(G) in terms of A.
A=2 — A<4, pathsorcycles
A=3

Example Petersen Graph. X\ =09.
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Conjecture.

A=3

11



Conjecture. A=3 — X<09.

More generally, we have the

A? Conjecture. [G.-Yeh, 1989]

For all graphs of maximum degree A > 2,
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Results. A-Bounds on \:

® )\ < A?24+2A Dy first-fit [G.]
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Results. A-Bounds on \:

<

¥

A< A2 4+2A by first-fit [G.]

3 G with A > A? — A
for infinitely many values A  [G.-Yeh, 1990]

A< A?+ A [Chang and Kuo, 1995]

A<11forA =3
A< A?ZH+A-1

[Jonas, 1993]
[Kral’ and Skrekovski, 2003]
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Results. A-Bounds on \:
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A< A2 4+2A by first-fit [G.]

3 G with A > A? — A
for infinitely many values A  [G.-Yeh, 1990]

A< A?+ A [Chang and Kuo, 1995]

A<11forA =3
A< A?H+A-—1
A< A2+ A2

[Jonas, 1993]
[Kral’ and Skrekovski, 2003]
[Goncalves, 2005]
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Results. A-Bounds on \:
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A< A2 4+2A by first-fit [G.]

3 G with A > A? — A
for infinitely many values A  [G.-Yeh, 1990]

A< A?+ A [Chang and Kuo, 1995]

A <11for A=3 [Jonas, 1993]

A< A2+ A—1 [Kral and Skrekovski, 2003]
A< A?+ A -2 [Gongalves, 2005]

In particular, A < 10 for A =3
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Georges and Mauro investigated many connected graphs
with A = 3.
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Georges and Mauro investigated many connected graphs
with A = 3.

They suspect that for such graphs, A < 7, unless G is the
Petersen graph (A = 9).
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Georges and Mauro investigated many connected graphs
with A = 3.

They suspect that for such graphs, A < 7, unless G is the
Petersen graph (A = 9).

Kang verified A < 9 when G is cubic and Hamiltonian.

13



Among many results verifying the conjecture for special
classes of graphs, we have

Theorem [G-Yeh, 1992].

For graphs G of diameter 2, X < AZ,

and this is sharp iff A =2,3,7,57(7).
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Determining )\, even for graphs of diameter two,
is NP-complete [G.-Yeh]: Is A < v — 17
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Determining )\, even for graphs of diameter two,
is NP-complete [G.-Yeh]: Is A < v — 17

[Fiala, Kloks, and Kratochvil, 2001] Fix k. Is A = k7

Polynomial: £ < 3.

NP-Complete: & > 4. via homomorphisms to
multigraphs.
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Trees.

Let A := maximum degree (= A in Figures).
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Trees. Let A := maximum degree (=

A in Figures).

Example. A=A +1 (left) and A = A + 2 (right).

A AN

M\

- A-3 A-2
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Trees. Let A := maximum degree (= A in Figures).

Example. A=A +1 (left) and A = A + 2 (right).

A AN

Theorem [Yeh, 1992]. For a tree T', \(T)

M\

- A-3 A-2

=A+10rA-+2.
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Trees. Let A := maximum degree (= A in Figures).

Example. A=A +1 (left) and A = A + 2 (right).

A AR

A-3 A-2

Theorem [Yeh, 1992]. Foratree T, \(T) = A+1or A+ 2.

It is difficult to determine which, though there is a
polynomial algorithm [Chang-Kuo 1995].
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General Version [G. 1992].
Integer L(ky, ko, - - - , k,)-labelings of a graph G

® ki,ka, ..., ky, >0 are integers.
o Alabeling f: vertex set V(G) — {0,1,2,...} such that
o forall u,v, |f(u) — f(v)] > k; if dist(u,v) =7In G
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General Version [G. 1992].
Integer L(ky, ko, - - - , k,)-labelings of a graph G

® ki,ka, ..., ky, >0 are integers.
o Alabeling f: vertex set V(G) — {0,1,2,...} such that
o forall u,v, |f(u) — f(v)] > k; if dist(u,v) =7In G

The minimum span A\(G; k1, ka, - - -, kp):= min span(f).
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More History of the Distance Labeling Problem

# Hale (1980) :
Models radio channel assignment problems
by graph theory.

o Georges, Mauro, Calamoneri, Sakai, Chang, Kuo,
Liu, Jha, Klavzar, Vesel et al.
investigate L (2, 1)-labelings, and more general
integer L(kq, ko)-labelings with k1 > ks.
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We introduce Real L(ky, ko, - - - , k,)-labelings of a
graph G:
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We introduce Real L(k1, ko, - - - , k,)-labelings of a
graph G:

Let k = (k1,...,kp) with each k; > 0 real.

