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In this talk...

Large population games with limited players’ interaction

Game theory

• Provides sound, rigorous mathematical formulation

• Limited attention to problem representations: commonly “flat”,

large-size representations that don’t exploit “structure”

• Recently, graph-based representations introduced to model

interaction

Algorithms for computing equilibria in large population games
with structured interactions
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Internet Connectivity

[Courtesy CAIDA]

• 100s players/nodes

• 1000s interactions

• dense/sparse regions

• Internet protocols
[Korilis and Lazar, 1995;

Nisan and Ronen, 1999;

Papadimitriou, 2001;

Roughgarden and Tardos, 2000;

Shenker, 1995; ...]
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International Trade

[Krempel&Pleumper]
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Graphical Models

Graphical models: Models of structured probabilistic interaction

• Deal with P (X1, . . . , Xn) for which naive representation is size 2n

• Compact representations for P ; similarly for decision theory

(Ex.: Bayesian and Markov networks, influence diagrams, . . . )

• Representation size mostly a function of the “degree of local

interaction” among random variables X1, . . . , Xn

• Graph allows

– Easy interpretation (useful for both modeling/knowledge-

engineering and qualitative inference)

– Compact representations

– Efficient computation in some cases

Want same benefits for game theory...
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Graphical Models for Game Theory
[Kearns, Littman and Singh, 2001]

Graphical games

• Borrow representational ideas from graphical models

• Intuitive graph interpretation: A player’s payoff is only a function of

its neighborhood

• Ex’s: geography, organizational structure, networks

• Analogy to probabilistic graphical models: special structure
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Alternative graphical model formulations exist: Multi-agent influence

diagrams (MAIDs) [Koller and Milch, 2001]; Game networks [LaMura, 2000];

Local-effect Games [Leyton-Brown and Tennenholtz, 2003]; Action-Graph

Games [Bhat and Leyton-Brown, 2004]
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What about algorithms?

• Algorithmic analogues to some inference methods in probabilistic

graphical models already developed for computing Nash equilibria

[Kearns, Littman and Singh, 2001; Littman, Kearns and Singh, 2001; Vickrey

and Koller, 2002]

• Sometimes “tractable” computation

• Effective heuristics for general cases

• Until recently, mostly work/results on computing Nash equilibria
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Overview

• Graphical Games

– Compact representations for matrix/normal-form games

• Computing Nash Equilibria

• Correlated Equilibria

• Maximum Entropy Correlated Equilibria

Efficient representation and computation
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Classical Example: Prisoners’ Dilemma
[Tucker; see Luce and Raiffa, 1957]

• Two prisoners: To confess or not to confess???

Payoff (sentences) Prisoner 2

Not-Confess Confess

Not-Confess 1 year, 1 year ⇒ 10 years, 3 months

Prisoner 1 ⇓ ⇓
Confess 3 months, 10 years ⇒ 8 years, 8 years

• Only joint best response is for both to confess!
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Noncooperative Game Theory
[Von Neumann and Morgersten, 1944; Nash, 1951]

Games with greedy players acting independently

Mathematical formulation: Normal-form games

A set of players {1, ..., n}, each with a set of actions {0, 1}
Payoff matrix Mi: if joint-action ~a ∈ {0, 1}n, player i’s payoff Mi(~a)
Mixed strategy: player i plays action 1 with probability pi

Joint mixed strategy: product distribution

Player individually maximizes its expected payoff

Classical solution

(ε)-Nash equilibrium (NE) is a joint mixed strategy ~p ∗ such that no

player i can gain (more than ε) by unilaterally deviating from p ∗
i .

NEs always exist!

Note representation size O(n2n) (exponential in number of players)
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Graphical Games
[Kearns, Littman and Singh, 2001]

Definition

• G: undirected graph representing the local interaction

• Player i’s payoff is only a function of its neighborhood N(i)
– Implies conditional independence payoff assumption

• local payoff matrix M ′
i: Mi(~a) = M ′

i(~a[N(i)])
• Graphical game: (G, {M ′

i})
max degree of local interaction k = maxi |N(i)| � n

Representation size O(n2k) (exponential in max degree)
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Overview

• Graphical Games

• Computing Nash Equilibria

– NashProp: a distributed, message-passing algorithm

• Correlated Equilibria

• Maximum Entropy Correlated Equilibria
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The TreeProp Algorithm
[Kearns, Littman and Singh, 2001]

Dynamic programming algorithm

Table-passing phase

U1 U2 U3

W

V

T (w, v) represents there exists a NE

“upstream” in which V plays v and

W is “clamped” to w

Assignment-passing phase

Assign NE mixed strategy to root.

