Coin Branch and Cut
A tutorial

John Forrest
July 18 2006

Outline of Cbc tutorial

Background
Some concepts
Stand- alone solver and AMPL interface
Example C++ code
Less structured part:
e Q&A
e More examples
 Future -
« What can | do for you?
« What can you do for Cbc

Background

Clp released — Osi interface needs branchAndBound

| bet myself | could code in a day —failed —took 10
hours

Sowly became more complex —moved to project as SBB
(Smple Branch and Bound — partly to fool IBM)

Supposedly solver independent — uses OsiSolverinterface

Renamed to CBC (Coin Branch and Cut) as there was an
SBB

Complex linkages in Coin project

CBC- Coin linkages

Uses -
e OsiSolverinterface — Open Solver Interface
e OsiClp (and sometimes knows about OsiClp and Clp)
e Clp which also uses Coin
e OsiDylp
e OsiCbc —in a circular way — big mistake
e Cgl — Cut Generator Library —very important
« S0 normally — Cbc, Osi, OsiClp, CoinUtils, Cgl!
« Some overhead due to being solver agnostic.

Some concepts

Virtual Branching classes
e Integer
 Special Ordered Sets

 Follow on (useful in air- crew scheduling and/ or column
generation)

* N way
e Lotsizing (will go through as example)
« BranchOnMany (lopsided branching with cut)

Classes

CbcModel — contains model

CbcBranch.... to define variable discontinuity
CbcNode for variable at a node — just tuning

CbcTree organizes tree — from SBB could be improved
CbcCompare to choose node Iin tree — easy to modify
CbcCutGenerator links to Cgl cut generators
CbcHeuristic heuristic —easy to add new ones
CbcSrategy to try and contain a default strategy
CbcMessage and CbcEventHandler —advanced use

CbcModel class

CbcModel is main class with which user communicates
e |s passed an OsiSolverinterface solver
 Which it clones —so after that access by
e model- >solver()
e Cut generators are added to model (again cloned)
e Heuristics are added to model (cloned)

e Cut generators and heuristics can also be added by
CbcStrategy which can be passed to model

« Strategy checks for duplicate cut generators

CbcCompare

CbcCompareDefault is fairly simple and probably could be
Improved.

e Very simple to code —e.g. Important code for breadth
first search is:

* bool CbhcCompareObjective::.test(CbcNode *x, CbcNode
*y) {return x- > objectiveValue()>y- > objectiveValue();}

* Which returns true if node y better than node x
Question — has anyone here written their own version?

Main Cgl cut generators

Clique

DuplicateRow — normally just used Iin preprocessing
FlowCover

Gomory

KnapsackCover —would be good to get SOS
MixedIntegerRounding

Probing

Red Split

Twomir

Preprocessing

CglPreProcess — also called from CbcStrategy
‘Normal Coin presolve (but knowing about integers)
‘Probing to strengthen coefficients in situ
e Duplicate rows out
 Produces a stack of problems which are unwound at end
e Can find some integers and some SOS
 Needs more e.g. Symmetry breaking

Standalone Solver

Fairly primitive —glad if someone would make more
elegant

Command line and/ or interactive

Double parameters

Int parameters

Keyword parameters

Actions

Documented?

Undocumented??

Can produce reference list of parameters/ actions
— Of course this uses an undocumented option

Double parameters

AllowableGap — stop if distance between LB and UB less
Cutoff — cutoff all nodes with objective > this
Increment — at a solution set cutoff = current + this

IntegerTolerance —treat variables as integer if close
enough

RatioGap — as allowable gap but as fraction of
continuous objective

Seconds —treat as maximum nodes after this time

Int parameters

CutDepth —only generate cuts at multiples of this
LogLevel —increases amount of printout (0O== off)
MaxNodes — stop after this many nodes

PassCuts —number of cut passes at root
PassFeasibilityPump —

SogLevel - printout for underlying solver

SrongBranching — number of candidates for strong
branching

TrustPseudoCosts - how many strong branches before
trust calculated pseudo costs

Strong branching

 Hnd N variables which look most violated
— For each do up to K iterations up and down

