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Tutorial on Cluster Analysis I

1. An in-depth look at hierarchical clustering, including:

Topics

e Weighting observations

e Nearest neighbor and reciprocal nearest neighbor algorithms

State of the art in complexity Introduction and An Example I

e Clustering of correspondence analysis factor projections, to bypass

normalization problems

2. Graph methods and constrained clustering: these are mostly methods for
clustering on graphs (as opposed to clustering graphs)

3. Partitioning, distribution mixture modeling with Bayes factors, and Kohonen
self-organizing maps, — all of which are based on the EM,

K expectation-maximization optimization algorithm / k
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‘ Cluster Analysis I

Some Terms

e Unsupervised classification, clustering, cluster analysis, automatic
classification. Versus: Supervised classification, discrimant analysis, trainable Rittas os ST et e

fion 9f the mioial spaniicg ties)

classifier, machine learning.

e For clustering we can consider (i) partitioning methods, (ii) agglomerative
hierarchical classification, (iii) graph methods, (iv) statistical methods, or

distribution mixture models, (v) Kohonen self-organizing feature map.

Al
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e Then there are combinatorial methods, statistical methods which assume a (data - ety

+) noise model, and soon. | e

e Note that principal components analysis, correspondence analysis, or indeed LT

\ visualization display methods, can be used for clustering.
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‘ Example: analysis of globular clusters I

globular cluster parameters and mass function morphology”, AA, 244,

298-302, 1991.

14 globular clusters, 8 measurement variables.

Data collected in earlier CCD (digital detector) photometry studies.

Pairwise plots of the variables.
PCA of the variables.

PCA of the objects (globular clusters).

e M. Capaccioli, S. Ortolani and G. Piotto, “Empirical correlation between
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Object t_rlx Rgc zg log(M/ c [Fe/H] b'q %0
years Kpc Kpc M.)
M15 1.03e+8 10.4 4.5 5.95 2.54 -2.15 2.5 1.4
M68 2.59e+8 10.1 5.6 5.1 1.6 -2.09 2.0 1.0
M13 2.91e+8 8.9 4.6 5.82 1.35 -1.65 1.5 0.7
M3 3.22e+8 12.6 10.2 5.94 1.85 -1.66 1.5 0.8
M5 2.21e+8 6.6 5.5 5.91 1.4 -1.4 1.5 0.7
M4 1.12e+8 6.8 0.6 5.15 1.7 -1.28 -0.5 -0.7
47 Tuc 1.02e+8 8.1 3.2 6.06 2.03 -0.71 0.2 -0.1
M30 1.18e+7 7.2 5.3 5.18 2.5 -2.19 1.0 0.7
NGC 6397 1.59%e+7 6.9 0.5 4.77 1.63 -2.2 0.0 -0.2
M92 7.79e+7 9.8 4.4 5.62 1.7 -2.24 0.5 0.5
M12 3.26e+8 5.0 2.3 5.39 1.7 -1.61 -0.4 -0.4
NGC 6752 8.86e+7 5.9 1.8 5.33 1.59 -1.54 0.9 0.5
M10 1.50e+8 5.3 1.8 5.39 1.6 -1.6 0.5 0.4
M71 8.1l4e+7 7.4 0.3 4.98 1.5 -0.58 -0.4 -0.4
Tutorial on Cluster Analysis — CSNA May 2006 — F Murtagh
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‘ A Formal Definition to Begin With I
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‘ Hierarchical clustering I

Hierarchical agglomeration on n observation vectors, ¢ € I, involves a series of
1,2,...,n — 1 pairwise agglomerations of observations or clusters, with the
following properties.

A hierarchy H = {q|q € 2’} such that:

1.1eH

2. i€ HVYi

3. foreachge€ H,¢ € H:qNqg #0=qCq orq Cq

An indexed hierarchy is the pair (H, ) where the positive function defined on
H,ie.,v: H— RT, satisfies:

1. v(i) =0if i € H is a singleton

2. qCq = v(q) <v(q)

Function v is the agglomeration level. /
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e Take ¢ C ¢',letq C ¢ and ¢’ C ¢”, and let ¢”’ be the lowest level cluster for
which this is true. Then if we define D(q,q’) = v(q"), D is an ultrametric.

e Recall: Distances satisfy the triangle inequality d(z, z) < d(z,y) + d(y, 2).
An ultrametric satisfies d(z, z) < max(d(z,y),d(y, 2)). In an ultrametric
space triangles formed by any three points are isosceles. An ultrametric is a
special distance associated with rooted trees. Ultrametrics are used in other
fields also — in quantum mechanics, numerical optimization, number theory, and

algorithmic logic.

e In practice, we start with a Euclidean distance or other dissimilarity, use some
criterion such as minimizing the change in variance resulting from the
agglomerations, and then define (q) as the dissimilarity associated with the
agglomeration carried out.

N /
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K Metric and Ultrametric .

e Triangular inequality:
Symmetry: d(a,b) = d(b,a)
Positive semi-definiteness: d(a,b) > 0, if a # b;d(a,b) =0, if a=b
Triangular inequality: d(a,b) < d(a,c) + d(c,b)

e Ultrametric inequality: d(a,b) < max(d(a,c) + d(c, b))

> la;—bjlp

e Particular cases of the Minkowski metric: p = 2 gives Euclidean, p = 1 gives

e Minkowski metric: dp(a,b) = p>1.

Hamming or city-block; and = oo gives doo(a,b) = max; | a; — b; | which is
the “maximum coordinate” or Chebyshev distance.

e Also termed Lo, L1, and L, distances.

e Question: show that squared Euclidean and Hamming distances are the same

\ for binary data. J

15
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Distance, Similarity, Tree Distance I

N
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e The notion of distance is crucial, since we want to investigate relationships

between observations and/or variables.

e Recall: z = {3,4,1,2},y = {1, 3,0, 1}, then: scalar product
(z,y) =(y,x) =2’y =ay’ =3 x1+4x3+1x0+2x1.

e Euclidean norm: [[z|* =3 x3+4x4+1x14+2x2.

e Euclidean distance: d(z,y) = ||« — y||. The squared Euclidean distance is:
3—-1+4-3+1-0+2-1

e Orthogonality: x is orthogonal to y if (x,y) = 0.

e Distance is symmetric, d(z,y) = d(y, z); positive, d(z,y) > 0; and definite,
dz,y) =0=z =y.

/
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‘ Metrics (cont’d.) '

e Any symmetric, positive, definite matrix M defines a generalized Euclidean
space. Scalar product is (z,y)n = 2’ My, norm is ||z||* = 2’ Mz, and
Euclidean distance is d(x,y) = ||z — y||a-

e Classical case: M = I, the identity matrix.

e Normalization to unit variance: M is diagonal matrix with ith diagonal term
1/0%.

e Mahalanobis distance: M is inverse variance-covariance matrix.

e Next topic: Scalar product defines orthogonal projection.

N

)
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‘ Least Squares Optimal Projection of Points I

e Plot of 3 points in IR? (see following slides).
o PCA: determine best fitting axes.
e Examples follow.

e Note: optimization means either (i) closest axis to points, or (ii) maximum

elongation of projections of points on the axis.

o This follows from Pythagoras’s theorem: 2% + y? = 22. Call z the distance
from the origin to a point. Let x be the distance of the projection of the point
from the origin. Then y is the perpendicular distance from the axis to to the

point.

e Minimizing y is the same as maximizing = (because z is fixed).

