Mesos: Multiprograming for Datacenters

lon Stoica

Joint work with: Benjamin Hindman, Andy Konwinski, Matei
Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker,

lab

Motivation

e Rapid innovation in cloud computing

Cassandra - ONP I

pre%,t @&_

e Today
e No single framework optimal for all applications

e Each framework runs on its dedicated cluster or cluster
partition

Computation Model: Frameworks

e A framework (e.g., Hadoop, MPI) manages one or
more jobs in a computer cluster

e A job consists of one or more tasks

e A task (e.g., map, reduce) is implemented by one or
more processes running on a single machine

'Executor | _ _ _ _ Executor | _ _ _ _
task 1 | < N :tasks 1, 2, 3, 4
S Job 2:tasks 5, 6, 7
. Framework

; T = == -~ - 4l Scheduler (e.g.,

Executor =
€ -~~~ |Executor|,l| Job Tracker)
— (g task 3 | S
e Taskk | T

One Framework Per Cluster Challenges

. . 50%
e |nefficient resource usage

E.g., Hadoop cannot use available
resources from Pregel’ s cluster

25%

0%

No opportunity for stat. multiplexing_;;;;;g s >0%
Pregel 25%

e Hard to share data 0%

Copy or access remotely, expensive

e Hard to cooperate Hatbop
E.g., Not easy for Pregel to use @
graphs generated by Hadoop Pregel

Need to run multiple frameworks on same cluster

Solution: Mesos

e Common resource sharing layer
e abstracts (“virtualizes”) resources to frameworks

e enable diverse frameworks to share cluster

Uniprograming Multiprograming

Mesos Goals

High utilization of resources
Support diverse frameworks (existing & future)
Scalability to 10,000’ s of nodes

Reliability in face of node failures

Focus of this talk: resource management & scheduling

Approach: Global Scheduler

Organization policies —>
Resource availability ——)

Job requirements—> Global

Scheduler
* Response time
* Throughput
e Availability

Approach: Global Scheduler

Organization policies —>
Resource availability ——)

Job requirements >
Job execution plan—>

 Task DAG
* |nputs/outputs

Global
Scheduler

Approach: Global Scheduler

Organization policies —>
Resource availability ——)

Job requirements—— >
Job execution plan—>

Estimates —>

 Task durations
* |nput sizes
* Transfer sizes

Global
Scheduler

Approach: Global Scheduler

Organization policies —>
Resource availability ——)

Job requirements—— >
Job execution plan—>

Estimates ——>

Global
Scheduler

j}Task schedule

e Advantages: can achieve optimal schedule

e Disadvantages:

Complexity = hard to scale and ensure resilience

Hard to anticipate future frameworks’ requirements

Need to refactor existing frameworks

10

Our Approach: Distributed Scheduler

Organization
policies

Resource
availability

e Advantages:

—>
—>

Mesos
Master

E—

Fwk

Framework
Scheduler

schedule

Simple = easier to scale and make resilient

Easy to port existing frameworks, support new ones

e Disadvantages:

Distributed scheduling decision = not optimal

Task
schedule

11

Resource Offers

e Unit of allocation: resource offer
e Vector of available resources on a node
e E.g.,, nodel: <1CPU, 1GB>, node2: <4CPU, 16GB>

e Master sends resource offers to frameworks

e Frameworks select which offers to accept and which
tasks to run

A A A
123 45 10 11 12 13 30 31 32 33 34 35 38 37 36 39 40 41 4445 46 47 48 4850 51 52 53 54 55 56 57

s ANEEEEEEEEN AEEEEEEEEEEEEN J
J HEEEN HEEEE - S EEEEEEEEEN AEEEEEEEEEEEEN H
H EEEE EEEE cEEEEEEEEEEN AEEEEEEEEEEN G
BusinessElite economy class economy class

o “T11 EEEE T TEEEEEEEEEEN EEEEEEEEEEEN F
. EEEE EEEE ctEEEEEEEEEEEn EEEEEEEEEEEN E

PHEENEEEEEEEN EEEEEEEEEEEN D
8 EEEEE BEEEE CGuueeeEEEEEm EEEEEEEEEEEE ¢
A HEEEER HAEENE s EEEEEEEEEEN AEEEEEEEEEEEEN 8

ANEEEEEEEEEN AEEEEEEEEEEEEN A

1.23 45 10 1112 13 30 31 32 33 34 35 38 37 36 39 40 41 4445 46 47 43 49 50 5152 53 54 55 56 57
v v U, Y Y v

M BusinessElite seat [l economy class seat lavatoryigalley exit row A exit

Mesos Architecture: Example

_

Slaves continuously
send status updates
about resources

\/_)

rsist acr task
/\pessacossass)

Framework executors
launch tasks and may

icq ter
Chyy
Slave S2 &, ‘ 2Gg.
task 2 N S(Szfvscp >,
3 U
52:<8CPU,1GGB>J(task. VGCpU’4G8_\
’ GGBA}
Slave S3 o
6090} /
e Pluggable scheduler to

pick framework to

_ send an offer to D

.

Framework scheduler
selects resources and
provides tasks

=

Why does it Work?

e A framework can just wait for an offer that matches
its constraints or preferences!

e Reject offers it does not like

-
Accept: both S2

: i . _ and S3 store the
e Example: Hadoop’s job input is blue file blue file

14

Two Key Questions

e How long does a framework need to wait?

e How do you allocate resources of different types?