Given graph G = (V, E), possibly infinite, define

L(G; ?) to be the set of labelings f : V(G) — [0, 00) such
that | f(u) — f(v)| > kq Whenever d = distg(u, v).
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We introduce Real L(k1, ko, - - - , k,)-labelings of a
graph G:

Let k = (k1,...,kp) with each k; > 0 real.

Given graph G = (V, E), possibly infinite, define

L(G; ?) to be the set of labelings f : V(G) — |0, 00) such
that | f(u) — f(v)| > kq Whenever d = distg(u, v).

span(f):= sup,1f(v)} — inf, 1 f(v)}.

MG k1, ko, o kp)= inffeL(G;?) span( f).
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An advantage of the concept of real number labelings.

SCALING PROPERTY. For real numbers d, k; > 0,
MNGyd ki, d-ko,...,d-kp) =d NGk, ko, ... k).
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An advantage of the concept of real number labelings.

SCALING PROPERTY. For real numbers d, k; > 0,
MNGyd ki, d-ko,...,d-kp) =d NGk, ko, ... k).

Example. )\(G; k1, kz) = kz)\(G; k. 1)
where k = kl/kg, ko > 0,
reduces it from two parameters k1, ks t0 just one, k.
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Theorem. [G-J; cf. Georges-Mauro 1995] For the path P,
on n vertices, we have the minimum span A\(Py; k, 1).

Pn, n>=7

P5,P6
P4
P3

P2

21



Theorem. [G-J; cf. Georges-Mauro 1995] For the cycle
C, on n vertices, we have the minimum span A(C,; k, 1)

—
)

S \° B UL I Y e . I e BN e)

G5

0 12 1 2 3 4 5 k

MNCrik,1),n = 3,4,5.

C3
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(ctd.) The minimum span A(C,; k,1),n > 6,

depending on n (mod 3) and (mod 4).

10

oo

o |

: k+1

k+2

3Kk 2k
2 0(mod 3)

O(mod 4)

 J
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THE [D-SET THEOREM for REAL LABELINGS.
(G.-J., 2003)
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o with smallest label 0
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Dkl,kg ..... {Zz 1az REUES {071727°--}}-
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THE [D-SET THEOREM for REAL LABELINGS.
(G.-J., 2003)

Let G be a graph, possibly infinite, of bounded degree.
Let reals ki, ..., k, > 0. Then there exists an optimal
L(kl, ko, ..., kp)-labeling f*

o with smallest label 0
o with all labels f*(v) in the D-set

Dkl’;€2 ..... {Zz 1 CLZ i € {O, 1, 2, .. }}
Hence, \(G; k1, kz, ooy ky) € Dy oo k-
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(ctd.) Moreover, if GG is finite, each label of f* is of the
form >". a;k;, where the coefficients a; € {0,1,2,---} and
> .. a; < n, the number of vertices.

X %k >k ox ok ok ox
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(ctd.) Moreover, if GG is finite, each label of f* is of the
form >". a;k;, where the coefficients a; € {0,1,2,---} and
> .. a; < n, the number of vertices.

X %k >k ox ok ok ox

Corollary. If all ; are integers, then \(G; ki, ks, ..., k)
agrees with the former integer X’s.
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(ctd.) Moreover, if GG is finite, each label of f* is of the
form >". a;k;, where the coefficients a; € {0,1,2,---} and
> .. a; < n, the number of vertices.

X %k >k ox ok ok ox

Corollary. If all ; are integers, then \(G; ki, ks, ..., k)
agrees with the former integer X’s.

Note. The D-set Thm. allows us to ignore some labels.

Example. For (k1, k2) = (5, 3), It suffices to consider
labels f(v) in D53 =40,3,5,6,8,9,10,...}.
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Theorem. For the triangular lattice we have A\(I'a; &, 1):

16

14

12

(11/4,11)

10
(4/3,8)

(9/22,9/2) 6k
(4/5,6)

(2,8)

6 (1,6)
(3/4,23)
4 (2/3,16)

9k

2 (3/7.27/7)
(1/3,11/3)

[ © © © © © '

0 13 112 1 43 2 3 4 5 K
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A Manhattan Network and the Square Lattice I'
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Theorem. For the square lattice we have \(I'm; &, 1):

10

(8/3,8)

(5/3,6)

11k/3
4/3.163) Py 3.112)
4k

(1,4)

3 (1/2,7/2)
k+3
2
1
0 172 1 2 3 4 5 k
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Equilateral Triangle Cell Covering and the Hexagonal
Lattice I'y

