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2-SPP: synthesis and testing2-SPP: synthesis and testing



Three-level logicThree-level logic

Three level networks of the form (Debnath, Sasao, Dubrova, 
Perkowski, Miller and Muzio): 

f = g1  g2

Where:

  gi is an SOP form 

   is a binary operator: 

 = AND :  AND-OR-AND forms 
 = EXOR:  AND-OR-EXOR forms  (EX-SOP)

OR-AND-OR (Sasao)

SPP (Luccio, Pagli): EXOR-AND-OR



An SPP form is a sum (OR) of pseudoproducts

The SPP problemThe SPP problem: find an SPP form for a 
function F with the min. number of literals

PseudoproductPseudoproductPseudoproductPseudoproduct PseudoproductPseudoproduct

EXOR factorEXOR factor

SPP forms

SPP forms are a direct generalization of SOP forms:

15132154321 x)x)(xxx(xx )xxx(x +⊕⊕⊕+⊕⊕⊕



SPP forms

15132154321 x)x)(xxx(xx )xxx(x +⊕⊕⊕+⊕⊕⊕
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SPP forms

Advantages

 Compact expressions

 Good testability of EXORs

 Three levels of logic

Disadvantages

Unbounded fan-in 
EXORs

 Impractical for many 
technologies

Huge minimization 
time



The affine space A over the vector space
V ⊆ {0,1}n (with operator ⊕) is:

A = {p ⊕ v | v∈V} =  p  ⊕  V 

Translation 
Point

Vector 
Space

Affine spaces

 x1   x2  x3  x4
  1    0    0    0
  1    0    1    1
  1    1    0    1
  1    1    1    0

=

A

Affine space 

⊕  1    0    0    0

p

Translation point 
 x1   x2  x3  x4
  0    0    0    0
  0    0    1    1
  0    1    0    1
  0    1    1    0

V

Vector space 



Pseudocubes

ProductProduct = characteristic function of a cubecube

41 xx ⋅

PseudoproductPseudoproduct = characteristic function of a 
pseudocubepseudocube

X1  X2  X3  X4
  1    0    0    1
  1    0    1    1
  1    1    0    1
  1    1    1    1

)xx(xx 4321 ⊕⊕⋅

X1  X2  X3  X4
  1    0    0    0
  1    0    1    1
  1    1    0    1
  1    1    1    0



Canonical Expressions CEX

One of them is called CEXCEX

A pseudocube can be represented by 
different pseudoproducts

)x)(xx(x 4131 ⊕⊕
X1  X2  X3  X4
  0    0    1    1
  0    1    1    1
  1    0    0    0
  1    1    0    0

)x)(xx(x 4331 ⊕⊕

)x)(xx(x 4341 ⊕⊕

CEX(P) =CEX(P) =

P =



Pseudocubes and Affine Spaces

Theorem: 

PseudocubesPseudocubes ⇔⇔  Affine Spaces Affine Spaces 

Corollary:

Cubes Cubes ⊆⊆  Affine Spaces Affine Spaces 

Pseudocube can be represented by:
CEX
Affine Space:  p ⊕  V 



Affine Spaces Affine Spaces 

X1  X2  X3  X4
  1    0    0    0
  1    0    1    1
  1    1    0    1
  1    1    1    0

X3 X4
X1 X2

00

01

11

10

00    01    11    10

Pseudoproduct: 
)xx(xx 4321 ⊕⊕⋅

⊕
X1  X2  X3  X4
  0    0    0    0
  0    0    1    1
  0    1    0    1
  0    1    1    0

  1    0    0    0=

Red: canonical variables

Black: non canonical variables



Cubes as Affine Spaces Cubes as Affine Spaces 

X1  X2  X3  X4
  1    0    0    1
  1    0    1    1
  1    1    0    1
  1    1    1    1

X3 X4
X1 X2

00

01

11

10

00    01    11    10

Red: canonical variables

Black: non canonical variables

Product: 

41 xx ⋅

⊕
X1  X2  X3  X4
  0    0    0    0
  0    0    1    0
  0    1    0    0
  0    1    1    0

  1    0    0    1=



Union of PseudocubesUnion of Pseudocubes

The union of of two pseudocubes is a 
pseudocube iff they are affine spaces over the 
same vector spacevector space.

