
Access Control in Untrusted Cloud
Storage using Unidirectional

Re-encryption

Zach Kissel, Jie Wang
University of Massachusetts Lowell

2

The Cloud

Cloud storage makes many
promises:

– Data can be accessed
anywhere at any time

– No end-user cost for
maintenance or
infrastructure

– Platform independence

3

Cloud Security

Cloud storage is
inherently insecure

– Data for different parties
coexist on the same
hardware, segregated by
the service provider

– Data not necessarily
stored in an encrypted
form

– Must implicitly trust the
service provider

Honest but Curious Model
• Assume that cloud is honest but curious

• Users of cloud storage should have complete
control over whom they can trust to access their
data

• Encryption is needed
– Should only store one encrypted copy of the file

– Sending keys directly to users would make it
cumbersome to change keys

5

Current Methods

• Current cloud-based storage security revolves
around heavy weight cryptographic primitives

• Attribute Based Encryption (ABE) is so far the most
popular method, which provides fine grained access
control over the data

6

ABE 10,000 Foot View

• Encryption primitive devised by Bethencourt, Sahai,
and Waters (2006)

• In ABE attributes are arranged into a Boolian
formula. When this formula is satisfied, decryption
can occur

• Formula satisfaction is part of the cryptography

Inefficient Bilinear Pairings

• All known implementations of ABE use
bilinear pairings:

– e(ga, gb) = gab, for unknown a, b

– Can be done over bilinear groups in time of
a high order polynomial

– Computationally inefficient

Other Methods

• mediated cryptography
– using a mediated server

• proxy re-encryption

9

Proxy Re-Encryption

• A primitive that allows messages encrypted with
Alice's public key to be transformed to messages
under Bob's public key without Bob knowing
Alice's private key

– The name of the primitive derives from the fact that in
the above scenario, Bob can serve as a proxy for Alice

– Traditionally, proxy will perform re-encryption that takes
as input the encrypted message and re-encryption key

10

Re-Encryption

• We modify the proxy re-encryption primitive to
make it applicable in our system:

– We do not use proxy to perform re-encryption;
instead, Bob, in our scenario, will run the re-
encryption algorithm himself

– The re-encryption keys are stored in the cloud that
are publicly accessible

Heavy Use of Proxy

• Mediated cryptography typically uses a
form of secret sharing for the key between
the user and proxy

• Both use proxy to enforce access control

• Proxy becomes single point of failure for
all operations

12

Our Views

• Current methods are inefficient
and overly complicated

• We’d like a simple, efficient,
and secure scheme

Why do you care what other people think?

Richard Feynman

An Early Result
• Based on “Improved Proxy Re-Encryption with

Applications to Secure Distributed Storage”
(Atienese, Fu, Green and Hohenberger 2005)

• The paper presented a system that uses a
collusion free unidirectional proxy re-encryption
(UPRE) to secure distributed storage

– Their UPRE scheme uses bilinear pairings

– They use a proxy to do the re-encryption

A High Level View
• Alice requests a file from storage, this file is encrypted

with a symmetric key (the symmetric key is encrypted
with a public key in the UPRE system)

• Alice forwards this file to the proxy. The proxy then re-
encrypts a wrapped shared key that forms the header
of the file. The file with the re-encrypted header is
returned to Alice

• Alice can then decrypt the file

1. Request File

2. Send file to user

3. File sent to proxy

4. Re-encrypted file returned
to user

5. User decrypts file

Goal One: Remove Proxy

1. Request File

2. Send file to user

3. Re-encrypted file returned
to user

4. User decrypts file

Goal One Cont.
• We satisfy goal one by removing the proxy and

having the user do their own re-encryption

• This requires that the PRE system be
unidirectional and collusion free
– Collusion free means that given a re-encryption key

K, between users A and B, private keys SA and SB
for users A and B respectively, there does not exist a
function f(K, SB,I) that yields any information that
allows the proxy and B to perform an operation one of
them wouldn’t be able to do on their own.

Goal Two: Remove Bilinear
Pairing Operations

• We can remove the proxy and use Atienese, Fu,
Greene and Hohenberger's PRE system as it’s
collusion free, but it uses undesirable bilinear
pairings

• Another recent work: “Efficient Unidirectional
Proxy Re-Encryption” by Chow, Weng, Yang
and Deng
– Pairing free unidirectional PRE scheme

– But NOT Collusion free!

Goal Two Cont.

• We fixed the system to prevent the collusion
attack

• We simplified the system via the removal of four
hashes used in [CWYD]

• We showed this new scheme to be CPA secure
in the IND-PRE-CPA game.