29



Theorem. For the hexagonal lattice we have \(I'; k, 1):

10

(5/3,14/3)

(3/5.,3)
5k (1.3)

(172,5/2)

k+2
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Piecewise Linearity

31



PL Conjecture. For any integer p > 1 and any graph G

of bounded maximum degree, \(G; & ) is PL,
l.e., continuous and piecewise-linear, with finitely many

pieces as a function of & = (k1, k2, ..., kp) € 0,00)P.
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PL Conjecture. For any integer p > 1 and any graph G

of bounded maximum degree, \(G; & ) is PL,
l.e., continuous and piecewise-linear, with finitely many

pieces as a function of & = (k1, k2, ..., kp) € 0,00)P.

Finite Graph PL Theorem. For any integer p > 1 and
any finite graph G, \(G; ?) Is PL.
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Theorem (p = 2). For any graph G, possibly infinite, with
finite maximum degree, \(G; k, 1) is a piecewise linear
function of £ with finitely many linear pieces.
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Theorem (p = 2). For any graph G, possibly infinite, with
finite maximum degree, \(G; k, 1) is a piecewise linear
function of £ with finitely many linear pieces.

Moreover,
2_G) =1 if0<k<1/A?
NG k1) = ak + x(G* — G) !O_kg_ /
(X(G) =Dk +b itk > A
for some constants a,b € {0,1,...,A3 — 1}, where G? — G is

the graph on V(&) in which edges join vertices that are at
distance two in G.
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We make the stronger

Delta Bound Conjecture For all p and A, there is a
constant ¢ := ¢(A, p) such that for all graphs G of maximum
degree A and all k4, ..., k,, there is an optimal labeling

f € L(k1,...,kp) In which the smallest label is 0, all labels
are in D(ky,...,kpy) and of the form > . a;k; where all
coefficients a; < c.

233



We make the stronger

Delta Bound Conjecture For all p and A, there is a
constant ¢ := ¢(A, p) such that for all graphs G of maximum
degree A and all k4, ..., k,, there is an optimal labeling

f € L(k1,...,kp) In which the smallest label is 0, all labels
are in D(ky,...,kpy) and of the form > . a;k; where all
coefficients a; < c.

Theorem This holds for p = 2.

233



A more general model for graph labelling has been
introduced recently by Babilon, Jelinek, Kral’, and Valtr. A
A-graph G = (V, E) is a multigraph in which each edge is of
one of p types. Given reals ky,...,k, > 0, a labelling

f:V —10,00) is proper if for every edge e € F, say it is type
i, the labels at the ends of e differ by at least k;.

The infimum of the spans of the proper labellings of G is
denoted by A\ (ki,.... k).

We assume implicitly that for every choice of the
parameters k;, the optimal span A\g(k1, ..., kp) is finite. For
example, this holds when x(G) < oc.
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Given a graph G, form A-graph H = GP in which an edge
joining vertices u, v has type i = distg(u,v), 1 <i < p. Thus,
the real number distance labelling is a special case of
A-graphs.
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Given a graph G, form A-graph H = GP in which an edge
joining vertices u, v has type i = distg(u,v), 1 <i < p. Thus,
the real number distance labelling is a special case of
A-graphs.

Results on distance-labelling, concerning continuity,
piecewise-linearity, and the D-Set Theorem, can be
extended to A\-graphs [Babilon et al.].
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Kral’ has managed to prove the PL and Delta Bound
Conjectures, in the more general setting of A-graphs, in a
stronger form:

Theorem For every p, vy > 1, there exist constants

Cy.v, Dy Such that the space [0, c0)? can be partitioned into
at most C),, polyhedral cones K, on each of which the
optimal span A\g(k1, ..., kp) of every lambda graph G, with p
types of edges and chromatic number at most y, is a linear
function of k1, ..., k.

Moreover, for each K and G, there is a proper labelling f of
A-graph G in the form f(v) = ). a;(v)k; at every vertex v,
which is optimal for all (k1,...,k,) € K, where the integer
coefficients 0 < a;(v) < D,

236



A surprising consequence is

Corollary [Kral'] There exist only finitely many
piecewise-linear functions that can be the A-function of a

A-graph with given number of edges & and chromatic
number at most y.
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Future Work.

# The A? Conjecture.
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Future Work.

The A? Conjecture.
Better bounds Dy, , on the coefficients.
The “left-right" behavior of A\(G; k, 1) as a function of k.

Cyclic analogues, generalizing circular chromatic
numbers.

e o o o

°

Symmetry properties of optimal labellings of lattices.
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Congratulations, Joel!!!
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Congratulations, Joel!!!
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