A = p ⊕ V,  A’ = p’ ⊕ V  and p ⊕ p’ ∉ V

Bases of V       v1, … ,vk 

                 A ∪ A’= p  ⊕ V’

Bases of V’      v1, … , vk, p ⊕ p’



2-SPP forms

15132542 x)x)(xx(xx )x(x +⊕⊕+⊕
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2-pseudoproduct 2-EXOR



Solving the Disadvantages of SPP

2-SPP forms:

 Are still very compact
 Only 4% more literals than SPP expressions

 Have a reduced minimization time
 92% less time than SPP synthesis

 Are practical for the current technology
  EXOR gates with fan-in 2 are easy to implement



Parity Function

SOP: is the sum of all the minterms with an odd 
number of positive literals.

Costs

 SPP: polynomial cost in n

 SOP: exponential cost in n 

)x  .  xxx(x n4321 ⊕⊕⊕⊕⊕ ..SPP:



2-SPP gives exponential gain

SOP: is the sum of all the minterms (2n/2)

Costs

 2-SPP: polynomial cost in n

 SOP: exponential cost in n   (2n/2)

2-SPP: )x (x ...  )x)(xx(x n1-n4321 ⊕⊕⊕



 x1  x2  x3  x4

  0    0    0    1
  0    0    1    1
  0    1    0    1
  0    1    1    1

x3 x4
x1 x2

00

01

11

10

00    01    11    10

Product: 

41 xx ⋅

CubesCubes



 x1  x2  x3  x4

  0    0    0    1
  0    0    1    0
  0    1    0    1
  0    1    1    0

x3 x4
x1 x2

00

01

11

10

00    01    11    10

2-pseudoproduct: 

)x(xx 431 ⊕⋅

2-Pseudocubes2-Pseudocubes



Representation of 2-pseudocubes

A cube has an unique representation

A 2-pseudocube can be represented by different 2-pseudoproducts

97353421 x)x)(xx(x)xx(x ⊕⊕⊕

97553421 x)x)(xx(x)xx(x ⊕⊕⊕

97573421 x)x)(xx(x)xx(x ⊕⊕⊕



Canonical RepresentationCanonical Representation

97353421 x)x)(xx(x)xx(x ⊕⊕⊕
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Representation of cubesRepresentation of cubes

97542 xxxxx

  

1x

1x

1x

1x

1x

9

7

5

4

2














=
=
=
=
=

 }x , x,x , x,x {1, 97542  }{x   }{x   }{x   }{x 8631



Structure of 2-pseudoproductsStructure of 2-pseudoproducts

 }x , x{1, 94 }x , x,{x 753  }{x    }{x 86} x,{x 21

Structure:

are the sets without complementations

 } x, x{1, 94 } x, x,{x 753  }{x    }{x 86} x,{x 21

Structure



Union of 2-pseudocubes

A union of two 2-pseudocubes is a  2-pseudocube if 

 The 2-pseudocubes have the same structure

 The complementations differ in just one set

 }x , x{1, 94 } x,x ,{x 753  }{x    }{x 86} x,{x 21

 }{x    }{x 86 }x , x{1, 94 }x , x,{x 753} x,{x 21



Union of 2-pseudocubes

The set with different complementations is split into two sets:
 A set containing the variables with  the different 

complementations
 A set containing the variables with  the same complementations

∪
} x,x ,{x 753 }x , x{1, 94

 }{x    }{x 86} x,{x 21

 }x , x{1, 94} x,{x 21 }x , x,{x 753
 }{x    }{x 86

 }{x    }{x 86

=
 }x , x{1, 94} x,{x 21 }x ,{x 75}{x3



2-SPP Minimization Problem2-SPP Minimization Problem

Boolean function F:
 single output
 represented by its ON-set

Problem:

