
Memory-Aware Compiler Optimizations

Reliable Software Developing Environment

Misaligned Data Access Handling in 

Binary Translation

An exception handler-based approach

Achieved 13%-44% speedup.

Interpreter

X86 Image
Execution 

Profile

Translator

Execute 
Translated code

Translated Image

Intermediate 
Representation

U
na

lig
ne

d 
Tr

ap

OS

Misaligned 
Exception 
Handler

M
odify the Translated code

Dynamic Profiling

Misalignment Exception Handler

Improving Heap Memory Layout by 

Dynamic Pool Allocation

 A lightweight dynamic optimizer
 Exploit the Affinity of heap objects
 13% speedup on average, up to 82%

Mitigating Memory Bandwidth Contention

 Bandwidth-aware scheduling

Maintain bandwidth utilization

 4.1% speedup on average, up to 11.7%

-10%

-5%

0%

5%

10%

to PBW to IABW Optimal by Hand

Software-Hardware Cooperative 

DRAM Bank Partitioning

 Page coloring + XOR cache mapping

 5.3% speedup on average, up to 15%

Detecting and Eliminating Potential Violations of Sequential 

Consistency for concurrent C/C++ programs

Level-by-level: Flow- and Context-Sensitive

Pointer Analysis

Analyzing pointers level by level in terms of their points-to levels

 Full sparse SSA form

 Full transfer function and meet function

Compute Transfer 

Function

Bottom-up 

Analysis

Top-down 
Analysis

Transfer

Point-to Set

Compute 

Level of 

Point-to

Computation level-by-level

Incrementally build PCG

Benchmark KLOC
LevPA

Bootstrapping

(PLDI’08)

64bit 32bit 32bit

Icecast-2.3.1 22 2.18s 5.73s 29s

sendmail 115 72.63s 143.68s 939s

httpd 128 16.32s 35.42s 161s

445.gombk 197 21.37s 40.78s /

wine-0.9.24 1905 502.29s 891.16s /

wireshark-1.2.2 2383 366.63s 845.23s /

 Combining Shasha/Snir's conflict graph and delay set theory

 Effectively detected PVSC bugs in MySQL/Apache

Parallel Programming Model
Adaptive Task Creation Strategy 

for Work-stealing

An adaptive task creation strategy 

controls the tasks granularity.

A new data attribute taskprivate is 

introduced for workspace variables.

 Hierarchical UPC(HUPC)

■ Hybrid execution model of fork-join and SPMD

■ Affinity aware hierarchical data parallelism

 HUPC Implementation on GPU clusters

Source line of codes in the 

kernel part

Source line of codes in the whole 

program

Design and Implementation of 

UPC on GPU clusters
Safe Parallel Programming using 

Dependence Hints 

Global Tiling for Communication 

Minimal Parallelization on DSM

 0-1 integer linear programming
 Loop tiling for non-rectangular area

Dynamic register promotion of 

stack variables

 Exploit additional register resources

 Runtime alias detection on page protection

Object Object::getInstance() {

if (!_instance) {

lock(l);

if (!_instance) {

temp = malloc(..);

A1: temp->field = 100;

A2: 

B1: {…}

…

B2: read _instance->field;

Initializer Thread (T1) Reader Thread (T2)

Data race due to lack of 

synchronizations

Object Object::getInstance() {

if (!_instance) {

lock(l);

if (!_instance) {

temp = malloc(..);

A2

A1 temp->field = 100;

Initializer Thread (T1)

Uninitialized reference to instance->field

PVSC

Compilation Methodology & Infrastructure
Iterative Compilation

 Possible to derive a robust iterative

optimization strategy across data set

 Optimizing programs across data sets is

much easier than previously anticipated

Expert-Assisted Compilation Methodology

 Pattern-Oriented Optimization Directives

 Extendable via developer interfaces

 Integrate experts’experience into compilers

App Kernels
Large-Scale

Applications

Domain

Experts

Compiler

Developer

Extendable 

Pattern-oriented

Optimizing 

Framework
General 

Programmer

Performance

Goal

Optimizing Experience

Extended to large-scale applications

Experience

Pattern-

Making

Interface

Pattern-

Oriented

Directives

Manual 

Tuning

Optimization Adaptor Framework

 Utilizing similarity between algorithms

 Defining the difference via adaptor

 Reuse existing optimization experiences

0

100

200

300

400

500

600

700

P
e

rf
o

rm
an

ce
 (

G
FL

O
P

S)

CUBLAS OA

 Hints to specify possible dependences 

between possibly parallel tasks

 Hints can be incomplete or incorrect

 Extends Do-Across and OpenMP directives

node in list1 node in list2 node in tree

Pool Allocation

MemPool1 MemPool2 MemPool3

Xiaobing Feng, fxb@ict.ac.cn Institute of Computing Technology, CAS

mailto:fxb@ict.ac.cn