Recursively find assignments for immediate “upstream”

neighbors consistent with tables (i.e., are NE)

Representation results

• For ε-NE need τ -size grid for tables polynomial in

model size and 1/ε
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The NashProp Algorithm
[Ortiz and Kearns, 2003]

A distributed, message-passing algorithm: natural extension of

TreeProp to arbitrary graphs

Extension as from polytree algorithm to belief propagation [Pearl, 1988]

• In our case: propagate “conditional Nash equilibria”

Table-passing phase

U1 U2 U3

W

V

T (w, v) represents V ’s “belief” in a NE

(in the rest of the graph) in which V plays v and

W is “clamped” to w

Representation results carry over from TreeProp

Convergence for loopy graphs?
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Convergence of Table-Passing Phase

• Table-passing phase always converges

• All NE preserved

• For discretization scheme

– Tables converge quickly (number of rounds polynomial in model size)

– Each round takes polynomial in model size (for fixed grid size)
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Assignment-passing phase

• NEs preserved but search still needed

• More 0’s in tables can lead to significantly reduced search space

• Many heuristics possible

– Backtracking local search

• Discretization scheme: Computation time per round polynomial in

model size (for fixed grid size)

Discretization scheme leads to constraint satisfaction problem (CSP)

formulations [Vickrey and Koller, 2002]:

NashProp is a particular instantiation of arc-consistency followed by

backtracking local search in a particular CSP
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Example of Ideal Behavior

r = 2 r = 3 r = 8r = 1

• Graph: 3× 3 “wrapped-around” grid

• Each row shows outbound tables for each player
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NashProp

• Converging first phase with

– table sizes for ε-NE polynomial in the size of the model

– running time also polynomial (for fixed k)

• Second phase is a backtracking local search

• For both phases,

each round polynomial in the size of the model

(for fixed k)
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Experimental Setup

• Experiments

– (Large) Number of players

– Loopy graph topology

– Random local (payoff) matrices

– Different payoff structures

• Used heuristic local search as assignment-passing phase
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Experimental Results
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NE in GG: Related Work

• Exact NE Computation

– All NE in trees: exponential in representation size [Kearns, Littman

and Singh, 2001]; Single NE in trees: polynomial for 2-action [Littman,

Kearns and Singh, 2002], m-action open!; Single NE in loopy graphs:

continuation-method heuristic [Blum, Shelton and Koller, 2003]

• Other approximation heuristics

– CSP formulation: Cluster [Kearns, Littman and Singh, 2001] and junction-

tree [Vickrey and Koller, 2002]; Gradient ascent and “hybrid” approaches

[Vickrey and Koller, 2002]

• Some recent results on computing NE for torus-like GG [Daskalakis and

Papadimitriou, 2004]
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Overview

• Graphical Games

• Computing Nash Equilibria

• Correlated Equilibria

– Definition and motivation

– Exploiting strategic structure

– Representation

– Connection to probabilistic graphical models

– Computation

• Maximum Entropy Correlated Equilibria
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Example: Road Intersection
[Owen, 1995]

(NJDMV)

Two cars get to an uncontrolled intersection

at the same time; each driver decides to stop

(S) or go (G)

Payoffs for red driver (similarly for white)
white

S G

re
d S -1 0

G 5 -10

NE: (two pure) (1) white stops, red goes; (2) red stops, white goes; or (3)

both have same “mixed strategy” over {stop, go} (both get same BUT

negative expected payoff!)
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Classic Example: Traffic Light
[Owen, 1995]

(NJDMV)

Traffic light acts as a randomization device!

Drivers respond to individual signal

Say traffic light works as follows:
white

Prob. signal red green

red
red 0 0.5

green 0.5 0

Such mechanism (a mixture of two pure-NE) is a correlated equilibrium:

each driver best-response is to go if green and stop if red

“Fair” and limited “cooperation” (both achieve same AND positive

expected payoffs, not achievable by any NE alone) but still “game

theoretic”
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Correlated Equilibria
[Aumann, 1974]

Same setting as before: Games with greedy players

Mathematical formulation: Normal-form games

A set of players {1, ..., n}, each with a set of actions or pure strategies

A = {0, 1, . . . ,m}; joint-action (a1 . . . , an) ∈ An

Payoff matrix Mi: player i’s payoff Mi(a1, . . . , an)
Correlated equilibrium (CE): A joint probability distribution

P (a1, . . . , an) such that

• Every player individually receives “suggestion” from P

• Knowing P , players are happy with “suggestion”

NE as a special case: P a product distribution; always exists!
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CE in GG: Overview

• Representation

– P (a1, . . . , an) exponential in number of players n

– Does succinct graphical game representation ⇒ succinct CE

representation???

