
Coin Branch and Cut
A tutorial

John Forrest
July 18 2006

 Background
 Some concepts
 Stand- alone solver and AMPL interface
 Example C+ + code
 Less structured part :

• Q & A
• More examples
• Future -

• What can I do for you?
• What can you do for Cbc

Outline of Cbc tutorial

Background

 Clp released – Osi interface needs branchAndBound
• I bet myself I could code in a day – failed – took 10
hours

 Slowly became more complex – moved to project as SBB
(Simple Branch and Bound – part ly to fool IBM)
 Supposedly solver independent – uses OsiSolverInterface
 Renamed to CBC (Coin Branch and Cut) as there was an
SBB
 Complex linkages in Coin project

CBC- Coin linkages

 Uses -
• OsiSolverInterface – Open Solver Interface

• OsiClp (and sometimes knows about OsiClp and Clp)
• Clp which also uses Coin

• OsiDylp
• OsiCbc – in a circular way – big mistake

• Cgl – Cut Generator Library – very important
• So normally – Cbc, Osi, OsiClp, CoinUtils, Cgl!
• Some overhead due to being solver agnost ic.

Some concepts

 Virtual Branching classes
• Integer
• Special Ordered Sets
• Follow on (useful in air- crew scheduling and/ or column
generat ion)
• N way
• Lotsizing (will go through as example)
• BranchOnMany (lopsided branching with cut)

Classes

 CbcModel – contains model
 CbcBranch.... to define variable discontinuity
 CbcNode for variable at a node – just tuning
 CbcTree organizes tree – from SBB could be improved
 CbcCompare to choose node in tree – easy to modify
 CbcCutGenerator links to Cgl cut generators
 CbcHeurist ic heurist ic – easy to add new ones
 CbcStrategy to try and contain a default strategy
 CbcMessage and CbcEventHandler – advanced use

CbcModel class

 CbcModel is main class with which user communicates
• Is passed an OsiSolverInterface solver
• Which it clones – so after that access by

• model- > solver()
• Cut generators are added to model (again cloned)
• Heurist ics are added to model (cloned)
• Cut generators and heurist ics can also be added by
CbcStrategy which can be passed to model

• Strategy checks for duplicate cut generators

CbcCompare

 CbcCompareDefault is fairly simple and probably could be
improved.

• Very simple to code – e.g. Important code for breadth
f irst search is:
• bool CbcCompareObject ive::test(CbcNode *x, CbcNode
*y) { return x- > object iveValue()> y- > object iveValue();}
• Which returns true if node y better than node x

 Quest ion – has anyone here writ ten their own version?

Main Cgl cut generators

 CglClique
 CglDuplicateRow – normally just used in preprocessing
 CglFlowCover
 CglGomory
 CglKnapsackCover – would be good to get SOS
 CglMixedIntegerRounding
 CglProbing
 CglRedSplit
 CglTwomir

Preprocessing

 CglPreProcess – also called from CbcStrategy
•Normal Coin presolve (but knowing about integers)
•Probing to strengthen coeff icients in situ
• Duplicate rows out
• Produces a stack of problems which are unwound at end
• Can f ind some integers and some SOS
• Needs more e.g. Symmetry breaking

Standalone Solver

• Fairly primitive – glad if someone would make more
elegant

• Command line and/ or interactive

• Double parameters

• Int parameters

• Keyword parameters

• Actions

• Documented?

• Undocumented??

• Can produce reference list of parameters/ actions

– Of course this uses an undocumented option

Double parameters

• AllowableGap – stop if distance between LB and UB less

• Cutoff – cutoff all nodes with objective > this

• Increment – at a solution set cutoff = current + this

• IntegerTolerance – treat variables as integer if close
enough

• RatioGap – as allowable gap but as fraction of
continuous objective

• Seconds – treat as maximum nodes after this time

Int parameters

• CutDepth – only generate cuts at multiples of this

• LogLevel – increases amount of printout (0= = off)

• MaxNodes – stop after this many nodes

• PassCuts – number of cut passes at root

• PassFeasibilityPump –

• SlogLevel - printout for underlying solver

• StrongBranching – number of candidates for strong
branching

• TrustPseudoCosts - how many strong branches before
trust calculated pseudo costs