~

/
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‘ Metrics (cont’d.) .

e Projected value, projection, coordinate: z1 = (' Mu/u’ Mu)u. Here 1 and u

are both vectors.
e Norm of vector z1 = (2’ Mu/u'Mu)||ul| = (' Mu)/|ul|.

e The quantity (z'Mu)/(||z]|||u||) can be interpreted as the cosine of the angle a
between vectors x and u.

+ x

/1
/]
/]
/7
/a |

R fommm u
X
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Examples of Optimal Projection I

w N =
[SAREENE V)

20
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Cosine Coefficient (cf. Principal Components Analysis) .

x' Mu

The projection of vector x onto axis uisy = Tal
M

Le. the coordinate of the projection on the axis is x"Mu/||ul| .
This becomes x’ Mu when the vector u is of unit length.

The cosine of the angle between vectors x and y in the usual Euclidean space is
!/

Xy /Ix[llyll

That is to say, we make use of the triangle whose vertices are the origin, the

projection of x onto y, and vector x.

The cosine of the angle between x and y is then the coordinate of the projection
of x onto y, divided by the — hypotenuse — length of x.

The correlation coefficient between two vectors is then simply the cosine of the
angle between them, when the vectors have first been centred (i.e. x — g and

y — g are used, where g is the overall centre of gravity. /
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d*(5,k) = 2(1 = pjx)

Thus the distance between variables is directly proportional to the correlation
between them.

For row points (objects, observations):

2 2 Tij —Thj\2 ’
d*(ish) = 32 (wi5 — ang)” = 225 (=)” = (vi = va) M(ri — ra)
r; and ry are column vectors (of dimensions m x 1) and M is the m x m

. . th 2
diagonal matrix of ;" element 1/nsj.
Therefore d is a Euclidean distance associated with matrix M.

Note that the row points are now centred but the column points are not:
therefore the latter may well appear in one quadrant on output listings.

/
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Normalization —- Scalar Product gives Correlation '

e Let 7;; be the original measurements.

.
e Then define: z;; = ;]\/ﬁ]
J

=, 1 n .
e ;= HZi:1 Tij

2 _ 1 n = \2
® 55 = ;Zizl(ru ;)

e Then the matrix to be diagonalized in PCA, or the all-pairwise scalar products

of observation vectors, is of (7, k)" term:
Pk = Yoiy ik = = > (rij — T5) (rik — Tk)/ 555k
e This is the correlation coefficient between variables j and k.

e Have distance
d?(G, k) =30 (@i — @aw)® = D0 @h + Y wh — 2300 @i Tk

k. First two terms both yield 1. Hence: /
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Cosine, Correlation Coeffs. Now: Further Examples of Similarities

e Jaccard coefficient for binary vectors a and b. N is counting operator:

Nj(a;=b;=1)
Nj(aj=1)+N;(b;j=1)—Nj;(aj=b;=1)

s(a,b) =
e Jaccard similarity coefficient of vectors (10001001111) and (10101010111) is
5/(6 + 7 —5) = 5/8. In vector notation: s(a, b) = a,aﬂ’iiﬁ.
e Jaccard coefficient uses counts of presence/absences in cross-tabulation of
binary presence/absence vectors:

| | a/present a/absent |

| b/present | nl n2 |
| b/absent | n3 n4 |

e A number of such measures have been used in information retrieival, or

\ numerical taxonomy: Jaccard, Dice, Tanimoto, ... /

26
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Upstream of Distances or Similarities: Data Coding

Record x: S1,18.2, X
Recordy: S1,6.7, —

Two records (x and y) with three variables (Seyfert type, magnitude, X-ray

emission) showing disjunctive coding.

Seyfert type spectrum  Integrated magnitude = X-ray data?
S1 S2 S3 — | <10 > 10 Yes

x| 1 0 0 0 0 1 1

y | 1 0 0 0 1 0 0

4 )

N /
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Some Properties of Ultrametrics .

e Distance defined strictly on a tree.

° | k

* 1 * J
Considering 3 points, 4, j, k we have already considered the relationship
dzy < max{dy, dy.} where x,y, z take on the different values i, j, k in any
order.

e Furthermore: any triangle, formed from a triplet of points, must be equilateral,
or isosceles with small base.

e Topologically, every open ball is also a closed ball. We term this a clopen ball.

\o Every point in a (closed or open) ball can be taken as its center. J

29
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‘ Concluding for the present on Distances .

e A distance, as seen, is defined on a set of objects x, as a mapping

d:x x x — R, where the result (right hand term) is a value in the set of
positive reals.

e Alternatively expressed, for x;, z; € x, then d(z;, ;) € R,

e A Euclidean space is a particular metric space. If we allow for infinite
dimension, then this is termed a Hilbert space.

e Euclidean distance is defined from scalar product. Scalar product gives cosine
of angle between two vectors. If vectors are suitably normalized, then we have
correlations between them. A more “global” normalization is involved when we

modify the Euclidean distance to give the Mahalanobis distance.

- /
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e The radius of a ball is identical to its diameter.

e If two (either both open or both closed) balls are overlapping, then one must be
enclosed in the other.

e Conclude: an ultrametric, or tree or hierarchic distance, is very peculiar!

\_ /
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‘ A Worked Example of Hierarchical Agglomerative clustering I

Note: the agglomerative criterion used is very important.

N
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Single Linkage Hierarchical Clustering — 2 .

1 2Uu4 3U5 1U2U4 3U5
PR, B
1| 1v2u4 | O
204 | 3u5 |
305 |

Agglomerate 1 and 2U4 at

dissimilarity 4 and 3U5 at dissim. 5

_ /

Finally agglomerate 1U2U4

33
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Single Linkage Hierarchical Clustering .

Dissimilarity matrix defined for 5 objects

1 2 3 4 5 1 204 3 5
e, e ————————
1|10 4 9 5 8 1 ] o0 4 9 8
2|14 0 6 3 6 204 | 4 0 6 5
3/]9 6 0 6 3 3 19 6 0o 3
4|5 3 6 0 5 5 | 8 5 3 0
5] 8 6 3 5 0

Agglomerate 2 and 4 at Agglomerate 3 and 5 at

dissimilarity 3

dissimilarity 3 4//

Tutorial on Cluster Analysis — CSNA May 2006 — F Murtagh
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\\f¥= ranks or levels. ¢ = criterion values (linkage Wtéi;/

Single Linkage Hierarchical Clustering — 3 '
Resulting dendrogram r c
|
|
o + .. 4 ... 5
I |
Fomm + | T
| | |
| | et cee 2 ... 3
| | I
| ot | | P .
I
| | | | | oo 0 ...00

~
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Single Linkage Hierarchical Clustering — 3 .

Input Ann(n — 1)/2 set of dissimilarities.

Step 1 Determine the smallest dissimilarity, d;y.

Step 2 Agglomerate objects 7 and k: i.e. replace them with a new object, ¢ U k;
update dissimilarities such that, for all objects j # i, k:

diuk,j = min {dij7 dk]}
Delete dissimilarities d;; and dy, for all j, as these are no longer used.

Step 3 While at least two objects remain, return to Step 1.

