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The Cloud

Cloud storage makes many 
promises: 

– Data can be accessed 
anywhere at any time 

 

– No end-user cost for 
maintenance or 
infrastructure

– Platform independence
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Cloud Security

Cloud storage is 
inherently insecure

– Data for different parties 
coexist on the same 
hardware, segregated by 
the service provider

 

– Data not necessarily 
stored in an encrypted 
form

– Must implicitly trust the 
service provider



Honest but Curious Model
• Assume that cloud is honest but curious

• Users of cloud storage should have complete 
control over whom they can trust to access their 
data

• Encryption is needed
– Should only store one encrypted copy of the file

– Sending keys directly to users would make it 
cumbersome to change keys
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Current Methods

• Current cloud-based storage security revolves 
around heavy weight cryptographic primitives

• Attribute Based Encryption (ABE) is so far the most 
popular method, which provides fine grained access 
control over the data
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ABE 10,000 Foot View

• Encryption primitive devised by Bethencourt, Sahai, 
and Waters (2006)

• In ABE attributes are arranged into a Boolian 
formula. When this formula is satisfied, decryption 
can occur

• Formula satisfaction is part of the cryptography



Inefficient Bilinear Pairings

• All known implementations of ABE use 
bilinear pairings:

– e(ga, gb) = gab, for unknown a, b

– Can be done over bilinear groups in time of 
a high order polynomial

– Computationally inefficient



Other Methods

• mediated cryptography 
– using a mediated server

• proxy re-encryption
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Proxy Re-Encryption

• A primitive that allows messages encrypted with 
Alice's public key to be transformed to messages 
under Bob's public key without Bob knowing 
Alice's private key

– The name of the primitive derives from the fact that in 
the above scenario, Bob can serve as a proxy for Alice

 

– Traditionally, proxy will perform re-encryption that takes 
as input the encrypted message and re-encryption key
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Re-Encryption

• We modify the proxy re-encryption primitive to 
make it applicable in our system:

– We do not use proxy to perform re-encryption; 
instead, Bob, in our scenario, will run the re-
encryption algorithm himself

 

– The re-encryption keys are stored in the cloud that 
are publicly accessible



Heavy Use of Proxy

• Mediated cryptography typically uses a 
form of secret sharing for the key between 
the user and proxy

• Both use proxy to enforce access control

• Proxy becomes single point of failure for 
all operations
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Our Views

• Current methods are inefficient 
and overly complicated

• We’d like a simple, efficient, 
and secure scheme 

Why do you care what other people think? 

Richard Feynman



An Early Result
• Based on “Improved Proxy Re-Encryption with 

Applications to Secure Distributed Storage” 
(Atienese, Fu, Green and Hohenberger 2005)

• The paper presented a system that uses a 
collusion free unidirectional proxy re-encryption 
(UPRE) to secure distributed storage

– Their UPRE scheme uses bilinear pairings

– They use a proxy to do the re-encryption



A High Level View
• Alice requests a file from storage, this file is encrypted 

with a symmetric key (the symmetric key is encrypted 
with a public key in the UPRE system)

• Alice forwards this file to the proxy. The proxy then re-
encrypts a wrapped shared key that forms the header 
of the file. The file with the re-encrypted header is 
returned to Alice 

• Alice can then decrypt the file



1. Request File

2. Send file to user

3. File sent to proxy

4. Re-encrypted file returned 
to user

5. User decrypts file



Goal One: Remove Proxy

1. Request File

2. Send file to user

3. Re-encrypted file returned 
to user

4. User decrypts file



Goal One Cont.
• We satisfy goal one by removing the proxy and 

having the user do their own re-encryption

• This requires that the PRE system be 
unidirectional and collusion free
– Collusion free means that given a re-encryption key 

K, between users A and B, private keys SA and SB 
for users A and B respectively, there does not exist a 
function f(K, SB,I) that yields any information that 
allows the proxy and B to perform an operation one of 
them wouldn’t be able to do on their own.



Goal Two: Remove Bilinear 
Pairing Operations

• We can remove the proxy and use Atienese, Fu, 
Greene and Hohenberger's PRE system as it’s 
collusion free, but it uses undesirable bilinear 
pairings

• Another recent work: “Efficient Unidirectional 
Proxy Re-Encryption” by Chow, Weng, Yang 
and Deng
– Pairing free unidirectional PRE scheme

– But NOT Collusion free!



Goal Two Cont.

• We fixed the system to prevent the collusion 
attack

• We simplified the system via the removal of four 
hashes used in [CWYD]

• We showed this new scheme to be CPA secure 
in the IND-PRE-CPA game.