15

Two Key Questions

e How do you allocate resources of different types?

16

Single Resource: Fair Sharing

e 1 users want to share a resource (e.g. CPU) 100%]

e Solution: give each //n of the shared resource
50%

0%- 1

100% 1
e Generalized by max-min fairness

e Handles if a user wants less than its fair share c0%

e E.g.user 1 wants no more than 20%

0% |

17

Why Max-Min Fairness?

boty e

Proportional User 1 gets weight 2, user 2 weight 1
Allocation

Priority Give user 1 weight 1000, user 2 weight 1

Reservation Ensure user 1 gets 10% of a resource
Give user 1 weight 10, sum weights £ 100

Deadline Given a user job’s demand and deadline,
Guarantees @ compute user’s reservation/weight

Isolation: Users cannot affect others beyond their share

18

Widely Used

e OS: proportional sharing, lottery, Linux’s cfs, ...
e Networking: wfq, wf2q, sfq, drr, csfq, ...

e Datacenters: Hadoop’s fair sched, capacity sched,
Quincy

19

Why is Max-Min Fairness Not Enough?

e Job scheduling is not only about a single resource

e Tasks consume CPU, memory, network and disk I/O

20

Problem

100%7
e 2 resources: CPUs & mem

e User 1 wants <1 CPU, 4 GB> per task
e User 2 wants <3 CPU, 1 GB> per task 50% "1 -

e What’s a fair allocation? S Ra— S E— :

0%

21

A Natural Policy

e Asset Fairness
e Equalize each user’s sum of resource shares

[User1] User2

e Cluster with 28 CPUs, 56 GB RAM 100%
e U, needs <1 CPU, 2 GB RAM> per task, or

Problem: violates share guarantee
User 1 has < 50% of both CPUs and RAM

Better off in a separate cluster with half

50%

0% v) v

the resources
e LS CET T TIESS UTE[r CPU RAM
o U,: 12 tasks:(<43% CPUs, 43% RAM3 (5=86%)

o U,:8tasks: <28% CPUs, 57% RAM> (>=86%)

Cheating the Scheduler

e Users willing to game the system to get more resources

e Real-life examples
A cloud provider had quotas on map and reduce slots
Some users found out that the map-quota was low
Users implemented maps in the reduce slots!

A search company provided dedicated machines to users that
could ensure certain level of utilization (e.g. 80%)

Users used busy-loops to inflate utilization

23

Challenge

e Can we find a fair sharing policy that provides
e Share guarantee
e Strategy-proofness

e Can we generalize max-min fairness to multiple
resources?

24

Dominant Resource Fairness (DRF)

e A user’'s dominant resource is the resource user has
the biggest share of

Example:

Total resources: <8 CPU 5GBp

User 1’s allocation: <2 CPU 1GBp
25% CPUs 20% RAM

Dominant resource of User 1 is CPU (as 25% > 20%)

e A user’'s dominant share is the fraction of the
dominant resource she is allocated

User 1’s dominant share is 25%

25

Dominant Resource Fairness (DRF)

e Apply max-min fairness to dominant shares
e Equalize the dominant share of the users

e Example:
Total resources: <9 CPU, 18 GB>
User 1 demand: <1 CPU, 4 GB>; dom res: mem (1/9 < 4/18)
User 2 demand: <3 CPU, 1 GB>; dom res: CPU (3/9 > 1/18)
t

100%
’ O user1

B user2

CPU mem
(9 total) (18 total)

26

Online DRF Scheduler

Whenever there are available resources and tasks to run:

Schedule a task to the user with smallest dominant share

27

Properties of Policies

Property Asset CEEI DRF
Share guarantee 4 4
Strategy-proofness / v/

Conjecture: Assuming non-zero demands, DRF is
the only allocation that is strategy proof and
provides sharing incentive (Eric Friedman, Cornell)

Population monotonicity ¢ v/
Resource monotonicity

28

Implementation Stats

e 20,000 lines of C++

e Master failover using ZooKeeper

e Isolation using Linux Containers

e Frameworks ported: Hadoop, MPI, Torque

e New specialized framework: Spark, for iterative
jobs (up to 30x faster than Hadoop)

I Apache ™
Open source in Apache Incubator iﬁaé.ﬁ;:t:.

Users

e Twitter uses Mesos on > 100 nodes in production to
run ~12 production services

e Berkeley machine learning researchers are running
various algorithms at scale on Spark

e Conviva is using Spark for data analytics

e UCSF medical researchers are using Mesos to run
Hadoop for bioinformatics apps

30

Share of Cluster CPUs

Dynamic Resource Sharing

e 100 node cluster

1

0.8

0.6

0.4

0.2

o) 200 Tzfoo TGoo 800 1000 1200 1400 1600

Time (s)

Spark Facebook Hadoop Mix
Large Hadoop Mix s Torque / MPI

Conclusion

e Mesos shares clusters efficiently and dynamically
among diverse frameworks

e Enable co-existence of current frameworks and
development of new specialized ones

e In use at Twitter, UC Berkeley, Conviva and UCSF

WwWWw.mesosproject.org

32