N /
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( Remarks on Hierarchical Clustering Criteria '

e Complete link: substitute max for min in single link.

e Complete link leads to compact clusters.

o Single link defines the cluster criterion from the closest object in the cluster.
Complete link defines the cluster criterion from the furthest object in the cluster.

o Single link yields the maximal inferior ultrametric, or subdominant ultrametric.

e What this means is: let d;; be an ultrametric distance derived from the single
link hierarchy, and let d;; be the original corresponding distance. Then
0i; < djj, and d;; is the best such fit to d;; “from below”. This subdominant
utrametric is unique.

e Analogously, complete link yields a minimal superior ultrametric. However this
is not unique.

\o Robin Sibson developed an O(n?) algorithm for single link. j

37
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Single Linkage Hierarchical Clustering — 4 '

Precisely n — 1 levels for n objects. Ties settled arbitrarily.
Note single linkage criterion.
Disadvantage: chaining. “Friends of friends” in the same cluster.

Lance-Williams cluster update formula:
(iU j, k) = cud(i, k) + a;d(j, k) + Bd(i, j) + v | d(i, k) — d(j, k) | where
coefficients o, a;, 3, and «y define the agglomerative criterion.

For single link, a; = 0.5, 3 = 0and v = —0.5.
These values always imply: min{d;, d; }

Ultrametric distance, 9, resulting from the single link method is such that
0(i,7) < d(i,7) always. It is also unique (with the exception of ties). So single

link is also termed the subdominant ultrametric method. /
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R. Sibson, “SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster Method”, Computer
Journal, 16, 30-34, 1973.

Note here: optimal, i.e. O(n?).

Robin Sibson was Professor of Statistics at the University of Bath, and later Vice-Chancellor of the
University of Kent at Canterbury. In 2000, he became Chief Executive of the Higher Education
Statistics Agency, HESA, in the UK.

Daniel Defays developed an O(n?) algorithm for a complete link method. D.
Defays, “An efficient algorithm for a complete link method”, Computer Journal, 20, 364-366, 1977.

Daniel Defays went on to work also in official statistics, in Eurostat, the Statistical Office of the

European Union.

Other criteria define d( U j, k) from the distance between & and something
closer to the mean or center of i and j. These criteria include the median,

centroid and minimum variance methods.

38
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‘ Remarks on Hierarchical Clustering Criteria (Cont’d.) I

e A problem that can arise: inversions in the hierarchy. Le. the cluster criterion

Tutorial on Cluster Analysis — CSNA May 2006 — F Murtagh

value is not monotonically increasing. That leads to cross-overs in the

dendrogram.

‘ Summary of Hierarchical Agglomerative Criteria I

Note: we should distinguish clearly between clustering method (implying a stepwise

e Of the above agglomerative methods, the single link, complete link, and

minimum variance methods can be shown to never allow inversions. They

satisty the reducibility property.

First formulated by Michel Bruynooghe, working in Benzécri’s lab in the late 1970s. Bruynooghe now

works in a university group on photonic systems in Strasbourg, France.

e We will return to this property — which guarantees no inversions or monotonic

behavior in the sequence of agglomerations — later when we discuss

representation or display aspects of hierarchies.

N

)
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optimization criterion) and an algorithm.

N. Jardine and R. Sibson, Mathematical Taxonomy, Wiley, 1971, p. 42

N
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Lance and Williams ~ Coordinates Dissimilarity
clustering dissimilarity of centre of between cluster Hierarchical Lance and Williams Coordinates Dissimilarity
methods (and update formula. cluster, which centres g; and g. clustering dissimilarity of centre of between cluster
aliases). agglomerates methods (and update formula. cluster, which centres g; and g;.

clusters ¢ and j. aliases). agglomerates

Single link a; =0.5 clusters i and j.
(nearest B=0 Median method a; = 0.5 = L;gj llg: — s ”2
neighbor). v=-0.5 (Gower’s B8 =—-0.25

(More simply: WPGMC) ¥ =

min{d;, d;k}) - i lilg; +1ilg; 2

‘ — Centroid Qi = GG = 7“1‘_*_‘]-‘ 2 llg: — g;ll

Complete link a; = 0.5 (UPGMC) 8= li]14]
(diameter). B=0 ’ (il+13D2

v =0.5 7=0

- ard’s itk _ leitlils; Lills] (g _ o |12

(More simply: Ward’s method i = |1‘,\+\]"L+\k,| 8= “T5] el — 85l

maz{dix, dji}) (minimum var- | = — ErerrTE
Group average o = ML;‘M iance, error vy=0
(average link, B=0 sum of squares.

v=0

44
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Observation Weighting I

e Note how centroid and Ward’s minimum variance methods allow for a simple

but satisfactory way to weight the observatations:
e New cluster center: ¢” = (mqq + myq')/(mg + my).
e Dissimilarity between new cluster center is (mqmgy)/(mq +my)|lg — ¢'||.
e Typically, mq = my = 1/n to begin with, where we have n observations.

o To weight observations, just take these weights as other than identical and
constant.

e Our software — in C, Java and R — supports observation weighting. (Of course
there is no problem with identical, constant weights.)

Tutorial on Cluster Analysis — CSNA May 2006 — F Murtagh
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Agglomerative Algorithm Based on Data .

Step 1 Examine all interpoint dissimilarities, and form cluster from two closest

points.

Step 2 Replace two points clustered by representative point (centre of gravity) or by

cluster fragment.

Step 3 Return to Step 1, treating clusters as well as remaining objects, until all
objects are in one cluster.

_ /

4 )

N /
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Basic or Traditional Algorithms .

N
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Agglomerative Algorithm Based on Dissimilarities .

Step 1 Form cluster from smallest dissimilarity.

Step 2 Define cluster; remove dissimilarity of agglomerated pair. Update
dissimilarities from cluster to all other clusters/singletons.

Step 3 Return to Step 1, treating clusters as well as remaining objects, until all

objects are in one cluster.

-
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Computational Complexity I

e Find closest dissimilarity in order to carry out an agglomeration: take each
observation and match (Euclidean distance etc.) with every other. We take n
observations, and we carry out O(n) matchings. So complexity is O(n?). We

repeat this for n — 1 agglomerations. So complexity overall is O(n®).

e Say we have dissimilarities. (These could well be distances; or mutatis
mutandis similarities.) All pairwise dissimilarities are needed. (Not precluding
an upper, or lower, half matrix of dissimilarities.) So, to set up, the complexity
is O(n?). Now we find the minimum dissimilarity, taking O(n?) effort to scan
all dissimilarities. We agglomerate and update our dissimilarity matrix (again,
O(n?) effort). So far, everything together is of O(n?) effort. We repeat this
procedure  — 1 times. All told, complexity is O(n?).

)
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\ distances into ultrametric distances. J

Minimum variance agglomeration .

e For Euclidean distance inputs, the following definitions hold for the minimum
variance or Ward error sum of squares agglomerative criterion.

e Coordinates of the new cluster center, following agglomeration of g and ¢/,
where my is the mass of cluster g defined as cluster cardinality, and (vector) g
denotes sing overloaded notation the center of (set) cluster g:

q" = (meq +mgq')/(mq +my).

e Following the agglomeration of ¢ and ¢’, we define the following dissimilarity:
(mgmgr)/(mq +my)llg — q,HZ'

e Hierarchical clustering is usually based on factor projections, if desired using a
limited number of factors (e.g. 7) in order to filter out the most useful
information in our data. (See discussion later.)

e In such a case, hierarchical clustering can be seen to be a mapping of Euclidean

~

49
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Minimum Variance Method '
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Minimum variance method: properties I

We seek to agglomerate two clusters, ¢1 and ca, into cluster ¢ such that the
within-class variance of the partition thereby obtained is minimum.