— Choose variable which gives max min (or another
rule)

— If objective exceeds cutoff one way — can fix
— If both ways can kill node

— Can do faster as we can re- use starting data
— CbcSmplelnteger, CbcS0OSetc

 Can be expensive — Achterberg, Koch and Martin say
trust calculated costs after so many tries

— NumberBeforeTrust
— CbcSmplelntegerDynamicPseudoCost only

Keyword parameters (some)

CostSrategy —just do priorities on costs —crude
CutsOnOff —normally on —set off then add one by one
ForceSolution — crash to solution (needs example)
HeuristicsOnOff —normally on —set off then one by one
PreProcess —on, off or try to find sos

SosOptions —whether to ignore sos from AMPL

Cuts

Options — off, on, root, ifmove
Clique

HowCover

Gomory

Knapsack
MixedIntegerRounding
Probing

ReduceAnd Jplit

TwoMir

Heuristics

CombineSolutions —when we have two or more

solutions just choose union and preprocess and run for
200 nodes

FeasibilityPump — Hschetti and Lodi

Greedy — positive elements and costs —integer elements
for == case, any for >= case

LocalTreeSearch — normally off as not normal heuristic —
again Hschetti and Lodi

Rounding —simplest (and often most powerful). See if
you can get solution by rounding expensive way. Also
tries with SOS - could be improved.

Actions

BranchAndCut — does branch and cut
InitialSolve —just do continuous

Priorityln —reads in priorities etc from file
— Priorities

— Directions

— Pseudocosts

— Initial solutionand how to get there

Solve — as BranchAndCut if has integers, otherwise just
solve

Srengthen — probably not very useful —produces a
strengthened model

UserCbc — user code (useful with AMPL interface)

AMPL

See FAQ for how to build
Build cbc and point to that from AMPL

Syntax is maxNodes=1000 rather than - maxNodes
1000

If no solve or branch and cut command will add it
Rather silent unless log=n set (even log=0)

If running using xxxx.nl file then stand- alone syntax is
— Cbc xxxx.nl - AMPL maxNodes=1000 etc

Priorities, direction, SOS allowed

Undocumented stuff

« Debug —mainly to track down bugs especially in cut
generators.

— Use to create a good solution
— Then feed back on suspect run

— Can give false reading on good run (due to strong
branching or heuristic)

e QOutduplicates —take out duplicate rows and fix
variables if possible

Tuning

« Which cuts (if any looked good)
— Try off or just at root (more nodes but may be faster)

— Tweak parameters if you think cuts should be
generated

e Srong branching
— Weak point of Cbc —look at output
« SOmetimes essential
« Sometimes too much effort —try priorities
e |terations in hotstart, trust, moreOptions
« Reformulate —e.g. More integers

Code generation ?

Sandalone solver makes it easy to experiment and find
fast way of solving problem

But what if you want to build model rather than read an
mps file?

Or what if you want to set a parameter you can find in
CbcModel.hpp but not in solver?

Up to now it was difficult to transfer settings but ...

Cpp option —use it before the solve and a file
user_driver.cpp will be produced.

The Makefile in Cbc/ examples can be used.
Not 100%coverage

Lotsizing

Valid lotsizes 0,100, 125, 150, 175, 200 up
1970's situation where valid ranges O and 1 to 1000
« Can be modeled with extra constraint and 0- 1 variable

e But iIf we want 2.3 then 0- 1 variable would be 0.0023
and would have to be branched on even though 2.3 is
valid!

« Semi- Continuous (SC) variables which were general
Integer variables with two lines of extra code to say
feasible If >=1

Lotsizing Is just a generalization

Lotsizing 2

Done for IBM Microelectronics
e Using OSL — clumsily
* Influenced design of Cbc branching
Ordered set of valid ranges and/ or points
Main work Is providing
e Inheriting from CbcObject
* Infeasiblity()
e FeasibleRegion()
e CreateBranch() which constructs a branchingObject
e Inheriting from CbcBranchingObject
e branch