Final View in The Cloud

1. Request File

3. Users re-encrypts file

4. Users decrypts file

2. Send file to user



Secure Unidirectional Re-
Encryption (SURE)

• We develop a Secure Unidirectional Re-
Encryption (SURE) scheme (Details will 
be given later)

• Theorem. If Decisional Diffie-Hellman is 
secure, then SURE is secure in the IND-
URE-CPA game

• SURE is Semantically Secure



Secure Cloud Storage over 
SUPRE

• Three major types of operations in our Secure 
Cloud Storage System (CSS)

– Authentication
– Group Operations – akin to POSIX (UNIX) 

access control groups
–  File Operations
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Authentication

Uses the concept of tickets from Kerberos
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Creating Groups

Suppose Alice wants to create a group name 
n with a public-private key pair (Pn, sn)



Add Users to A Group

where KRE-B is the re-encryption key for 
Bob (using the group’s private key and 
Bob’s public key



File Operations
• To store a file F in the cloud for a group x of 

users, Alice generates a symmetric key K and 
uses it to encrypt F to get F’

• Alice retrieves from the cloud the certificate of 
the group she wants to share F with

• Alice verifies the certificate using Charlie’s public 
key also stored in the cloud

• If verified, she uploads (x, E(Px, K)) to the header 
of F’



File Operations cont.
• To retrieve a file, Bob of group x downloads the 

file with the appropriate header

• Looks at the group name and retrieves his re-
encryption key for the group

• Run ReEncrypt on the encrypted K with the 
group’s public key to generate the transformed 
ciphertext

• Use his private key to decrypt the transformed 
cipertext and retrieve K  
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SURE Components

• KeyGen – Generates a pair of public and private keys 
(encryption key)

• ReKeyGen – Generates a re-encryption key

• Encrypt – Encrypts a message with the encryption key

• ReEncrypt – Re-encrypts a ciphertext with the re-
encryption key

• Decrypt – Decrypt the encrypted cipher text.
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Parameters

• Prime p, q such that q|p − 1 

• G = <g> and a subgroup of  (Z/pZ)*

• G has order q



KeyGen

• Alice selects a ∊ Z/qZ at random
– a: private (secret)
– ga: public

• Bob’s key pair: (b, gb)



Encrypt

• Alice encrypts a message m  ∊ G:

– Choose a random ephemeral key t  ∊ Z/qZ
– Compute the ciphertext:

 (C1, C2) = (mgt, (ga)t)



ReKeyGen

• Alice generates a re-encryption key for 
Bob (unidirectional) using Alice’s private 
key a and Bob’s public key gb:

– Choose at random h, y, v from Z/qZ

– K = h/a + y/a2

– VB = (gb)v, WB = gv(h + y/a)

– Re-encryption key: (K , VB, WB)



ReEncrypt

• Bob re-encrypts ciphertext  (C1, C2) as

(C1,  C2
K ) = (mgt, ((ga)t)K)



Decrypt

• In the case of original encryption, the input 
is (C1, C2), then

m = C1/C2
1/a

• In the case of re-encryption, the input is 
(C1,  C2

K ) , then

m = C1/C2
L, 

L = V1/b/W 



The IND-URE-CPA Game

1. C (the challenger) informs A (the adversary) the 
SUPRE parameters

1. A asks C to generate a public key or a public-private 
key pair; may do so for a fixed polynomial number of 
times

1. A selects two users i & j from the public key pool, 
encrypts a message using i’s public key, and asks C to 
re-encrypt it using j’s re-encryption key; may do so for a 
fixed polynomial number of times



IND-URE-CPA Game cont.

1. A  generates messages m0 & m1 (|m0| = |m1|), 
selects users i whose private key is not known to 
A, and sends them to C with i’s public key. C flips 
a random coin c  {0,1}, ∊ encrypts mc using i’s 
public key, and sends it to A

1. A guesses c’  {0,1} ∊ (from information obtained 
from previous phases) and wins the game if c’ = c

A’s advantage is defined to be Pr[c’ = c] – ½



Implementation
 We implemented SUPRE in a source group induced 

by the prime p = 2q – 1, where q is a prime, with 
GNU's GMP library

 128-Bit AES was used as the symmetric 
cryptography system

 Signature system was implemented using RSA with 
SHA-1 Hashes

  All cryptographic operations were provided by 
OpenSSl's libcrypto



Settings

• The cloud was implemented as a web server on 
a Linux 2.6.35-28 (AMD dual core x64)

• The server and the client machines were placed 
in different cities

• Each test was performed 1,000 times, each on a 
1 kilobyte file

• Public keys were about 5K bit long
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Reading Test
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Writing Test
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Result Summary
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Conclusion
• We presented a simple and efficient cloud 

storage protocol based on a secure 
unidirectional re-encryption scheme

• Our protocol removes bottlenecks 
common in other systems

• Garner some protection from the single-
hop nature of the ciphertexts
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