Alternatively, the between-class variance of the partition obtained is to be
maximized.

Let P and @ be the partitions prior to, and subsequent to, the agglomeration; let
p1, P2, ... be classes of the partitions.
» Pk, C1, 02}

7pk7c}‘

P = {p15p27"'
Q {pl,p27"'

Total variance of the cloud of objects in m-dimensional space is decomposed

into the sum of within-class variance and between-class variance. This is
Huyghen’s theorem in classical mechanics.

Total variance, between-class variance, and within-class variance are as followy
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V() =2, ,6-9%V(P)=X,cp Z(p—g)*and
%ZpeP ZiEp(i 7p)2'

e For two partitions, before and after an agglomeration, we have respectively:

V() =V(P)+ > V(p)

V() =V(@Q)+ > V(p)
PeER

e From this, it can be shown that the criterion to be optimized in agglomerating c;

and c2 into new class c is:

V(P)=V(Q) = V(e)=V(cr)—V(e2)

_ el leo
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‘ Efficient NN chain algorithm I

\o A NN-chain (nearest neighbor chain)

4 )

N /
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Reciprocal Nearest Neighors, NN-Chains I

- /
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‘ Efficient NN chain algorithm (cont’d.) .

e An NN-chain consists of an arbitrary point followed by its NN; followed by the
NN from among the remaining points of this second point; and so on until we
necessarily have some pair of points which can be termed reciprocal or mutual
NNs. (Such a pair of RNNs may be the first two points in the chain; and we
have assumed that no two dissimilarities are equal.)

e In constructing a NN-chain, irrespective of the starting point, we may

agglomerate a pair of RNNs as soon as they are found.

e Exactness of the resulting hierarchy is guaranteed when the cluster
agglomeration criterion respects the reducibility property.

e Inversion impossible if: d(i,j) < d(i, k) or d(j, k) = d(i,7) < d(iU 4, k)

\_ /
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‘ NN-Chain Algorithm Complexity — for “Geometric”” Methods I

o Firstly, take observation points in space, starting with an arbitrary point. Find its
NN; and latter’s NN; and latter’s; ... until we have RNN. Each such operation is
called a growth. Agglomerate. Such an operation is called a contraction.
Restart process from last point of NN-chain, before the RNN pair. The number
of contractions is necessarily n — 1. The number of growths cannot exceed
3n — 3. (Why? Because we have n points to begin with; we have n — 1 cluster
points created; and we have n — 1 “stub” points to consider which allow an
RNN pair to be created from the final link in the NN-chain. Total upper
bounded by: 3n — 3.)

e So the total number of growths and contractions is linear in n, i.e. is O(n). Now
each growth is based on a NN search, hence O(n). Overall, the complexity is
O(n?).
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( NN-Chain Algorithm Complexity — for “Graph” Methods .

e There is enormous confusion in the literature about this result!

o Confusion is most often about complete link method.

e Edward Fox, Virginia Tech, ei.cs.vt.edu/~cs5604/f95/cs5604cnCL/CL-alg-details.html
“Complete link: Time: Voorhees alg. worst case is O(N*#3)
Implementations of the general algorithm:

— Stored matrix approach: Use matrix, and then apply Lance-Williams to recalculate dissimilarities
between cluster centers. Storage is therefore O(N*#2) and time is at least O(N**2), but will be
O(N*#3) if matrix is scanned linearly.

— Stored data approach: O(N) space for data but recompute pairwise dissimilarities so need
O(N**3) time

— Sorted matrix approach: O(N**2) to calculate dissimilarity matrix, O(N**2 log N**#2) to sort it,
O(N*##2) to construct hierarchy, but one need not store the data set, and the matrix can be
processed linearly, which reduces disk accesses.”

e Hinrich Schiitze, Stuttgart, www-csli.stanford.edu/~schuetze/completelink.html

“The worst case time complexity of complete-link clustering is at most O(n2 logn).

(My intuition is that complete link clustering is easier than sorting a set of n? numbers, so there should

\ be a more efficient algorithm. Let me know if you know of one!)” j

Ko Storage here is the original data and cluster points, hence O(n). /
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NN-Chain Algorithm Complexity — for “Graph” Methods .

e Start from dissimilarity matrix, O(n?) to create. Storage here is bounded by the
dissimilarity data, hence O(n?).

e After each agglomeration, keep the dissimilarity matrix updated. O(n) effort
required at each agglomeration, since we use Lance-Williams on 2 rows and on
2 columns of the dissimilarity matrix. Note that the dissimilarity matrix has
numbers of rows and columns that are less 1 at each step.

e There are, in all, n — 1 agglomerations. So all updates to the dissimilarity
matrix are O(n). Each such update taking O(n) implies overall O(n?) effort.

e What about the growths? Just like before, the total number of NN-chain
growths is O(n). Each such growth requires O(n) effort because we just have
to scan one row (or one column since dissimilarities are assumed symmetric).
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e Peter Scheuermann, Northwestern, www.ece.northwestern.edu/~ peters/publications/euro_par.pdf

M. Dash, S. Petrutiu and P. Scheuermann, Efficient Parallel Hierarchical Clustering, Proc. 10th
International Euro-Par Conference, Italy, September 2004, LNCS 3149, pp. 363-371.

“Existing algorithms take O(N? log N') CPU time and require (N?2) memory.”

e David Eppstein, UCL, www.ics.uci.edu/~eppstein/280/tree.html

“However, Neighbor-Joining seems more difficult, with the best known time bound being O(ng) (and
some commonly available implementations taking even more than that).”

e Confusion reigns! But O(n2) time algorithms (“optimal” as termed by Sibson) have been known and
implemented (e.g. in David Wishart’s CLUSTAN package, since 1984), since the early 1980s. There is
no excuse for not knowing this!

\_ /

k. We see that overall complexity is O(n?). /
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Parallel RNN Agglomerations .

Qhe problem for parallel algorithms is that there can be many “stub” points b. /
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a N

e For median and centroid methods, where clusterwise dissimilarities remain Euclidean, then the number
of points which can simultaneously have a given point as NN in m-dimensional Chebyshev space is
3™ — 1, i.e. the number of cubes which are adjacent to a given cube. Constant for given m. We
assume that this bound holds for Euclidean case also.

e For these methods, then, we have time O(n?).

e Result also established by W.H.E. Day and H. Edelsbrunner, “Efficient algorithms for agglomerative
hierarchical clustering methods”, Jnl. Classification, 1, 7-24, 1984. Based on sphere packing (and
Hadwiger numbers).

o Note: this O(n?) computational worst case holds for the centroid and median methods only, viz.

where clusterwise dissimilarities remain Euclidean.