Find a sum of 2-pseudoproducts that is a characteristic function for 

F, and is minimal w.r.t. the number of literals/products



2-SPP Synthesis2-SPP Synthesis

Start with the minterms (points of the 
function)

Perform the union of 2-pseudocubes in order 
to find the set of 

prime 2-pseudocubes

Set covering step



Data structure for the union

 We represent each different structure only once

Partitions with the same structure are grouped together

  We perform the union only inside the same 
group 



Minimal form property

SPP form: the minimal form depends on the variable ordering 

SOP form: the minimal form does not depend on the variable 
ordering 

2-SPP form: the size of the minimal form does not depend on the 
variable ordering 

 Different 2-pseudoproducts represent the same 2-pseudocube

 But they have the same cost



A minimization exampleA minimization example 

F = {0001, 0010, 0101, 0110, 1101}

X3 X4
X1 X2

00

01

11

10

00    01    11    10



An exampleAn example
the minterms:

0001           0010           0101          0110        1101

}x,x,x,x{1, 4321 }x,x,x,x{1, 4321}x,x,x,x{1, 4321 }x,x,x,x{1, 4321}x,x,x,x{1, 4321

have the same  structure:  } x,x, x, x{1, 4321

}x,x,x,x{1,}x,x,x,x{1, 43214321 ∪  }x ,{x  }x ,x {1,  4321=

}x,x,x,x{1,}x,x,x,x{1, 43214321 ∪  }{x  } x,x ,x {1,  2431=

…



An example: the unionAn example: the union

Structure:                                Sets:

 } x,{x  } x, x{1, 4321

 }{x  } x, x, x{1, 2431

 } x,x, x{  } x{1, 4321

 } x,{x  } x, x{1, 2143

 } x,x, x,{x  {1} 4321

 }{x  } x, x, x{1, 1432

 } x, x, x{  }x{1, 4312

and

and

 }x ,{x  }x ,x {1, 4321  }x ,{x  } x,x {1, 4321and

 }{x  } x,x ,x {1, 2431  }{x  }x , x,x {1, 2431

 } x,x, x{  }x {1, 4321  }x ,x, x{  }x {1, 4321

 } x,{x  } x,x {1, 2143

 } x,x, x,{x  {1} 4321

 }{x  } x,x , x{1, 1432

 } x,x , x{  }x{1, 4312



An exampleAn example

 }x ,{x  }x ,x {1, 4321  }x ,{x  } x,x {1, 4321∪
 }x ,{x  }{x  }x {1, 4321

 }{x  } x,x ,x {1, 2431 ∪  }{x  }x , x,x {1, 2431

 }x ,{x  }{x  }x {1, 4321

 }x ,{x  }{x  }x {1, 4321

 } x,x, x{  }x {1, 4321 ∪  }x ,x, x{  }x {1, 4321



An example: set coveringAn example: set covering

Prime 2-pseudoproducts:

 } x,{x  } x,x {1, 2143

 } x,x, x,{x  {1} 4321

 }{x  } x,x , x{1, 1432

 } x,x , x{  }x{1, 4312

 }x ,{x  }{x  }x {1, 4321

Set covering 

 }x ,{x  }{x  }x {1, 4321

 }{x  } x,x , x{1, 1432



An example

2-SPP minimal form:

SOP minimal form:

)x(xxxxx 431432 ⊕+

431431432 xxxxxxxxx ++



Testability of 2-SPP forms

In collaboration with Rolf Drechsler

Testability is a major aspect of design process

Testability of 2-SPP Three-Level Logic Networks.Testability of 2-SPP Three-Level Logic Networks.

Fault models:Fault models:

   Stuck at fault Stuck at fault 

   Cellular faultCellular fault



Fault Model

Fault model: Stuck at fault 

 One input/output of a gate in circuit has a fixed constant value 
(0 or 1)

x2
x4

x1
x5

x2
x3

x5x1

0
0
0
0
0
0

0
1

1

0

1

0

0

1

0

0



Redundancies

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

)x(xx)xx(x 431243 ⊕+⊕Ff  =

=



Fully testable networks

A gate is fully testable if there does not exist 
redundant fault on it

A circuit is fully testable if all its gates are fully 
testable.