Strong branching

• Find N variables which look most violated

– For each do up to K iterations up and down

– Choose variable which gives max min (or another
rule)

– If objective exceeds cutoff one way – can fix

– If both ways can kill node

– Can do faster as we can re- use starting data

– CbcSimpleInteger, CbcSOS etc

• Can be expensive – Achterberg, Koch and Martin say
trust calculated costs after so many tries

– NumberBeforeTrust

– CbcSimpleIntegerDynamicPseudoCost only

Keyword parameters (some)

• CostStrategy – just do priorities on costs – crude

• CutsOnOff – normally on – set off then add one by one

• ForceSolution – crash to solution (needs example)

• HeuristicsOnOff – normally on – set off then one by one

• PreProcess – on, off or try to find sos

• SosOptions – whether to ignore sos from AMPL

Cuts

• Options – off, on, root, ifmove

• Clique

• FlowCover

• Gomory

• Knapsack

• MixedIntegerRounding

• Probing

• ReduceAndSplit

• TwoMir

Heurist ics

• CombineSolutions – when we have two or more
solutions just choose union and preprocess and run for
200 nodes

• FeasibilityPump – Fischetti and Lodi

• Greedy – positive elements and costs – integer elements
for = = case, any for > = case

• LocalTreeSearch – normally off as not normal heuristic –
again Fischetti and Lodi

• Rounding – simplest (and often most powerful). See if
you can get solution by rounding expensive way. Also
tries with SOS – could be improved.

Actions

• BranchAndCut – does branch and cut

• InitialSolve – just do continuous

• PriorityIn – reads in priorities etc from file

– Priorit ies

– Directions

– Pseudocosts

– Initial solutionand how to get there

• Solve – as BranchAndCut if has integers, otherwise just
solve

• Strengthen – probably not very useful – produces a
strengthened model

• UserCbc – user code (useful with AMPL interface)

AMPL

• See FAQ for how to build

• Build cbc and point to that from AMPL

• Syntax is maxNodes= 1000 rather than - maxNodes
1000

• If no solve or branch and cut command will add it

• Rather silent unless log= n set (even log= 0)

• If running using xxxx.nl file then stand- alone syntax is

– Cbc xxxx.nl - AMPL maxNodes= 1000 etc

• Priorit ies, direction, SOS allowed

Undocumented stuff

• Debug – mainly to track down bugs especially in cut
generators.

– Use to create a good solution

– Then feed back on suspect run

– Can give false reading on good run (due to strong
branching or heuristic)

• Outduplicates – take out duplicate rows and fix
variables if possible

Tuning

• Which cuts (if any looked good)

– Try off or just at root (more nodes but may be faster)

– Tweak parameters if you think cuts should be
generated

• Strong branching

– Weak point of Cbc – look at output
• Sometimes essential
• Sometimes too much effort – try priorities
• Iterations in hotstart, trust, moreOptions

• Reformulate – e.g. More integers

Code generat ion ?

• Standalone solver makes it easy to experiment and find
fast way of solving problem

• But what if you want to build model rather than read an
mps file?

• Or what if you want to set a parameter you can find in
CbcModel.hpp but not in solver?

• Up to now it was difficult to transfer settings but ...

• Cpp option – use it before the solve and a file
user_driver.cpp will be produced.

• The Makefile in Cbc/ examples can be used.

• Not 100% coverage

Lotsizing

 Valid lotsizes 0,100, 125, 150, 175, 200 up
 1970's situat ion where valid ranges 0 and 1 to 1000

• Can be modeled with extra constraint and 0- 1 variable
• But if we want 2.3 then 0- 1 variable would be 0.0023
and would have to be branched on even though 2.3 is
valid!
• Semi- Continuous (SC) variables which were general
integer variables with two lines of extra code to say
feasible if > = 1

 Lotsizing is just a generalizat ion

Lotsizing 2

 Done for IBM Microelectronics
• Using OSL – clumsily
• Inf luenced design of Cbc branching

 Ordered set of valid ranges and/ or points
 Main work is providing

• Inherit ing from CbcObject
• Infeasiblity()
• FeasibleRegion()
• CreateBranch() which constructs a branchingObject

• Inherit ing from CbcBranchingObject
• branch

Advanced use

• Event handler e.g. Stop on max nodes if using too much
memory

• OsiAuxInfo class – replaced appData_ in OsiSolver

– OsiBabSolver is derived from it (and you can derive ..)