_ /
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Parallel RNN Algorithm Complexity .

e (Re)determine all NNs and RNNs.

o Agglomerate all RNNs, replacing each with cluster point.
e Repeat.

e This works well if our data is uniformly distributed. But, eh..., if we assume clustering in our data, then
our starting point is that the data are not uniformly distributed.

e Analysis: Say we find 1 RNNSs the first time around, so n — r; points remain. Have:
1<r <|n/2]

e To begin with we have n. NN calculations.

e Next step, we have n — 71 NN calculations.

e Next: n — r; — ro NN calculations.

e Etc.suchthatry +7ro+r3+...+1=n—1

o If we assume O(n?) for each step, then overall O(n?).

e F Murtagh, “Complexities of hierarchic clustering algorithms: state of the art”, Comp. Stat. Quart., 1,

k 101-113, 1984: /
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‘ RNNs and NN-Chain Algorithm Complexity — Notes .

e We have ignored dimensionality, m. Complexity of foregoing algorithms is

linear in m, O(m).
e We have seen in all algorithms that the complexity is based on a NN-search

requirement. For an NN search, the latter is O(n) in general.

e But if we can speed up NN-search, then we have a way to break the overall
O(n?) computational complexity barrier.

e The first “data storage” RNN-chain based algorithm works for any “geometric”
clustering algorithm. The second “dissimilarity storage” RNN-chain based
algorithm works for any “graph” clustering algorithm.

e The RNN and NN-chain algorithms require the reducibility property so that
inversions don’t materialize.

\o So okay are: Ward’s minimum variance; weighted and unweighted average /
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linkage methods — UPGMA, WPGMA.

But not okay are: centroid, median.

If we can expedite NN calculations then we can be even better. In fact, we can
achieve O(n) performance whenever each NN calculation is constant, or O(1).

There are ways to allow for fast NN finding using approaches taken from computational geometry.

And work by JL Bentley and JH Friedman around 1977-1978 showed that, for uniformly distributed
data in a bounded region, the NN of a point could be found in constant expected time.

Rohlf in 1977 and 1978 developed an O (n log log n) expected time algorithm for the single link
method and extended it to the centroid and median methods.

Various experimental results to about n = 12000 in F Murtagh, “Expected-time complexity results
for hierarchic clustering algorithms which use cluster centres”, Information Processing Letters, 16,

237-241, 1983.

)
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Representation
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RNNs and NN-Chain Algorithm Complexity — Summary .

e O(n?) time and O(n) space for all geometric methods.
e O(n?) time and O(n?) space for all graph (linkage) method.

e We have a parallel algorithm that may work well, with O(n?) time, in practice.
But we can’t be sure of this for an important criterion like the Ward minimum

variance one.

- /
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Representing Hierarchical Trees: Motivation I

1. For programming — implementation.

2. For interpreting or otherwise using the results of a hierarchical clustering.
3. To understand pitfalls and problems — inversions.

4. To see what betokens structure in one’s data versus simply the way the
hierarchy is displayed (artefact of display).

5. Uniqueness of the result — combinatorial properties.
6. Interesting linkages between dendrograms, oriented trees, permutations.

7. Different forms of output that we can expect, and possible use in areas like
(structuring data to facilitate) information retrieval.

\_ /
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Representing Hierarchical Trees '

1.2

1.0

Height

04 06 08

0.2

IT
i

Ward's method

N
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Representing Hierarchical Trees (commands in R) '

> dat <- matrix(runif(15),nrow=5,ncol=3)
> dat
[,1] [,2] [,31]
[1,] 0.380108950 0.1971235 0.09188467
[2,] 0.819335094 0.3892081 0.87644974
[3,] 0.805116058 0.4269140 0.76391744
[4,] 0.778452625 0.1690171 0.20353970
[5,]1 0.007950265 0.3421287 0.56797563
> htemp <- hclust(dist(temp), method='’'ward’’)

> plclust(htemp, hang=-1, xlab=’'’'Ward’s method’’, sub='’ ‘‘)
> ht$merge
[,11 [,2]
[1,1 -2 -3
[2,1] -1 -4
[3,1 -5 2
[4,] 1 3

> ht$height; htS$order
[1] 0.1195301 0.4146499 0.8559081 1.3273986
[11 23514
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Enforcing a strict binary hierarchy is convenient. Hence: n — 1 agglomerations,
using n observations. (We will nearly always be concerned with strictly binary
hierarchies.)

Hierarchy is formed evidently from 5 observations. We actually have taken in

this example a 5 x 3 matrix (of uniformly distributed values).
e We use the Ward mininimum variance criterion.

e The dendrogram is then given by: the sequence of agglomerations; the order of
observations; and the heights of the merges.

e Different conventions can be used to represent the sequence of agglomerations.

e For n observations there are exactly n — 1 agglomerations.

Tutorial on Cluster Analysis — CSNA May 2006 — F Murtagh
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\ limited memory programs from the late 1970s onwards).

Representing Hierarchical Trees: Avoiding Inversions

dl d2

r s q r s

Figure: Alternative representations of a hierarchy with an inversion.

e Inversion impossible if: d(i,j) < d(i, k) or d(j, k) = d(i,7) < d(i U j, k)

e Ability to agglomerate a pair of RNNs (reciprocal nearest neighbors) with no
side effects on later agglomerations is the same as the reducibility property.

e Reducibility property (due to M. Bruynooghe, 1978, and used extensively in

\

/
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o Not satisfied by: centroid, median. Satisfied by: Ward, single link, complete
link.

e Say a and b agglomerate into ¢ = a U b. Consider some other cluster or object

/
C.

°

d(a,b) < inf{d(a,c),d(bc")} = {d(a,c’),d(b,¢')} < d(aUb,c)

If d(a,b) < p < inf{d(a,c’),d(b,c")} then p < inf{d(a,c),d(b,c')} <
d(c,c)

d(a,b) < pandd(a,c’) > pand d(b,¢') > p = d(c,c) > p

N /
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(L-NR); unlabeled, non-ranked (NL-NR); unlabeled, ranked (NL-R).

e In the Fig., (i) and (ii) are isomorphic NL-R dendgrams; but as L-R
dendrograms they are not isomorphic.

e Considered as NL-NR dendrograms, all the dendrograms are isomorphic.

_ /
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‘ Representing Hierarchical Trees: Isomorphisms

a1l anl] £10 (R

a ¢ bde

(i) (ii) (iii) {iv)

e In examining equivalent shape — isomorphisms — between dendrograms, we
must distinguish between: (1) whether or not terminals are labeled, and (2) and
whether or not we take into account ranks of agglomeration heights/levels.

k. For binary dendrograms, we have: labeled, ranked (L-R); labeled, non-ranked /
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/Table 1 \

Numbers of non-isomorphic dendrograms for four types of binary dendro-

gram
n L-R L-NR NL-NR NL-R
a(n) bin) c(n) d(n)
1 1 1 1 1
2 1 1 1 1
3 3 3 | 1
4 18 15 2 2
5 180 105 3 5
6 2700 945 6 16
7 56700 10395 11 61
8 1587600 135135 23 272
9 57153600 2027025 46 1385
10 2571912000 34459425 98 7936

Notes: n=number of terminal nodes, L = labelled, NL = unlabelled,

\ R = ranked, NR = non-ranked. /
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Representing Hierarchical Trees: Sibson’s Packed Form .

