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Background

1970: “Convolutional codes I: Algebraic structure”

• Key tool: the invariant factor theorem

1976: “Minimal bases of rational vector spaces, with applications to
multivariable linear systems”

• Similar results, without the invariant factor theorem

• Minimal basis = set of shortest independent generators

1988-98: Trellis-oriented generator matrices for linear block codes

• Minimal state-space realizations of linear block codes

• Trellis-oriented basis = set of shortest-span independent generators

• Theory is elementary, once ordering of coordinates is specified

1993: “Dynamics of group codes: State spaces, trellis diagrams, and
canonical encoders”

• Minimal state-space realizations depend only on group structure

Conclusions and speculations

• Theory of minimal realizations of linear systems is

– elementary, more so than than the invariant factor theorem;

– basically group-theoretic

• Can the IFT be proved using minimal realization theory?
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Outline

Develop theory of minimal realizations of linear systems

• Key: Minimal-span bases

• Demonstrate that the theory is elementary

Easy proof that the ring of polynomials (resp. finite sequences)
is a principal ideal domain

• Based on structure of linear time-invariant systems over F

However, our proof of the IFT is still mainly algebraic

Open question:

• relation between minimal-span bases and invariant-factor bases

For algebraic coding theorists:

• A different kind of algebra
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Definitions

Sequence space (Fn)I

• F: a field

• time axis I ⊆ Z: a discrete index set

• sequence x ∈ (Fn)I = {xk ∈ Fn, k ∈ I}
– D-transform x(D) =

∑
k xkD

k

• (Fn)I ∼= (FI)n is a vector space over F

Discrete-time linear system (code) C over F

• C: any subspace of (Fn)I

Degree, delay, support, span of a sequence x 6= 0

• degree: deg x = greatest k ∈ I such that xk 6= 0

• delay: del x = least k ∈ I such that xk 6= 0

• support: supp x = [deg x, del x]

• span: span x = deg x− del x ≥ 0.

• if x = 0, then deg x = −∞, del x =∞

Classification of sequences:

del x = −∞ del x > −∞ del x ≥ 0

deg x =∞ bi-infinite Laurent causal

deg x <∞ anti-Laurent finite polynomial

deg x ≤ 0 anti-causal anti-polynomial scalar

Time-invariance of a system C
• C is time-invariant if I = Z and DC = C
• C is semi-time-invariant if DC ⊂ C
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Finite and polynomial linear systems

Polynomial linear systems

• A sequence x is polynomial if its D-transform x(D) is polynomial

– F[D]: ring of polynomial sequences

– Fn[D] ∼= (F[D])n: module of n-tuples of polynomial sequences

– (F[D])n is a semi-time-invariant linear system

• Polynomial linear system C over Fn:
a subset C ⊆ (F[D])n that is closed under addition and
multiplication by scalars

• Polynomial linear semi-time-invariant (LSTI) system C over Fn:
a subset C ⊆ (F[D])n that is closed under addition and multiplication
by scalars or by D; i.e., multiplication by polynomials

Finite linear systems

• A sequence x is finite if it has a finite number of nonzero coefficients

– F[D,D−1]: ring of finite sequences

– Fn[D,D−1] ∼= (F[D,D−1])n: module of n-tuples of finite sequences

– (F[D,D−1])n is a time-invariant linear system

• Finite linear system C over Fn:
a subset C ⊆ (F[D,D−1])n that is closed under addition and
multiplication by scalars

• Finite linear time-invariant (LTI) system C over Fn:
a subset C ⊆ (F[D,D−1])n that is closed under addition and multipli-
cation by scalars, D or D−1; i.e., multiplication by finite sequences

We will focus on finite linear systems

• Finite and polynomial linear systems are almost identical

• Finite linear systems can be time-invariant
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Minimal-span bases for finite linear systems

Basis for a finite linear system C:
a linearly independent set G of finite generators gi ∈ C such that
C is the set of all finite F-linear combinations of generators

Minimal-span basis for a finite linear system C:
a basis G for C such that
no generator can be replaced by a shorter-span generator

Predictable support property for a set G = {gi} of finite generators:
if
∑

i∈J αigi is any finite linear combination with αi 6= 0, i ∈ J , then

supp
∑

i∈J
αigi = [(min

J
del gi), (max

J
deg gi)];

i.e., cancellation of minimum-delay or max-degree terms never occurs.

Theorem 1 (Minimal-span basis = PSP) Given a finite linear system
C ∈ (Fn)I)f and a basis G for C, where I ⊆ Z, the following are equivalent:

(a) G is a minimal-span basis for C;

(b) G has the predictable support property.

Proof. There is a x ∈ C that can be substituted for a longer-span generator
gi ∈ G if and only if there is a linear combination of generators including
gi for which the predictable support property fails.

Corollary 2 (Algebraic test for PSP) A set G of generators gi ∈ (Fn)I
has the predictable support property if and only if for each k ∈ I, the set
of time-k symbols gik of generators gi ∈ G that start at time k is linearly
independent, and similarly the set of time-k symbols gik of generators gi
that stop at time k is linearly independent.

Consequently the number of generators gi ∈ G that start or stop at any
time k ∈ I is not greater than n.
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Minimal state-space realizations and
minimal-span bases

Elementary realization of a single generator gi

A single generator gi with support [del gi, deg gi] may be realized by an
elementary state realization with a one-dimensional state space which is
“active” during [del gi, deg gi] and “inactive” otherwise.

Product realization of a generator set G
A set G = {gi} of generators may be realized by summing the outputs of

elementary realizations of each generator individually.

Theorem 3 Given a linear system C and a minimal-span basis G for C,
the product realization of G is a minimal state-space realization of C.