– This allows great control
• Continue adding cuts if solution
• Whether we have reduced costs, basis etc
• Please ask if you need more

– Currently used for BonMin and next examples

Simple advanced use!

• Integer quadratic constraints

– Done with putting coefficient on

– And stored cuts

• Problems and solutions

– Continuous solution may look feasible
• Pass in OsiBabSolver – type 4

– Strong branching may get “feasible” solution
• Pass in a CbcFeasibility object to say NO

– Might do 100 passes of cuts, exit and think feasible
• Say cut generator can go on ad infinitum

• examples/ qmip2.cpp

y ij

xi  x j − yij  1

Using Clp with Cbc etc

• Cbc - OsiClp – Clp imposes overhead

• Several attempts to improve situation

• Other LP solvers could do same used with Cbc

• Other MIP solvers could use these switches

• Look for specialOptions in .hpp files

– CbcModel.hpp

– OsiClpSolverInterface.hpp

– ClpSimplex.hpp

Dantzig- Wolfe example

• Column generation can lead to much tighter better
formulations e.g. Mkc problem(Multi- colored
Knapsacks)

• We do branch and bound on master problem where
each proposal is an integer solution to subproblem.

• Often after one proposal per subproblem master is
integer feasible at root node – we need OsiBabSolver to
say that is not really true but we also want to save that
solution – one way is to use dummy heuristic.

• Basis handling more complicated – need new class -
CoinWarmStartBasisDynamic.

CoinWarmStartBasisDynamic

• Derive fromCoinWarmStartBasis

• Number of static rows and columns and status – use
CoinWarmStartBasis

• Number and list of identifiers for dynamic variables

• Need a “Diff” but we don't try and do a diff so fairly
simple.

ClpDynamicInterface

• Derive fromOsiClpSolverInterface

• Main work is in :

– Initialize

– Resolve

– SetBasis

– GetBasis

– addProposals

Init ialize

• Given master rows marked by - 1 find which block all
rows and columns are in.

• Create static part of model with convexity rows and
artificials to make feasible.

• Each subproblem is a ClpSimplex

• Each block of master rows is a CoinPackedmatrix

• Backward pointers from columns of subproblem to full
model

• Initialize proposals_ as empty CoinPackedMatrix

Resolve

• If just doing init ial solve etc use OsiClp one

• Otherwise create ClpSimplex copy from static part

• Add in proposals from proposals_ (only those valid at
this node+ invalid basic ones with zero bound)

• Solve

• Use D- W to try and improve

– Use duals

– Create OsiClpSolverInterface from subproblem

– Fix those that need to be fixed

– Solve branch and bound

Resolve 2

• If has negative reduced cost add as proposal

– Elements, cost, primal solution which created all
stored as column of proposals_ CoinPackedMatrix

• When all subproblems solved

– If sum reduced costs good do another pass < N

• If can't be better than cutoff return as infeasible

• Check if integer solution – if so store

• If at root node do IP on master + current proposals
(only if not too many)

Results on mkc
• Unsolved up to a few years ago – still marked as

unsolved in miplib3/ miplib.cat!

• Laci and I used similar approach to get optimal solution

• Doesn't need basis handling or dummy heuristic as
solves at root node!

• Using Cbc to solve subproblems took 150 minutes on
my laptop – with tuning down to 50 minutes.

• Opbdp – implicit enumeration algorithm for pure 0- 1
problems with integer coefficients (cvs version)

– By a strange coincidence there is OsiOpbdpSolver
which solves such problems from OsiSolverInterface

• Can scale to get integer coefficients
• Can be used to get all feasible solutions.

Referenced code

• Lotsizing – Cbc/ examples

– lotsizeSimple.cpp (simplified lotsize.cpp)

– CbcBranchLotsizeSimple.?pp (simplified versions of
code in Cbc/ src)

• Advanced solvers – Osi/ src/ OsiAuxInfo.?pp

– qmip2.cpp

• Dynamic matrices/ Dantzig Wolfe solver

– dynamic2.cpp

– ClpDynamicInterface.?pp (from OsiClpSolverInterface)

– CoinWarmStartBasisDynamic.?pp

• Cbc - verbose 11 - ?