]

D =R W A& U O Yo

ranks

Fig. 3. Dendrogram (7 =9) and associated oriented binary tree.
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a N

e Sibson (1973) and Defays (1977) described algorithms that updated a “packed”
representation of the hierarchy for, resp., single and complete link. These were
both O(n?) time and O(n) space.

e References

— F. Murtagh, “Counting dendrograms: a survey”, Discrete Applied Mathematics, 7, 191-199, 1984

— R. Sibson, “SLINK: an optimally efficient algorithm for the single-link cluster method”, Computer
Journal, 16, 30-34, 1973

— On-Line Encyclopedia of Integer Sequences, www.research.att.com/~njas/sequences/Seis.html

— For more on single link, see FJ Rohlf, Single-link clustering algorithms, in Handbook of Statistics,
Vol. 2, eds., PR Krishnaiah and LN Kanal, North-Holland, 267-284, 1982.

_ /
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/ e Sibson’s (1973) packed representation or permutation representation of a \
dendrogram.

e (i) put lower ranked subtree always to the left; and (ii) read off oriented binary
tree on non-terminal nodes.

o Then for any terminal node indexed by ¢, with the exception of the rightmost
which will always be n, define p(4) as the rank at which the terminal node is
first united with some terminal node to its right.

e For the dendrogram shown, the packed representation is: p = (125346879).

This is also an inorder traversal of the oriented binary tree.

The packed representation is a uniquely defined permutation of 1. .. n.

e NL-R dendrograms (on n terminals) are isomorphic to either down-up
permutations, or up-down permutations (both on n — 1 elements).

Applications: (i) Sibson’s O(n?) algorithm for the single link method; (ii)
generating all possible dendrograms; (iii) generally, understanding what sort of

k beasts one is dealing with. /
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Representing Hierarchical Trees: Extreme Shapes .

Figure: Three binary hierarchies: balanced, intermediate, and unbalanced, on n = 7
terminals.

e Consider n as an integer power of 2, e.g. n = 8. Agglomerate as: (12), (34),
\ (56), (78), (1234), (5678), (12345678). This is what we want as the best /
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possible “balance” or “symmetry”.

e By construction, the number of non-terminal nodes is always the same, viz.

n— 1.

e The extreme “unbalanced” hierarchy has a path from root to terminals that is

n — 1 long.

e Whereas the extreme “balanced” hierarchy has approximately equal path
lengths log, n from root to terminals. (This path length is exactly logarithmic if
n is an integer power of 2; and we consider our dendrograms as non-ranked.
‘When looking at isomorphisms we referrd to such dendrograms as NL-NR or
L-NR.)

e Application: tree traversal in information retrieval.

® Reference: F. Murtagh, “Structures of hierarchic clusterings: implications for information retrieval and

for multivariate data analysis”, Information Processing and Management, 20, 611-617, 1984

N /
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Scores 5 students in 6 subjects '

CSc CPg CGr CNw DbM SwE
54 55 31 36 46 40
35 56 20 20 49 45
47 73 39 30 48 57
54 72 33 42 57 21
18 24 11 14 19 7

H O Qw >

CSc CPg CGr CNw DbM SwE
mean profile: .18 .24 .12 .12 .19 .15
profile of D: .19 .26 .12 .15 .20 .08
profile of E: .19 .26 .12 .15 .20 .08

Scores (out of 100) of 5 students, A-E, in 6 subjects. Subjects: CSc: Computer
Science Proficiency, CPg: Computer Programming, CGr: Computer Graphics, CNw:

Qomputer Networks, DbM: Database Management, SwE: Software Engineering. j
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Normalizing Variables Prior to Clustering .

Correspondence analysis uses the x? distance between rows and between

columns
The x? distance is a weighted Euclidean distance between profiles

So as input we have a set of objects, and a set of variables, with a Xz distance
defined on each

As output we have projections in a set of new axes (factors). In this space, the

points (objects, variables) have a Euclidean distance defined on them

This is very convenient... We take as input, say, frequency of occurence count
or ranks or various other forms of quantitative or qualitative data. We get as
output constant weighted points endowed with the Euclidean distance.

S

/
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‘ Scores 5 students in 6 subjects (Cont’d.) .

Correspondence analysis highlights the similarities and the differences in the
profiles.

Note that all the scores of D and E are in the same proportion (E’s scores are
one-third those of D).

Note also that E has the lowest scores both in absolute and relative terms in al
the subjects.

D and E have identical profiles: without data coding they would be located at
the same location in the output display.

Both D and E show a positive association with CNw (computer networks) and
negative association with SWE (software engineering) because in comparison
with the mean profile, D and E have, in their profile, a relatively larger
component of CNw and a relatively smaller component of SwE.

~

1

a

/

82

84



Tutorial on Cluster Analysis — CSNA May 2006 — F Murtagh

-

N

~

We need to clearly differentiate between the profiles of D and E, which we do
by doubling the data.

Doubling: we attribute two scores per subject instead of a single score. The
“score awarded”, k(4,j), is equal to the initial score. The “score not
awarded”, k(4,77 ), is equal to its complement, i.e., 100 — k(i, j ).

Lever principle: a “+” variable and its corresponding “—" variable lie on the
opposite sides of the origin and collinear with it.

And: if the mass of the profile of 5T is greater than the mass of the profile of 5~
(which means that the average score for the
subject j was greater than 50 out of 100), the point 5 is closer to th e origin

than 5.

We will find that except in CPg, the average score of the students was below 50
in all the subjects.

)
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0.0 0.1 0.2 0.3 0.4

Factor 2 (18% inertia)

-0.1

-0.2

-

~

SwE+
B c
csc-  ONw-
CPg- DbM-
CGr-
E A CPg
DbM+ tar+
CSc+
SwE-
D CNw+
T T T T T

-0.4 -0.2 0.0 0.2 0.4

Factor 1 (77% inertia) J
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‘ Data coding: Doubling I

A 54 46 55 45 31 69 36 64 46 54 40 60
B 35 65 56 44 20 80 20 80 49 51 45 55
C 47 53 73 27 39 61 30 70 48 52 57 43
D 54 46 72 28 33 67 42 58 57 43 21 79
E 18 82 24 76 11 89 14 86 19 81 7 93

Doubled table of scores derived from previous table. Note: all rows now have the
same total.

- /
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‘ x? Distance on Input Data, Euclidean Distance on Output Factors I

e Principle of distributional equivalence: Consider two elements j; and j2 of .J
with identical profiles: i.e. fi' = f72. Consider now that elements (or
columns) j; and j2 are replaced with a new element j, such that the new
coordinates are aggregated profiles, fi;, = fij; + fij,, and the new masses are
similarly aggregated: fi;, = fi;, + fijo. Then there is no effect on the
distribution of distances between elements of I. The distance between elements
of J, other than j; and js is naturally not modified.

e The principle of distributional equivalence leads to representational
self-similarity: aggregation of rows or columns, as defined above, leads to the
same analysis. Therefore it is very appropriate to analyze a contingency table
with fine granularity, and seek in the analysis to merge rows or columns,
through aggregation.

CSc+ CSc- CPg+ CPg- CGr+ CGr- CNw+ CNw- DbM+ DbM- SwE+ Swl

L

\o Have that the x? metric is defined in direct space, i.e. space of profiles. /
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e The Euclidean metric is defined for the factors.

e We can characterize correspondence analysis as the mapping of a cloud in x>

space to Euclidean space.

e So weighting of observations and of variables is carried out in an “integral” or
“inbuilt” way in Correspondence Analysis.

e And the output representation is unweighted Euclidean.

e This is a very convenient way therefore to handle weighting of input data...
carry out Correspondence Analysis first, and input projections on the most

important factors to the hierarchical clustering.