(Intuition: interaction due to game should govern correlations)

– Yes (under a reasonable equivalence class)

• Computation

– Normal-form games: CE computable via LP (with variables

P (a1, . . . , an))
– Does succinct graphical game representation ⇒ efficient CE

algorithm???

– Yes (for some interesting subclass of graphical games)
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CE Equivalence

• Representation issue: In general, just considering arbitrary CE does not

help representationally
– Want to preserve succinctness of GG in CE representation as well

• Useful concepts (definitions):

– Joint distributions P and Q over players actions are expected payoff

equivalent (EPE) if expected payoff vectors same under P and Q

– P and Q are local neighborhood equivalent (LNE) (wrt graph) if same

distribution over each neighborhood (joint) actions under P and Q

• LNE ⇒ EPE (and there exist games s.t. not LNE ⇒ not EPE)
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(Local) Markov Networks

• Compact representation of joint probability distributions

• Graph G = (V,E)

– Vertices V correspond to random variables

– Potential functions for each neighborhood of G

∀i, ψi : {~a i} → [0,∞)

• Local Markov network (MN): (G, {ψi})

P (~a) =
1
Z

n∏
i=1

ψi(~a i)

• Again, representation size exponential in size of largest neighborhood
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Representation
[Kakade, Kearns, Langford and Ortiz, 2003]

• Efficient CE Representation Theorem

For every CE P for a graphical game with graph G, there exists a CE

Q for the game with the properties

– Q is a local MN with graph G

– Q is expected payoff equivalent to P

• Proof idea/sketch: Maximum entropy (ME) distribution consistent with

local neighborhood distributions of P satisfies those conditions

• Implication: Qualitative probabilistic properties of CEs in GGs
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Computation: Normal-form Games

• CE conditions correspond to linear inequalities in the joint distribution

values P (a1, . . . , an)

• Distribution constraints also linear in P (a1, . . . , an)

• Known result: We can compute a single exact CE for a game in

normal-form in time polynomial in the representation size of the game

(O(nmn)) by using linear programming (LP)

• Can we preserve succinctness of GG representation in CE

computation???
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Computation: Graphical Games
[Kakade, Kearns, Langford and Ortiz, 2003]

• Variables: {Pi(~ai)} (local neighborhood marginals)

• Global CE constraints (can be a large set)
– Best response: linear in {Pi(~a i)}
– Global consistency: ensure {Pi(~a i)} correspond to some proper

global joint probability distribution P (a1, . . . , an)

• Local CE constraints (polynomial number of linear constraints)

– Best response

– Local Marginal Distribution

– Intersection Consistency

• In general, local consistency does not imply global consistency, BUT ...

Algorithms for Graphical Games 30/44



Computational Result

• Local consistency sufficient for global consistency if the game graph is

a tree (for example)

• Efficient Tree Algorithm

There exists an algorithm (based on LP) that finds a CE Q for tree

graphical games with graph G in time polynomial in the

representation size of the game

• Can be extended to bounded tree-width graphical games

• Q is also a local MN with graph G

• Can sample uniformly from set of CE in polynomial-time for bounded

tree-width GG
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CE in GG: Related Work

• Papadimitriou and Roughgarden [2004]

– Alternative polynomial-time algorithm for computing a single exact

CE on bounded tree-width GG

� Also applies more generally to a larger class of “compact games”

– Deciding whether the social-optimal CE achieves a value above some

given fixed value in arbitrary GG is NP-complete

• A surprising new development [Papadimitriou, 2004]

There exists a polynomial-time algorithm for computing a single exact

CE in arbitrary GG!
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Overview

• Graphical Games

• Computing Nash Equilibria

• Correlated Equilibria

• Maximum Entropy Correlated Equilibria

– Connections to learning?

– Representation

– Computation

– Distributed game-theoretic interpretation
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Connections to Learning?

• Natural learning dynamics converge to (the set of) CE

[Foster and Vohra, 1999; Hart and Mas-Colell, 2000; Hart and Mas-Colell, 2002]

• Are there natural learning rules directly leading to “simple” CE that

exploit the strategic structure of the graphical game?

– CE Desiderata

� “compactly representable”

� “reasonably structured”

– Harder question than it first appears...

