
The Ongoing Development of CSDP

Brian Borchers
Department of Mathematics
New Mexico Tech
Socorro, NM 87801
borchers@nmt.edu

Joseph Young
Department of Mathematics
New Mexico Tech
(Now at Rice University)



What is SDP?

• Semidefinite programming (SDP) problems are convex
optimization problems in which the variable X is a symmetric
and positive semidefinite (PSD) matrix.

• If X is a block diagonal matrix then each block of X must be
PSD.

• A linear function of the elements of the matrix X is maximized
or minimized.

• Additional linear constraints on the elements of X may be
included in the problem.

• Linear programming is a special case in which the nonnegative
variables are simply 1 by 1 blocks.



Why SDP?

• Historically, research in SDP has grown out of work on interior
point methods for linear programming and engineering
applications involving eigenvalue optimization.

• Many convex optimization problems can be reformulated as
SDPs.

• An SDP relaxation of a nonconvex optimization problem may
provide a good bound on the optimal value of the nonconvex
problem.

• Interior point methods for linear programming with
nonnegativity constraints can easily be generalized to the
semidefinite programming problem. Thus SDP can be solved
efficiently (in polynomial time.)



The SDP Problem

max tr (CX)

(P ) A(X) = b

X � 0

where

A(X) =


tr (A1X)

tr (A2X)

. . .

tr (AmX)

 .

Note that

tr(CX) =
n∑

i=1

n∑
j=1

Ci,jXj,i =
n∑

i=1

n∑
j=1

Ci,jXi,j



The Dual Problem

min bT y

(D) AT (y)− C = Z

Z � 0

where

AT (y) =
m∑

i=1

yiAi.



The Algorithm

• CSDP implements a predictor–corrector variant of the
primal-dual interior point method of Helmberg, Rendl,
Vanderbei, and Wolkowicz (1996.) This method is also known
as the HKM method, since the same algorithm was discovered
by two other groups of authors (Kojima et al., 1997, Monteiro
and Zhang, 1997.)

• CSDP uses an infeasible interior point version of the HKM
method.

• The basic idea is to apply Newton’s method to a system of
equations that can be thought of as a perturbed version of the
KKT conditions for the primal/dual SDP’s or the KKT
conditions for a pair of primal and dual barrier problems.



The Algorithm

• The perturbed KKT conditions are

AT (y)− Z = C

A(X) = b

XZ = µI

X, Z � 0.

• The equations for the Newton’s method step are

AT (∆y)−∆Z = C −AT (y) + Z

−A(∆X) = b−A(X)

Z∆X + ∆ZX = −XZ + µI.

• These equations can be reduced to an m by m symmetric and
positive definite system of equations in ∆y.



Storage Requirements

• Consider an SDP problem with m constraints, and block
diagonal matrix variables X and Z with blocks of size n1, n2,
. . ., nk.

• The algorithm requires storage for an m by m Schur
complement matrix. This matrix is (in most cases) fully dense.

• The algorithm requires storage for several block diagonal
matrices with blocks of size n1, n2, . . ., nk.

• Blocks of X and related matrices are typically fully dense,
while blocks of Z and related matrices may be sparse.



Storage Requirements

• In practice, the constraint matrices A1, A2, . . ., Am are
typically quite sparse.

• Assuming that the storage required for each constraint matrix
Ai is O(1), the storage required by the HKM method is
O(m2 + n2).

• For example, assuming the constraint matrices are sparse, the
storage required by CSDP 5.0 is approximately
8(m2 + 11(n2

1 + n2
2 + . . . + n2

k)) bytes.

• The parallel version of CSDP 5.0 with p processors requires
additional storage of 16(p− 1) max(n1, n2, . . . , nk)2 bytes.



Computational Complexity

• Multiplying matrices of size n takes O(n3) time.

• Factoring matrices of size n takes O(n3) time.

• For dense constraint matrices, constructing the Schur
complement matrix takes O(mn3 + m2n2) time.

• For sparse constraint matrices with O(1) entries, constructing
the Schur complement matrix takes O(mn2 + m2) time.

• In practice, most problems have m > n and sparse constraint
matrices.

• Thus we would expect that the most time consuming steps in
the algorithm to be the computation of the elements of the
Schur complement matrix and the Cholesky factorization of
this matrix.



A Parallel version of CSDP 5.0

• A 64-bit parallel version of CSDP 5.0 has been developed to
run on a shared memory multiprocessor using OpenMP.

• The code makes use of parallelized BLAS and LAPACK
routines such as IBM’s ESSL, or Sun’s performance library.
Thus the Cholesky factorization of the Schur complement
matrix should parallelize efficiently.

• Our first attempt used automatic compiler parallelization.
However, the performance of code was unsatisfactory.

• Although the Cholesky factorization was efficiently parallelized,
the computation of the elements of the Schur complement
matrix was a significant bottleneck.



A Parallel version of CSDP 5.0

• The routine that computes the elements of the Schur
complement matrix was rewritten using OpenMP directives.

• The matrix is split into strips, with each processor working on
one strip at a time.

• With this change, the computation of the elements of the Schur
complement matrix became much more efficient.

• The following computational results were obtained using an
IBM p690 system with 1.3GHz processors at the National
Center for Supercomputer Applications.



An Example Problem

The hamming 10 2 problem has m = 23041 and n = 1024.

Run Times 1 2 4 8 16

Elements 2629.3 1401.0 683.5 286.2 148.4

Cholesky 34083.0 17596.0 8704.3 3921.8 2070.7

Other 1693.9 1100.5 696.2 380.5 289.4

Total 38406.2 20097.5 10084.0 4588.5 2508.5

Parallel Efficiency 1 2 4 8 16

Elements 100 94 96 115 111

Cholesky 100 97 98 109 103

Other 100 77 61 56 37

Total 100 96 95 105 96



An Example Problem

The control10 problem has m = 1326 and nmax = 100.