Advanced use

 Bvent handler e.g. Sop on max nodes if using too much
memory

e OsiAuxInfo class —replaced appData in OsiSolver
— OsiBabXolver is derived from it (and you can derive ..)
— This allows great control
e Continue adding cuts if solution
 Whether we have reduced costs, basis etc
* Please ask if you need more
— Currently used for BonMin and next examples

Smple advanced use!

e Integer quadratic constraints
— Done with putting coefficient on y;
— And stored cuts x; + x; - y,; < 1
 Problems and solutions
— Continuous solution may look feasible
e Pass in OsiBabSolver —type 4
— 3rong branching may get “feasible” solution
e Pass in a CbcFeasibility object to say NO
— Might do 100 passes of cuts, exit and think feasible
e Say cut generator can go on ad infinitum
e examples/ gmip2.cpp

Using Clp with Cbc etc

Cbc - OsiClp — Clp imposes overhead

Several attempts to improve situation

Other LP solvers could do same used with Cbc
Other MIP solvers could use these switches
Look for specialOptions in .hpp files

— CbcModel.hpp

— OsiClpSolverinterface.hpp

— ClpSmplex.hpp

Dantzig- Wolfe example

Column generation can lead to much tighter better
formulations e.g. Mkc problem(Multi- colored
Knapsacks)

We do branch and bound on master problem where
each proposal is an integer solution to subproblem.

Often after one proposal per subproblem master is
Integer feasible at root node —we need OsiBabXolver to
say that is not really true but we also want to save that
solution —one way is to use dummy heuristic.

Basis handling more complicated — need new class -
CoinWarmSartBasisDynamic.

CoinWarm StartBasisDynamic

Derive fromCoinWarmSartBasis

Number of static rows and columns and status — use
CoinWarmSartBasis

Number and list of identifiers for dynamic variables

Need a “Diff” but we don't try and do a diff so fairly
simple.

ClpDynamiclnterface

e Derive fromQOsiClpSolverinterface
e Main work isin:

— Initialize

— Resolve

— SetBasis

— GetBasis

— addProposals

Initialize

Given master rows marked by - 1 find which block all
rows and columns are in.

Create static part of model with convexity rows and
artificials to make feasible.

Each subproblem is a ClpSmplex
Each block of master rows is a CoinPackedmatrix

Backward pointers from columns of subproblem to full
model

Initialize proposals as empty CoinPackedMatrix

Resolve

If just doing initial solve etc use OsiClp one
Otherwise create ClpSmplex copy from static part

Add in proposals from proposals (only those valid at
this node+ invalid basic ones with zero bound)

Solve

Use D- Wto try and improve

— Use duals

— Create OsiClpXolverinterface from subproblem
— Hx those that need to be fixed

— Solve branch and bound

Resolve 2

If has negative reduced cost add as proposal

— Hements, cost, primal solution which created all
stored as column of proposals CoinPackedMatrix

When all subproblems solved

— If sum reduced costs good do another pass < N
If can't be better than cutoff return as infeasible
Check if integer solution —if so store

If at root node do IPon master + current proposals
(only if not too many)

Results on mkc

Unsolved up to a few years ago — still marked as
unsolved in miplib3/ miplib.cat!

Laci and | used similar approach to get optimal solution

Doesn't need basis handling or dummy heuristic as
solves at root node!

Using Cbc to solve subproblems took 150 minutes on
my laptop —with tuning down to 50 minutes.

Opbdp — implicit enumeration algorithm for pure 0-1
problems with integer coefficients (cvs version)

— By a strange coincidence there is OsiOpbdpSolver
which solves such problems from OsiSolverinterface

e Can scale to get integer coefficients
e Can be used to get all feasible solutions.

Referenced code

Lotsizing — Cbc/ examples
— lotsizeSmple.cpp (simplified lotsize.cpp)

— CbcBranchLotsizeSmple.?p (simplified versions of
code in Cbc/ src)

Advanced solvers — Osi/ src/ OsiAuxInfo.?op

— gmip2.cpp

Dynamic matrices/ Dantzig Wolfe solver

— dynamic2.cpp

— ClpDynamicinterface.?p (from OsiClpSolverinterface)
— CoinWarmSartBasisDynamic.?2pp

Cbc -verbose 11 - ?

