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Motivations for HPC Power Management 
q  Growing scales of High-end High Performance Computing systems 

q  Power consumption has become critical in terms of operational costs 
(dominant part of IT budgets) 

q  Existing power/energy management focused on single layers 
q  May result in suboptimal solutions 

Challenges in HPC Power Management 
q  GreenHPC 

q  $/W/MFLOP, defining energy efficiency 
q  Infrastructure: thermal sensors, instrumentation, monitoring, cooling, 

etc. 
q  Architectural challenges 

q  Processor, memory, interconnect technologies 
q  Increased use of accelerators 
q  Power-aware micro-architectures 

q  Compilers, OS, runtime support 
q  Power-aware code generation 
q  Power-aware scheduling 
q  DVFS, programming models, abstractions 

q  Considerations for system level energy efficiency 
q  Optimizing CPU alone is not sufficient, need to look at entire system/

cluster 
q  Application/workload aware-optimizations 

q  Power-aware algorithm design 

 

 

Motivations and Challenges Cross-layer Energy-Power Management 
q  Architecture 

Component-based Power Management [HiPC’10/11] 
q  Application-centric aggressive power management 

 at component level 
q  Workload profiling and characterization 

q  HPC workloads (e.g., HPC Linpack) 
q  Use of low power modes to configure subsystems 

 (i.e., CPU, memory, disk and NIC) 
q  Energy-efficient memory hierarchies 

q  Memory power management for multi- many-core systems 
q  Multiple channels to main memory 
q  Application-driven power control (i.e., ensure bandwidth  
    to main memory leveraging channel affinity) 

Runtime Power Management 
q  Partitioned Global Address Space (PGAS) 

q  Implicit message-passing 
q  Unified Parallel C (UPC) so far 

q  Target platforms 
q  Many-core (i.e., Intel SCC) 
q  HPC clusters  

 
Energy-aware Autonomic Provisioning [IGCC’10] 
q  Virtualized Cloud infrastructures with multiple  

 geographical distributed entry points.  
q  Workloads composed of HPC applications 
q  Distributed Online Clustering (DOC) 

q  Cluster job requests in the input stream based on their resource  
    requirements (multiple dimensions, e.g., memory, CPU, network requirements) 

q  Optimizing energy efficiency in the following ways: 
q  Powering down subsystems when they are not needed 
q  Efficient, just-right VM provisioning (reduce over-provisioning ) 
q  Efficient proactive provisioning and grouping (reduce re-provisioning) 

Energy and Thermal Autonomic Management 
q  Reactive thermal and energy management of HPC workloads 

q  Autonomic decision making to react to thermal hotspots considering 
multiple dimensions (i.e., energy and thermal efficiency) using different 
techniques: VM migration, CPU DVFS, CPU pinning 

q  Proactive energy-aware application-centric VM allocation for HPC 
workloads 
q  Strategy for proactive VM allocation based on VM consolidation while 

satisfying QoS guarantees 
q  Based on application profiling (profiles are known in advance) and 

benchmarking on real hardware 
 

 
 

q  Abnormal operational state detection (e.g., poor performance, 
hotspots) 

q  Reactive and proactive approaches 
q  Reacting to anomalies to return to steady state 
q  Predict anomalies in order to avoid them 

q  Workload/application-awareness 
q  Application profiling/characterization 
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q  Autonomic (self-monitored and self-managed) computing 
systems 

q  Optimizing (minimizing): 
q  Energy efficiency 
q  Cost-effectiveness 
q  Utilization 

while ensuring (maximizing): 
q  Performance/quality of service delivered 

q  Addressing both “traditional” and virtualized system (i.e., data 
centers and GreenHPC in the Cloud) 

Goals 
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Cross-layer Power Management 

Cross-infrastructure Power Management 
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Virtualized Instrumented infrastructure 

Application-aware 
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Opportunities for powering down 
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VM classes based on clusters 

Over-provisioning cost 
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CG.A.O3.16 execution. Call’s to UPC Runtime function upcr_wait2 in node 1

Example: Potential saving during collective operations (e.g., barriers)   in 
the SCC platform 