N
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Minimal Spanning Tree I

Step 1 Select an arbitrary point and connect it to the least dissimilar neighbor.
These two points constitute a subgraph of the MST.

Step 2 Connect the current subgraph to the least dissimilar neighbor of any of the
members of the subgraph.

Step 3 Loop on Step 2, until all points are in the one subgraph: this, then, is the
MST.

_ /
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Graph Methods .

e MST, minimal spanning tree, and its relationship with single linkage

hierarchical clustering

e Other graph structures — Voronoi diagram and its dual, the Delaunay
triangulation
e Clustering on graphs, implying
— Graph defines a contiguity constraint
— Contiguity-constrained single linkage

— Contiguity-constrained complete linkage

N
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‘ Minimal Spanning Tree of 14 Points .
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‘ Voronoi Diagram I

M. Ramella, W. Boschin, D. Fadda and M. Nonino, Finding galaxy clusters
using Voronoi tessellations, A&A 368, 776-786 (2001)

e For lots on Voronoi diagrams: http://www.voronoi.com/cgi-bin/
display.voronoi_applications.php?cat=Applications

e Voronoi diagram: for given points ¢, we define the Voronoi cell or region of 7 as

{z|d(z, i) < d(z,i')} Vi'.
e Delaunay triangulation: perpendicular bisectors of Voronoi boundaries.
e Demo: http://www.csie.ntu.edu.tw/~b5506061/voronoi/Voronoi.html

e Theorem: MST C Delaunay triangulation.

~
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Voronoi Diagram I

Some galaxies are shown here. /
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Efficiency of Graph Clustering Algorithms .

For MST, the Prim-Dijkstra and Kruskal algorithms, and usually the Sollin
parallel one, are to be found in every textbook on computer algorithms.

NN-chains and RNNs can be used too. If NNs can be found quickly then this

can be of great advantage.

For sparse graphs, the number of edges may be << O(n?). Such a case is when
the graph is planar (for m > 1, m < 3n — 6: see any book on graph theory).

Then O(mlogn) algorithms can be easily found, where m is the number of
edges.

)
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at least one member of each of the clusters.

Of the major hierarchical methods, only the complete link method excludes the
possibility of inversions.

For proof, see Murtagh, Multidimensional Clustering Algorithms, Physica-Verlag, 1985 — scanned on

the CSNA Service CD, chapter 5, section 2, pp. 124-126.

Computational complexity: O(n?) time and O(n?) space, by checking for a
contiguity link in the context of the NN-chain algorithm.
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Contiguity-Constrained Clustering Algorithms .

There are many ways of formulating this problem.

Consider the case of a graph that expresses a constraint: only vertices that have
an edge linking them can be clustered.

Contiguity-constrained single linkage clustering: At each agglomeration, fuse
together the two clusters of least interconnecting dissimilarity, such that this
dissimilarity is between a pair of contiguous objects.

We are simultaneously constructing the MST of the contiguity graph. We can
take it and transform to a single link hierarchy.

The contiguity-constrained single link method cannot give rise to an inversion.
Computational complexity: O(m logn) for m edges and n vertices.

Contiguity-constrained complete linkage clustering: We allow agglomeration —

using any of the usual criteria — such that there exists a contiguity link betweery
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‘ Other Clustering Paradigms .

All three “clustering paradigms” — families of methods — are based on the EM,

expectation-maximization, criterion optimization algorithm.
First, partitioning.
Second, Gaussian mixture modeling.

Third, Kohonen self-organizing feature map.

N

AP Dempster, NM Laird and DB Rubin, “Maximum likelihood from incomplete data via the EM
algorithm”, Journal of the Royal Statistical Society, B, 39, 1-38, 1977

-
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‘ Partitioning I

Iterative optimization algorithm for the variance criterion
Step 1 Arbitrarily define a set of & cluster centres.

Step 2 — M-step Assign each object to the cluster to which it is closest (using the
Euclidean distance, d*(i,p) = ||i — p||*).
Step 3 — E-step Redefine cluster centres on the basis of the current cluster

memberships.

Step 4 If the totalled within class variances is better than at the previous iteration,
then return to Step 2.
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Partitioning: Spéth’s Exchange Algorithm

Exchange method for the minimum variance criterion
Step 1 Arbitrarily choose an initial partition.

Step 2 For each ¢ € p, see if the criterion is bettered by relocating ¢ in another class
q. If this is the case, we choose class ¢ such that the criterion V' is least; if it is

not the case, we proceed to the next i.

Step 3 If the maximum possible number of iterations has not been reached, and if at
least one relocation took place in Step 2, return again to Step 2.

H. Spith, Cluster Dissection and Analysis, Ellis Horwood, 1985

_ /

4 )

N /
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Partitioning — Properties I

e Sub-optimal.
e Dependent on initial cluster centres.

e The two main steps define the EM algorithm. Expectation = mean; and

Maximization = assignment step.

e Many other algorithms are similar. For instance, Edwin Diday’s nuées

consensus result.

e Widely used (since it is fast, whereas computational cost of hierarchical
clustering is usually O(n?)).

N

dynamiques (dynamical clouds) method ran k-means lots of times and took the

/
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‘ Exchange Algorithm — Properties I

o Clusters will not become empty.

e The change in variance brought about by relocating object 7 from class p to

T R i [

class ¢ can be shown to be

~
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‘ Mixture Modeling I

e Data is a mixture of G multivariate Gaussians:

fe(z;0) ~ MVN(pg,3,)  k=1,...,G

G
fla;0) = mfulw;0)

e
Mixing or prior probabilities, Z T =1
k=1

e Estimate parameters 6, 7 by maximizing the mixture likelihood:

L(9,'y) = H?:lf(%‘% 9)

K where x; is the ith observation, and -y is a cluster assignment function.
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mg is the number of independent parameters to be estimated in the G-cluster

model.

The larger the value of BIC, the better the model.

105
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| Mixture Modeling - 2 .

e Implementation: hierarchical agglomerative; iterative relocation; EM; start with

agglomerative and refine with EM.
e Choosing the number of clusters — the Bayes Information Criterion (BIC).
Bayes factor, B = p(z | Ms)/p(z | M)

p(z | M>) = integrated likelihood of the mixture model 2 obtained by
integrating over parameter space.

e Approximate the Bayes factor by the BIC:
Let p(z | G) be the integrated likelihood of the data given that there are G

clusters.
Then:
2logp(z | G) =~ 2I(x; é,G) —mglogn = BIC
k (x; 0, @) is the maximized mixture log-likelihood with G clusters. /
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‘ Example: Gamma-Ray Bursts I

e Few gamma-ray burst (GRB) sources have astronomical counterparts at other

wavebands. Hence empirical studies of GRBs have been largely restricted to the
analysis of their gamma ray properties.

e Bulk properties such as fluence and spectral hardness are used.

e Studies fall into two categories: examination whether GRB bulk properties
comprise a homogeneous population or are divided into distinct classes; and
search for relationships between bulk properties.

e Generally accepted taxonomy of GRBs is division between short-hard and
long-soft bursts.

e We use GRBs from the Third BATSE Catalog, from the Compton Gamma Ray
Observatory. Data from 1996.