Our Aim

Study the testability of 2-SPP networks.

Are the minimal 2-SPP networks fully testable?

How can we improve the testability of a network?



2-SPP forms

15132542 x)x)(xx(xx )x(x +⊕⊕+⊕
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SOP



Testability

Prime and irredundant SOP networks are fully testable in the 
SAFM

2-SPP minimal forms contain:
 EXOR part
 SOP part

 prime 
 irredundant 

We must show:
 EXOR gates are fully testable
 The inputs to the SOP part can have all possible values



Inputs to the SOP partInputs to the SOP part
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System of maximum rank

=⊕⊕⊕ 97353421 x)x)(xx(x)xx(x

9757353421 x)x)(xx)(xx(x)xx(x ⊕⊕⊕⊕



Testability of 2-SPPs

Main results:

 Theorem: 2-SPP forms minimal w.r.t. the number of 2-
pseudoproducts are

NOT fully testable

 Theorem: 2-SPP forms minimal w.r.t. the number of literals are

fully testable



Counter-example: Theorem 1

)x(xx)xx(x 431243 ⊕+⊕

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

Ff  =

=



Theorem 2

Theorem 2: 2-SPP forms minimal w.r.t. the number of literals are 
fully testable

Proof (sketch):

 2-SPP is a SOP with an upper EXOR level

 The SOP networks are fully testable

 All possible values can be applied to the AND layer (max. rank 
of the system of EXORs)

 The EXOR gates are fully testable



Improving the testability

Is the minimality really necessary for testability?

No

For SOP forms:
 Irredundancy  (OR)
 Primality (AND) 

For 2-SPP forms:
 Irredundancy  (OR)
 AND-Irredundancy  (AND) 
 EXOR-Irredundancy  (EXOR)



SOP properties

Irredundancy:

 A SOP form for a function f is irredundant if deleting any 
product from it 

 we get a different function

Primality:

 A SOP form for a function f is prime if deleting any literal from 
any product 

 we get a different function



2-SPP properties

Irredundancy:

 A 2-SPP form for a function f is irredundant if deleting any 2-
pseudoproduct from it 

 we get a different function

AND-Irredundancy

 A 2-SPP form for a function f is AND-irredundant if deleting any 
factor from any 2-pseudoproduct 

 we get a different function



EXOR-Irredundancy

A 2-SPP form for a function f is EXOR-irredundant if replacing 
any literal with 0 or 1  in any EXOR factor 

 we get a different function

)x(xx)xx(x 431243 ⊕+⊕

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

=

Is not EXOR-irredundant!



Minimal 2-SPP forms

Definition: a 2-SPP form is OR-AND-EXOR-
irredundant if it satisfies the three properties.

Theorem: OR-AND-EXOR-irredundant 2-SPP forms 
are fully testable in the SAFM.

2-SPP minimal w.r.t. literals:
 are OR-AND-EXOR- irredundant

2-SPP minimal w.r.t. 2-pseudoproducts:
 are not EXOR- irredundant



Making a network testable

We try to replace each 

with

without changing the function

p)x(x ji ⊕

px or px or pxor px jiji



Example

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

)x(xx)xx(x 431243 ⊕+⊕F =

Fully testable!



Practical Issues

 The synthesized form could be non-minimal:
The set covering phase is not always exact

 We seldom have redundancies in practice

 We can design fully testable non- minimal 
forms (heuristics)



MetricsMetrics

CMOS:
 k fan-in AND/OR gates cost k literals
 k fan-in EXOR gates cost 4(k-1) literals

 2-EXOR gates cost 4 literals:

FPGA:
 k fan-in AND/OR/EXOR gates cost k literals

 2-EXOR gates cost 2 literals

212121 xxxx)x(x +=⊕



Conclusion

Theoretical results:
 2-SPP minimal w.r.t. the number of literals are fully testable
 2-SPP minimal w.r.t. the number of  2-pseudoproducts are NOT 

fully testable
 But we can make them fully testable

2-SPP vs SOP
 2-SPP forms  are more compact 
 SOP and 2-SPP are fully testable 
 Minimization time for 2-SPP is too high

 heuristics



EXOR Projected Sum of ProductsEXOR Projected Sum of Products



Motivations

Two level logic (SOP) is the classical approach to logic synthesis

Three or four level networks 

 are more compact (less area) than SOPs

 are harder to optimize

Our purpose is to find a compact formcompact form with 

 a bounded number of levels

 an efficient minimization algorithm



Overview

Derivation of EP-SOPs (EXOR-Projected Sum of Products) from 
SOPs 

EP-SOP representation
 without remainder
 with remainder

Projection algorithms

Minimal EP-SOP forms: 
 Computational complexity (NPNP-hard)
 Approximation algorithms

Experimental results



Example  SOP vs EP-SOPExample  SOP vs EP-SOP

X3 X4
X1 X2

00

01

11

10

00    01  11    10

1

0

1

10

11

1

1

0

0

1

0 1 1

0

X3 X4
X1 = X2

 0

 1

00    01    11   10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00    01    11  10

1 01

11

1

0 1

Crossing product



Example  SOP vs EP-SOPExample  SOP vs EP-SOP

)x x xx  x)(xx(x  )x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

43321321321321 xx xxx xxx xx x xxx ++++
minimal SOP form

EP-SOP form



Minimization of  the EP-SOPMinimization of  the EP-SOP

X3 X4
X1 = X2

 0

 1

00    01    11  10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00    01    11  10

1 01

11

1

0 1

X1 = X2

 0

 1

00    01    11  10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00    01    11  10

1 01

11

1

0 1



Example  SOP vs EP-SOPExample  SOP vs EP-SOP

)xxx)(x(x  )xx(x 43321321 +⊕+⊕

43321321321321 xx xxx xxx xx x xxx ++++
minimal SOP form

minimal EP-SOP form



EP-SOP networksEP-SOP networks

SOP1

two levels

SOP2

two levels

2ji1ji )SOPx(x  )SOPx(x ⊕+⊕

xi

xJ



EP-SOP without remainderEP-SOP without remainder
Given Given 

 a SOP expression a SOP expression φ φ 

 a pair of variables xa pair of variables xi i and xand xjj

The SOP The SOP φ is equivalent toφ is equivalent to

where:where:

                 is the projection of φ in the space is the projection of φ in the space 

                 is the projection of φ in the space is the projection of φ in the space 

 )x(x  )x(x jiji ⊕⊕ ϕ⊕+ϕ⊕
EP-SOP without remainder

⊕ϕ
⊕ϕ

ji xx =

ji xx =



EP-SOP without remainder: projectionEP-SOP without remainder: projection

For each product For each product pp in in the SOP  in in the SOP φ:φ:

 If If pp contains both variables  contains both variables xxi i and xand xjj::

 it ends up in one of the two SOPs            andit ends up in one of the two SOPs            and

 with a literal removalwith a literal removal

 If If pp contains one variable or none ( contains one variable or none (crossingcrossing):):

 it ends up in it ends up in bothboth SOPs          and SOPs          and

 ⊕ϕ   ⊕ϕ

 ⊕ϕ   ⊕ϕ



Example of  projectionExample of  projection

43321321321321 xx xx x xxx xxx xxx ++++

EP-SOP:EP-SOP:
 )x x xx  x)(xx(x )x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

min SOP:min SOP:

The EP-SOP form is not minimal!The EP-SOP form is not minimal!