• There has been growing interest in trying to characterize in any way

the behavior of natural learning rules leading to CE
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Maximum Entropy Correlated Equilibria
[Ortiz, Schapire and Kakade, 2004]

• Out of all possible CE, which is more natural or likely to arise from

players’ dynamics?

– This (implicit) “selection” question not particular to game theory

• Maximum Entropy Principle [Jaynes, 1957]

– Useful guiding principle in many settings (e.g., statistical estimation)

– Helps characterize equilibria in many natural systems (e.g.,

thermodynamics)

– Information-theoretic view: ME distribution is simplest by being the

most “uninformative”

• Not unreasonable to think ME principle is useful to CE selection

question

• MECE has appealing representational and computational properties 1

1For technical reasons, results only valid for ε-CE; ignored from now on
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Representation

• Given a joint-action ~a = (a1, . . . , an), consider player i’s gain in payoff

by unilaterally switching to action k: Gik(~a) = Mi(~a[i : k])−Mi(~a)

• MECE representation

P (~a) =
1
Z

n∏
i=1

exp

−∑
k 6=ai

λiaikGik(~a)


for some {λi,j,k ≥ 0} (dual variables/Lagrange multipliers)

• Interpretation of λ′s: λijk = 0 if, knowing P , player i does not want

to play k when suggested j
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Representation: Summary

• MECE representation properties

MECE is a local MN wrt the graph of the graphical game

– Compact representation: Roughly the same representation size as

that for the game itself

– Probabilistic structure: Exploits the strategic structure of the game!

• Can sample from MECE in polynomial-time for bounded tree-width GG

– More generally, can use a Gibbs sampler
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Algorithm: Optimizing the Dual

• Let

– P t distribution over joint-actions at iteration t (defined by λt)

– W+
ijk(t) = expected value (wrt P t) of the gains player i achieves by

switching to k instead of playing suggestion j

– W−
ijk(t) = expected value (wrt P t) of the losses player i suffers by

switching to k instead of playing suggestion j

• Logarithmic-gradient algorithm: Initialize λ0. Iterate on t, for all players

i, and pairs of actions (j, k), j 6= k,

λt+1
ijk ← max

(
0, λt

ijk + δt
ijk

)
where

δt
ijk = (1/2) ln

(
W+

ijk(t)/W
−
ijk(t)

)
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Computation: Summary

• MECE algorithmic result

Given a game G, there exist gradient-based algorithms with

guaranteed convergence to the MECE of G

• Monotonically optimizes the dual

• Each iteration can be performed efficiently for bounded tree-width GG

– More generally, heuristically approximate by using a Gibbs sampler

• Convergence rate still an open problem

• Strong connection to algorithms for statistical estimation: Effective in

practice
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Distributed Game-Theoretic Interpretation

P (~a) ∝ Q1(~a)Q2(~a) · · ·Qn(~a)

1

Q1

P

players

i n

arbiter

Qi(~a) ∝ exp
“
−

P
k 6=ai

λiaik
Gik(~a)

”

Yet, natural learning rules leading to MECE are still missing
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NE in GG: Summary
[Ortiz and Kearns, 2002]

• NashProp for computing Nash equilibria in graphical games

– Distributed, message-passing: Avoids centralized computation

– Runs directly on game graph: Avoids operating on “hyper-graphs”

– Generalizes approximation algorithm for trees

– Strong theoretical guarantees for table-passing phase

– Assignment passing phase: Simple implementations experimentally

sufficient and effective in arbitrary graphs

– Promising, effective heuristic in loopy graphs (as loopy belief

propagation)
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CE in GG: Summary
[Kakade, Kearns, Langford and Ortiz, 2003]

• CE Representation Theorem

Every CE for a graphical game can be characterized by another

achieving the same expected payoffs vector and which can be

represented in size polynomial in the representation size of the game

• Efficient Tree Algorithm (Generalizes normal-form games algorithm)

For all graphical games with graphs in a certain class, containing trees

and full-graphs as “canonical” examples, we can compute a CE for the

game in time polynomial in the representation size of the game
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Open Problems/Areas in Graphical Games

• Computing NE for multi-action games

• Strategy-proofness of NashProp? MECE gradient-based algorithms?

• Handling parametric payoff functions: Bounded influence [Kearns and

Mansour, 2002], Interdependent security games [Heal and Kunreuther, 2002;

Kearns and Ortiz, 2003]

• Stochastic Graphical Games

• Learning in Graphical Games

Toolkit of representations and algorithms for large population
game theory
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