Extreme Scale Computing

University of Illinois at Urbana-Champaign William Gropp

Research Interests:

Scalable numerical methods Programming models for parallel computing

Extreme scale computing

Current projects MPI for petascale

Scalable Algorithms **Exascale Computing**

"Blue Waters", the NSF Track 1 Petascale System

Software Projects

MPICH2 - A High Performance, Scalable, Portable Implementation of

pnetCDF – A parallel version of the netCDF 3 file format and utilities PETSc – A Scalable numerical library for solving large systems of linear and nonlinear equations

Two examples follow

Paul Sack

this sense Collective communication and computation are important operations Implementations have often minimized the data moved and are optimal in

Goal: Minimum time collective operations have limited bisection bandwidth compared with a complete graph Interconnection networks, particularly at extreme scale, are complex and

avoiding contention Idea: Additional Data Motion can reduce contention in network, by

Illinois: Hormozd Gahvari and Luke Olson LLNL: Martin Schulz and Ulrike Meier Yang IBM: Kirk Jordan

extreme scale systems Goal: Access and enhance the scalability of an "optimal" numerical method for

Algebraic Multigrid

- Algebraic multigrid (AMG) allows for the fast solution of large problems by using coarse-grid approximations that involve far fewer points:
- Work per unknown remains constant, which is great for supercomputing

Scalability Challenges

- multicore clusters AMG scales well on IBM Blue Gene machines, but has difficulties on
- Quick comparison between two machines, Hera (multicore Linux cluster at LLNL) and intrepid (IBM Blue Gene/P at ANL) is highly illustrative
- Results here are for one V-cycle on a 3D 7-point Laplace problem on 128 processors with 62,500 points and one MPI process per core:

Mown on widown on ls 3 → 5. sel 5, with 272 points, varily as slow yel 0!										
total	7	6	v	4	ω	2	-	0	Level	ŀ
	3	23	212	1,509	13,643	120,607	614,521	8,000,000	Level Unknowns Hera	
9.18 x 10-2 s	5.44 x 10 ⁻⁵ s	2.75 x 10-3 s	2.02×10^{-2} s	$1.87 \times 10^{-2} \text{ s}$	1.24×10^{-2} s	6.52 x 10 ⁻³ s	8.28 x 10 ⁻³ s	2.30 x 10 ⁻² s 5.19 x 10 ⁻² s	Hera	
9.18 x 10-2 s 7.55 x 10-2 s	5.44 x 10 ⁻⁵ s 2.22 x 10 ⁻⁵ s	2.75 x 10 ⁻³ s 5.36 x 10 ⁻⁴ s	2.02 x 10 ⁻² s 1.73 x 10 ⁻³ s	1.87 × 10 ⁻² s 1.27 × 10 ⁻³ s	1.24 × 10 ⁻² s 1.53 × 10 ⁻³ s	6.52 x 10 ⁻³ s 4.38 x 10 ⁻³ s	8.28 x 10 ⁻³ s 1.42 x 10 ⁻² s	5.19 x 10 ⁻² s	Intrepid	
Intropid: •Slowdown on level 5.										

Hera Slovilevel Level only is no

This is driven by increasing amounts of interprocessor com

Performance Model

- Baseline model: α-β (latency-bandwidth) with parameters To help us understand what we are seeing, develop performance model for AMG solve cycle

- -P-number of processes
 -C_number of grid points in level i
 -C_number of series per row in solve and interpolation operators, respectively
 -p_D_naximum number of series per active process in solve and interpolation operators, respectively
 -p_D_naximum number of elements sent per active process in solve and interpolation operators, respectively
 -q_number of elements sent per active process in solve and interpolation operators respectively
 -q_number of elements sent per active process in solve and interpolation operators.
- Runtime at each level is sum of:

- Take architectural features into account with penalties:

 Olstance of communications and y term (during stations a retwork diameter to a covere februles bundwith multiple by Hardware StandwithMINE) Bandwith Multicore diameter penalty multiply of \$\oldsymbol{y} = \oldsymbol{P}_{\oldsymbol{P}}\$ (is covered for note, P = no, activations diameter penalty, multiply of \$\oldsymbol{y} = \oldsymbol{P}_{\oldsymbol{P}}\$ (is covered for note, P = no, activations diameter penalty, multiply of \$\oldsymbol{y} = \oldsymbol{P}_{\oldsymbol{P}}\$ (is covered for note, P = no, activations diameter penalty, multiply of \$\oldsymbol{y} = \oldsymbol{P}_{\oldsymbol{P} when, was y terri (charge distance = network dismeter to each message) width multiply is by Hardware BandwidthMPI Bandwidth MID and the processes at level i) tally, multiply or by 6°P,P (c = cores per node, P, = no, active processes at level i) tally, multiply v by 6°P,P
- Results spotlight impact of architecture on performance:

- α-β - β Pe

- Future machines will be more multicore