Final View in The Cloud

1. Request File

3. Users re-encrypts file

4. Users decrypts file

2. Send file to user

Secure Unidirectional Re-
Encryption (SURE)

• We develop a Secure Unidirectional Re-
Encryption (SURE) scheme (Details will
be given later)

• Theorem. If Decisional Diffie-Hellman is
secure, then SURE is secure in the IND-
URE-CPA game

• SURE is Semantically Secure

Secure Cloud Storage over
SUPRE

• Three major types of operations in our Secure
Cloud Storage System (CSS)

– Authentication
– Group Operations – akin to POSIX (UNIX)

access control groups
– File Operations

23

Authentication

Uses the concept of tickets from Kerberos

24

Creating Groups

Suppose Alice wants to create a group name
n with a public-private key pair (Pn, sn)

Add Users to A Group

where KRE-B is the re-encryption key for
Bob (using the group’s private key and
Bob’s public key

File Operations
• To store a file F in the cloud for a group x of

users, Alice generates a symmetric key K and
uses it to encrypt F to get F’

• Alice retrieves from the cloud the certificate of
the group she wants to share F with

• Alice verifies the certificate using Charlie’s public
key also stored in the cloud

• If verified, she uploads (x, E(Px, K)) to the header
of F’

File Operations cont.
• To retrieve a file, Bob of group x downloads the

file with the appropriate header

• Looks at the group name and retrieves his re-
encryption key for the group

• Run ReEncrypt on the encrypted K with the
group’s public key to generate the transformed
ciphertext

• Use his private key to decrypt the transformed
cipertext and retrieve K

28

SURE Components

• KeyGen – Generates a pair of public and private keys
(encryption key)

• ReKeyGen – Generates a re-encryption key

• Encrypt – Encrypts a message with the encryption key

• ReEncrypt – Re-encrypts a ciphertext with the re-
encryption key

• Decrypt – Decrypt the encrypted cipher text.

29

Parameters

• Prime p, q such that q|p − 1

• G = <g> and a subgroup of (Z/pZ)*

• G has order q

KeyGen

• Alice selects a ∊ Z/qZ at random
– a: private (secret)
– ga: public

• Bob’s key pair: (b, gb)

Encrypt

• Alice encrypts a message m ∊ G:

– Choose a random ephemeral key t ∊ Z/qZ
– Compute the ciphertext:

 (C1, C2) = (mgt, (ga)t)

ReKeyGen

• Alice generates a re-encryption key for
Bob (unidirectional) using Alice’s private
key a and Bob’s public key gb:

– Choose at random h, y, v from Z/qZ

– K = h/a + y/a2

– VB = (gb)v, WB = gv(h + y/a)

– Re-encryption key: (K , VB, WB)

ReEncrypt

• Bob re-encrypts ciphertext (C1, C2) as

(C1, C2
K) = (mgt, ((ga)t)K)

Decrypt

• In the case of original encryption, the input
is (C1, C2), then

m = C1/C2
1/a

• In the case of re-encryption, the input is
(C1, C2

K) , then

m = C1/C2
L,

L = V1/b/W

The IND-URE-CPA Game

1. C (the challenger) informs A (the adversary) the
SUPRE parameters

1. A asks C to generate a public key or a public-private
key pair; may do so for a fixed polynomial number of
times

1. A selects two users i & j from the public key pool,
encrypts a message using i’s public key, and asks C to
re-encrypt it using j’s re-encryption key; may do so for a
fixed polynomial number of times

IND-URE-CPA Game cont.

1. A generates messages m0 & m1 (|m0| = |m1|),
selects users i whose private key is not known to
A, and sends them to C with i’s public key. C flips
a random coin c {0,1}, ∊ encrypts mc using i’s
public key, and sends it to A

1. A guesses c’ {0,1} ∊ (from information obtained
from previous phases) and wins the game if c’ = c

A’s advantage is defined to be Pr[c’ = c] – ½

Implementation
 We implemented SUPRE in a source group induced

by the prime p = 2q – 1, where q is a prime, with
GNU's GMP library

 128-Bit AES was used as the symmetric
cryptography system

 Signature system was implemented using RSA with
SHA-1 Hashes

 All cryptographic operations were provided by
OpenSSl's libcrypto

Settings

• The cloud was implemented as a web server on
a Linux 2.6.35-28 (AMD dual core x64)

• The server and the client machines were placed
in different cities

• Each test was performed 1,000 times, each on a
1 kilobyte file

• Public keys were about 5K bit long

39

Reading Test

40

Writing Test

41

Result Summary

42

Conclusion
• We presented a simple and efficient cloud

storage protocol based on a secure
unidirectional re-encryption scheme

• Our protocol removes bottlenecks
common in other systems

• Garner some protection from the single-
hop nature of the ciphertexts

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

