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Cross-layer Energy-Power Management

Motivations for HPC Power Management

1 Growing scales of High-end High Performance Computing systems

d Power consumption has become critical in terms of operational costs
(dominant part of IT budgets)

1 Existing power/energy management focused on single layers
1 May result in suboptimal solutions

Challenges in HPC Power Management

Jd GreenHPC
ad $/W/MFLOP, defining energy efficiency

d Infrastructure: thermal sensors, instrumentation, monitoring, cooling,
etc.

 Architectural challenges
d Processor, memory, interconnect technologies
 Increased use of accelerators
d Power-aware micro-architectures

d Compilers, OS, runtime support
1 Power-aware code generation
d Power-aware scheduling
d DVEFS, programming models, abstractions

[ Considerations for system level energy efficiency

d Optimizing CPU alone is not sufficient, need to look at entire system/
cluster

d Application/workload aware-optimizations
d Power-aware algorithm design

Approach

d Abnormal operational state detection (e.g., poor performance,
hotspots)

J Reactive and proactive approaches
1 Reacting to anomalies to return to steady state
1 Predict anomalies in order to avoid them

J Workload/application-awareness
 Application profiling/characterization
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Goals

1 Autonomic (self-monitored and self-managed) computing
systems

J Optimizing (minimizing):
1 Energy efficiency
1 Cost-effectiveness
A Utilization
while ensuring (maximizing):
d Performance/quality of service delivered

1 Addressing both “traditional” and virtualized system (i.e., data
centers and GreenHPC in the Cloud)

PALy China - US Software Workshop, September 2011

Science Foundation under Grant No. 0758596.

J Architecture
Cross-infrastructure Power Management
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Cross-layer Power Management

Virtualized Instrumented infrastructure

Component-based Power Management [HiPC'10/11] , ol ¢ l

d Workload profiling and characterization
d HPC workloads (e.g., HPC Linpack)
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1 Use of low power modes to configure subsystems
(i.e.,, CPU, memory, disk and NIC)
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 Energy-efficient memory hierarchies
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d Memory power management for multi- many-core systems
d Multiple channels to main memory
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d Application-driven power control (i.e., ensure bandwidth o210 s 0
to main memory leveraging channel affinity)
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Runtime Power Management

d Partitioned Global Address Space (PGAS)
O Implicit message-passing
‘ d  Unified Parallel C (UPC) so far
A Target platforms
d Many-core (i.e., Intel SCC)
d HPC clusters
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Example: Potential saving during collective operations (e.g., barriers) in
the SCC platform

VM classes based on clusters
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Energy-aware Autonomic Provisioning IGCC'10] 1 | | Fad.
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 Virtualized Cloud infrastructures with multiple
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geographical distributed entry points. o
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requirements (multiple dimensions, e.g., memory, CPU, network requirements)
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A Optimizing energy efficiency in the following ways: L iy
ad Powering down subsystems when they are not needed § :ZZ Riie e e Wl R S
O Efficient, just-right VM provisioning (reduce over-provisioning ) 200 |

4 Efficient proactive provisioning and grouping (reduce re-provisioning) 100

Energy and Thermal Autonomic Management

d Reactive thermal and energy management of HPC workloads

1 Autonomic decision making to react to thermal hotspots considering
multiple dimensions (i.e., energy and thermal efficiency) using different

Autonomically Scheduled Temperatures of Servers Over Time

_80- techniques: VM migration, CPU DVFS, CPU pinning

% | 1 Proactive energy-aware application-centric VM allocation for HPC
§4n-. I workloads

E d Strategy for proactive VM allocation based on VM consolidation while

satisfying QoS guarantees

d Based on application profiling (profiles are known in advance) and
benchmarking on real hardware
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