Run Times 1 2 4 8 16

Elements 172.5 106.7 41.7 16.9 12.0

Cholesky 11.0 6.5 3.3 1.9 0.9

Other 23.0 22.9 16.5 11.3 10.5

Total 206.5 136.1 61.5 30.1 23.4

Parallel Efficiency 1 2 4 8 16

Elements 100 81 103 128 90

Cholesky 100 85 83 72 76

Other 100 50 35 25 14

Total 100 76 84 86 55



An Example Problem

The maxG55 problem has m = 5000 and n = 5000.

Run Times 1 2 4 8 16

Elements 64.5 32.8 21.5 12.7 5.5

Cholesky 275.5 128.6 71.3 37.8 16.5

Other 7802.2 4943.1 4143.6 4577.2 2475.4

Total 8142.2 5104.5 4236.4 4627.7 2497.4

Parallel Efficiency 1 2 4 8 16

Elements 100 98 75 63 73

Cholesky 100 107 97 91 104

Other 100 79 47 21 20

Total 100 80 48 22 20



Results With Four Processors

Problem m nmax Time Error Storage

CH4 24503 324 21956.6 7.7e-09 4.54G

fap12 26462 369 40583.5 4.4e-09 5.29G

hamming_8_3_4 16129 256 2305.7 6.1e-07 1.98G

hamming_9_5_6 53761 512 97388.9 1.3e-07 21.70G

hamming_10_2 23041 1024 10084.0 8.3e-07 4.13G

hamming_11_2 56321 2048 143055.4 1.1e-06 24.30G

ice_2.0 8113 8113 98667.1 5.4e-07 7.86G

LiF 15313 256 4152.0 3.3e-09 1.79G

maxG60 7000 7000 10615.3 2.4e-08 5.85G

p_auss2 9115 9115 248479.8 1.0e-08 9.93G

theta8 7905 400 398.6 2.4e-07 0.51G

theta62 13390 300 1541.5 1.6e-08 1.37G

theta82 23872 400 8533.0 2.4e-08 4.31G



Solving Large Maximum Independent Set

Problems

• In 2000, Neil Sloane proposed a collection of challenging MIS
problems.

• Although heuristics have found solutions that seem likely to be
optimal, the larger problems have not been solved by integer
programming or backtracking search methods.

• There is a semidefinite programming bound for the size of the
MIS in a graph due to Lovasz.

• Using this bound and CSDP, we were able to obtain upper
bounds on the size of the MIS for many of these problems.

• Using CSDP within a branch and bound code, we were able to
solve some of the problems to optimality.

http://www.research.att.com/~njas/doc/graphs.html
http://www.research.att.com/~njas/doc/graphs.html


The Maximum Independent Set Problem

The SDP bound on the MIS problem is obtained by solving

max tr(JX)

tr(IX) = 1

(MISR) Xi,j = 0 for each edge (i, j)

X � 0

where J is the matrix of all ones.



Solving Large Maximum Independent Set

Problems

Problem Nodes Edges Heuristic MISR MISR Bnd B&B

1dc.1024 1024 24063 94 95.9847 95 *94

1dc.2048 2048 58367 172 174.7290 174 -

1et.1024 1024 9600 171 184.2260 184 *171

1et.2048 2048 22528 316 342.0288 342 326

1tc.1024 1024 7936 196 206.3042 206 *196

1tc.2048 2048 18944 352 374.6431 374 356

1zc.1024 1024 33280 112 128.6667 128 -

1zc.2048 2048 78848 198 237.4000 237 -

2dc.256 256 17183 7 7.4618 *7 -

2dc.512 512 54895 11 11.7678 *11 -



Future Work

• Although the OpenMP parallel version of CSDP works well, gcc
does not yet support OpenMP. It would help to have a parallel
version of CSDP that uses pthreads rather than OpenMP.

• For problems where m = n, “other” operations dominate the
computational effort. These parts of the code need to be better
optimized, particularly in the parallel version of the code.

• Currently, CSDP can be called from C, MATLAB, or Octave.
CSDP has also been interfaced to the YALMIP modeling
package. It should be possible to interface CSDP to CVX.
There’s a need to incorporate conic optimization into other
modeling languages.



Future Work

• The current build system uses conventional Makefiles that
often have to be edited, most commonly to specify where the
BLAS and LAPACK libraries are located. It would be better
to use autotools to automatically configure the Makefiles.

• In some problems, the Schur complement matrix is sparse. For
those problems it would help to incorporate a sparse Cholesky
factorization routine.

• CSDP does not currently solve second order cone programming
problems. This extension could be done, but it would require a
sparse Cholesky factorization routine.

• For problems in which the Schur complement matrix is too
large for main memory, an out of core Cholesky factorization
routine could be implemented.



Getting CSDP

The current stable version of CSDP is version 5.0. You can
download the source code for the serial and parallel versions,
binaries for Windows and Linux, and a user’s guide from

http://www.nmt.edu/∼borchers/csdp.html
The software is available under the Common Public License (CPL).
Going forward, the CSDP will be developed as a COIN-OR project.
You can get the current development version of CSDP at the
project web page

http://projects.coin-or.org/Csdp/
Hans Mittelmann’s benchmarks comparing SDP solvers can be
found at

http://plato.la.asu.edu/pub/sparse sdp.html

http://www.nmt.edu/~borchers/csdp.html
http://projects.coin-or.org/Csdp/
http://plato.la.asu.edu/ftp/sparse_sdp.html