Proof. Based on:

Theorem 4 (State space theorem) Given a linear system C defined on
a time axis I and a cut time j of I, the minimal dimension of the state
space Σj in any linear realization is dim C/(C:Pj × C:Fj), where

• C:Pj is the subsystem of C with support in Pj = {k ∈ I | k < j}
• C:Fj is the subsystem of C with support in Fj = {k ∈ I | k > j}.

Theorem 5 (Bases of subsystems) Let C ⊆ ((Fn)I)f be a finite linear
system with minimal-span basis G, and let J ⊆ I be any subinterval of the
time axis I. Then the subsystem C:J is generated by the subset GJ ⊆ G of
generators whose support is contained in J .

Proof. By the predictable support property, a sequence generated by G has
support in J if and only if it is a linear combination of generators with
support in J .

It follows that the minimal dimension of the state space Σj at cut time j
in any state realization of C is the number of generators in a minimal-span
basis G whose support covers j; i.e., which are “active” at time j.
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Finite LTI systems over F

Theorem 6 (Minimal-span bases for finite LTI systems over F)
A nontrivial LTI system C over F has a minimal-span basis consisting of all
time shifts {Ddg, d ∈ Z} of a single polynomial generator g with del g = 0.

Proof. By time-invariance, the shortest-span generator starting at time d
is a time shift by Dd of the shortest-span generator starting at time 0.
By Corollary 2, no more than one generator can start at any time.

An F[D,D−1]-ideal is a set of finite sequences that is closed under
F[D,D−1]-linear combinations.

Lemma 7 F[D,D−1]-ideal = finite LTI system over F.

A principal ideal is the set (g(D)) = {a(D)g(D) | a(D) ∈ F[D,D−1]}
of F[D,D−1]-multiples of a single finite sequence g(D).

Theorem 8 (The finite sequences form a PID) Every ideal in the
ring F[D,D−1] of finite sequences in D over a field F is a principal ideal;
i.e., F[D,D−1] is a principal ideal domain (PID).

Proof. Theorem 6 and Lemma 7.

p(D) is the greatest common divisor (gcd) of two finite sequences g(D)
and h(D) if every common divisor of g(D) and h(D) divides p(D).

Lemma 9 (GCDs) The gcd of two finite sequences g(D) and h(D) is the
generator of the ideal of all their F[D,D−1]-linear combinations:

(g(D)) + (h(D)) = {a(D)g(D) + b(D)h(D) | a(D), b(D) ∈ F[D,D−1]}.

Corollary: there exist a(D), b(D) such that

gcd(g(D), h(D)) = a(D)g(D) + b(D)h(D).
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Finite LTI systems over Fn

Theorem 10 (Minimal-span bases for finite LTI systems over Fn)
A finite LTI system C over Fn has a minimal-span basis consisting of all
time shifts of k ≤ n finite generators {gi, 1 ≤ i ≤ k} with del gi = 0.

Proof. Choose a set of shortest-span linearly independent generators that
start at time 0, and all their time shifts. By Corollary 2, there can be at
most n of them.

Notes: The integer k is the rank of C as a free F[D,D−1]-module.
The fraction k/n is the rate of C as a code.

Theorem 11 (Invariant factor theorem for finite LTI systems)
If C is a finite LTI system, then there exists

• a basis {aj(D), 1 ≤ j ≤ n} for F[D,D−1]n, and

• a set of k ≤ n monic delay-zero finite sequences {γi(D), 1 ≤ i ≤ k},
called the invariant factors of C,

such that

• γi(D) divides γi+1(D) for 1 ≤ i < k, and

• {γi(D)aj(D), 1 ≤ i ≤ k} is an F[D,D−1]-basis for C.

Proof. Theorem 8 shows that F[D,D−1] is a PID, and Theorem 10 shows
that the rank of C as an F[D,D−1]-module is k ≤ n. The rest of the
argument follows standard module-theoretic proofs.

Question: What is the relation (if any) between an invariant-factor basis
of C and a minimal-span basis for C?
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Invariant-factor and minimal-span bases

An invariant-factor basis is not necessarily a minimal-span basis; e.g.,
[

1 +D D
−D 1−D

]

is an invariant-factor basis for F[D,D−1]2, which has minimal-span basis
[

1 0
0 1

]
.

However, the latter is also an invariant-factor basis for F[D,D−1]2.

A minimal-span basis is not necessarily an invariant-factor basis; e.g.,
[

1 1−D 1−D
1 1−D 0

]

is a minimum-span basis for a rate-2/3 system C whose invariant factors
are γ1(D) = 1, γ2(D) = 1−D, and which has an invariant-factor basis

[
1 1−D 0
0 0 1−D

]
.

However, the latter is also a minimal-span basis for C.

Theorem 12 (Canonical bases) Every finite LTI system C has a basis
which is both a minimal-span basis and an invariant-factor basis.

Proof. Start with an invariant-factor basis {γi(D)aj(D), 1 ≤ i ≤ k} for
C. If the starting-time coefficient matrix and the stopping-time coefficient
matrix are full-rank over F, then by Corollary 2 we are done. Otherwise,
if the starting-time coefficient matrix is not full-rank, then there is an F-
linear combination g(D) of the basis n-tuples whose delay is greater than
zero; substitute a time shift of a(D) for γm(D)am(D), where m is the least
index of the n-tuples involved in the combination. We proceed similarly
if the stopping-time coefficient matrix is not full-rank. The process must
terminate in a finite number of steps with the desired basis.
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Conclusion

Conclusion: another direction for algebraic coding theory

Invariant-factor decomposition depends on linearity, time-invariance

Minimal-realization theory may be extended further

• Group systems and codes

• Non-time-invariant systems and codes (including block)

• Systems and codes on cycle-free graphs

Minimal realizations not well-defined on graphs with cycles

• Even so, a duality theory still applies