\o There are roughly eleven variables of potential astrophysical interest: two /
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measures of location in Galactic coordinates, [ and b; two measures of burst \
durations, the times within which 50% (150) and 90% (To¢) of the flux arrives;
three peak fluxes Ps4, P56 and Pio24 measured in 64 ms, 256 ms and 1024 ms
bins respectively; and four time-integrated fluences F1 — F} in the 0-50 keV,
50-100 keV, 100-300 keV and > 300 keV spectral channels respectively

Consider three composite variables: the total fluence,

Fr = Fi + F> + F3 + Fy, and two measures of spectral hardness derived from
the ratios of channel fluences, Hso = F3/F> and Hso1 = F3/(Fy + F»). Of
the 1122 listed bursts, 807 have data on all the variables described above.

Our sample had 797 GRBs. For some analyses, we also used a subset of 644
bursts with ‘debiased’ durations, Tg;i(). Here the durations are modified to
account for the effect that brighter bursts will have signal above the noise for
longer periods than fainter bursts with the same time profiles.

We use log variables, rather than normalized or standardized variables.

Our analysis was performed using log 750, log Too, log Fiot, log Pase, log

H321 and log Has.
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‘ Example: Gamma-Ray Bursts. Plots To Follow. I

Reference: S. Mukherjee, E.D. Feigelson, G.J. Babu, F. Murtagh, C. Fraley and
A. Raftery, “Three types of gamma ray bursts”, The Astrophysical Journal, 508,
314-327, 1998.

Pairwise plots of BATSE data showing strong correlation between variables 1
and 2, and 4 and 5.

3-cluster results on unconstrained model clustering (on variables 1, 3 and 4) in

principal component space.

Corresponding BIC values with maximum value corresponding to the 3-cluster
solution.

)
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BIC for clustering model: unconstrained

Value of BIC
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( ‘ Raftery’s Cluster Modeling — 2 I

e Example 2: hyperspherical clusters, different sizes: ¥, = A1 (I = identity
matrix).

e Example 3: hyperspherical, same size (Ward’s method): 35 = AI.

e Example 4: unconstrained 3.

A.J. Scott and M.J. Symons, “Clustering methods based on likelihood ratio
criteria”, Biometrics, 27, 387-397, 1971.

Wi, = SSCP matrix for cluster k,
x, = mean of cluster k,
ny, = cardinality of cluster k,

Wi =2 e cluster (i
Wi /ni = MLE of Xy,

—ap)(wi — ax) "

Maximize chzl n log (] . | = det).

Wi
N

~

113

Tutorial on Cluster Analysis — CSNA May 2006 — F Murtagh

/

N

‘ Raftery’s Cluster Modeling I

e We will parametrize the standard spectral decomposition of >Jj:

Y = M Dp A DY
Ak is largest eigenvalue of X:
controls volume of cluster.

Dy, is matrix of eigenvectors:
controls orientation of cluster.

Ay, is diag{1, aok . .. api }:

controls shape of cluster.

Example 1: set shape, different sizes and orientations:
For p = 2 dimensional data,

Ay = diag{l,a},a = A2/\

a < 1 = long and narrow cluster.

Use: finding aligned sets of points.

115
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‘ Kohonen Self-Organizing Feature Map I

Regular grid output representational or display space.

Determine vectors wy, such that inputs x; are parsimoniously summarized
(clustering objective); and in addition the vectors wy, are positioned in
representational space so that similar vectors are close (low-dimensional
projection objective) in representation space.

Clustering: Associate each x; with some one wy, such that

k = argmin || z; — wy ||
Low-Dimensional projection:

ok —wi || < || wy —wy | =1 k=K [ < k=&
Initial random choice of values for wy.

Update the set of wy, (Vk) on the basis of presentation of input vectors, x;.

Processing one x; is termed an iteration. Going through all ; once is termed y

114
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4 N 4

epoch.

e Update not just the so-called winner wy, but also neighbors of wj, with respect O m 0 D 1) ]

to the representational space. V

e The neighborhood is initially chosen to be quite large (e.g. a 4 X 4 zone) and as

the epochs proceed, is reduced to 1 x 1 (i.e. no neighborhood). v ' ° 17 O @ D m

e Example: set of 45 spectra of the complex AGN (active galactic nucleus) object,
NGC 4151, taken with the IUE (International Ultraviolet Explorer) satellite. O D

e 45 spectra observed with the SWP spectral camera, with wavelengths from O [7 o & Vv
1191.2 A to approximately 1794.4 A, with values at 512 interval steps.

4 [7 4
e We will show sample of 20 spectra; and then Kohonen map of these. = °

e Murtagh, F. and M. Herndndez-Pajares, “The Kohonen self-organizing map method: an assessment”, Left: input; right; Kohonen output.
Journal of Classification, 12, 165-190, 1995

N / o
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. Galaxies .
Kohonen Map: Interactive User Interface ' Eii
e Lorona

8

afert.

e About 10,000 documents described by 269 keywords from articles published in ,:-Flars‘él;
A&A; also in ApJ.
Dzcil. ghi===
e 15 x 15 grid was used for the principal map, and a 5 x 5 grid for detailed maps. s Gl et
SR . Circumstellar
o User clicks on thematic area, or enters keywords. Stars U
. . . ";‘jB’mar"i-és Pre-main .
e A detailed map is produced. Any document listed allows access to the full Close Sequence
document through ADS. ':;1
a8

This system is server-side, based on imagemap and CGI scripts.

N /
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ﬂ Netscape: CDS Document Map — A&A [ \ /
File Edit View Go Communicator Help
=i Netscape: CDS [E=
Principal map: File Edit View Go Communicator Helj
P 1A
@ Astronomy & Astrophysics Node 180: 33 documents Principal map:
(1994 - 1998) e Node 152: 94 documents
CDS - Simbad - VizieR - Catalogues - Nomencispure - Bidlso Get Documente
StarPages - AstraWed Kegwords:
CDS - Simbad - VizieR - Catalogues - Nomenclature - Biblio
galaxy:kinematics and dynamics 21/33 - StarPages - AstroWeb Keyworde:
stars: dynamics 10/23
starstkinematics 7133
galaxy:structure 633
galaxy:stars: content 6,23
chaotic phenomena 4, stars:white dwarfs 5/94
stars:mass loss 7/94
,m.rf'm??’.ﬁ@ I—— accretion,accretion disks 6/94

Cunstructs locslmap Constructa loalmap
Keyword query - Help.

Maiuhized by P.POINCOT.

Picase nae tht following e-maail address f yon wout o leave & message:

- mabgne o i ha - strshe fr
Maltainealy PPOINCOT. ErmeibancstionSsininda-sirchal i i
E vt soesiongbimianie-stradgle I = 7

{5k 5 a@ 2

=

B 4 8P 2 j

7S]
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/ Clickable Maps List of keywords Keyword query List of references \ /
—
@R =0
=
= -

‘ Software '

Software: http://astro.u-strasbg.fr/~fmurtagh/mda-sw

e Hierarchical clustering, Ward minimum variance criterion, supporting

weighting of observations.
CGI scripts (Perl)

manage the human/machine interface

e In C, and in R. Also in Java.

e With correspondence analysis programs in R. And in Java.

C program

C program

C program

Make the image Get documents

(using GD)

N / o

Count keywords