Minimization of the EP-SOP formMinimization of the EP-SOP form

EP-SOP:EP-SOP:

 )x x xx  x)(xx(x )x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

)xxx)(x(x  )xx(x 43321321 +⊕+⊕

SOP minimization SOP minimization



Example  EP-SOP with remainderExample  EP-SOP with remainder

X3 X4
X1 X2

00

01

11

10

00    01  11    10

1

0

1

10

11

1

1

0

0

1

0 1 1

0

X3 X4

X1 = X2

 0

 1

00    01  11    10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00    01  11    10

1 01

11

0

0 0

X3 X4
X1 X2

00

01

11

10

00    01  11    10

1

0

0

00

00

0

1

0

0

1

0 0 1

0

remainder

Crossing
product



EP-SOP with remainderEP-SOP with remainder

Consider Consider 

 a SOP expression a SOP expression φ φ 

 a couple of variables xa couple of variables xi i and xand xjj

The SOP The SOP φ can be written asφ can be written as

ρ+ϕ⊕+ϕ⊕ ⊕⊕  )x(x  )x(x jiji

EP-SOP with remainder

remainder



EP-SOP with remainder: projectionEP-SOP with remainder: projection

Given a SOP Given a SOP φ and two variables xφ and two variables xi i and xand xj j ::

For each product For each product pp in  in φ φ 

 If If pp contains both variables contains both variables
it ends up in one of the two SOPs           andit ends up in one of the two SOPs           and

 If If pp contains one variable or none ( contains one variable or none (crossingcrossing))
it ends up in the remainder it ends up in the remainder ρρ

 ⊕ϕ   ⊕ϕ

43321321 xxx)x(x  )xx(x +⊕+⊕
43321321321321 xx xxx xxx xx x xxx ++++SOPSOP

EP-SOPEP-SOP



EP-SOP  forms EP-SOP  forms 

43321321 xxx)x(x  )xx(x +⊕+⊕

43321321321321 xx xxx xxx xx x xxx ++++
SOP form

EP-SOP form without remainder 
)xxx)(x(x  )xx(x 43321321 +⊕+⊕

EP-SOP form with remainder 



Minimal forms

SOP and EP-SOP have related sizes 

 Does a minimal SOP produce a minimal EP-SOP?

 How to choose xHow to choose xi i and xand xjj?



Minimal forms

Trivial idea:

 try all variables pairs 

 project the SOPs (the projection algorithms are 
polynomial)

 If       is an optimal SOP
       and       might be optimal

 Bad news:        and       are not optimal even if     is! ⊕ϕ   ⊕ϕ

 ⊕ϕ   ⊕ϕ

ϕ

ϕ



Minimizing       and       is as difficult as 
optimizing a generic SOP form.

Theorem: Even if      is optimal, minimizing       
and       is an NPNP-hard problem.

Computational complexity

Even if the original SOP form is minimal,
we must further minimize        and       :  ⊕ϕ   ⊕ϕ

min
ji

min
ji )x(x  )x(x ⊕⊕ ϕ⊕+ϕ⊕

 ⊕ϕ   ⊕ϕ

ϕ  ⊕ϕ
  ⊕ϕ



Approximation algorithms

Good news:

 If we choose a good strategy we can produce a near-optimal EP-
SOP in polynomial time 

  Strategy:
– Choose the pair of variables appearing in the largest number of 

products of φφ
– Project φ with respect to that couple φ with respect to that couple 

3.3. minimize the two projected SOPs with a two-level logic heuristic minimize the two projected SOPs with a two-level logic heuristic 

 The algorithm is polynomial:The algorithm is polynomial:
 O((nO((nvarvar))22 ∙ n ∙ nprodprod) ) 

 O(nO(nvarvar ∙ n ∙ nprodprod) ) 

 polynomial (e.g., using Espresso not exact)polynomial (e.g., using Espresso not exact)



Approximation algorithms

Theorem. The resulting number of products is at The resulting number of products is at 
most:most:

(4 - 2ν/ |φ|φ| ) times the optimum (without remainder)

twice the optimum (with remainder)

even without reoptimizing         and         .

The  polynomial reoptimization of the two SOPs can  improve the 
result

 ⊕ϕ   ⊕ϕ



Approximation algorithms

A sketch of the proof:

 The optimal EP-SOP costs at least ½ of the optimal SOP

 Without remainder: 
 the products with both variables appear only once in the projected 

SOPs
 the other products appear twice

 With remainder: 
 the products with both variables appear only once in the projected 

SOPs
 the other products appear in the remainder



Experimental results (1)Experimental results (1)

 ESPRESSO benchmark suite

 Four variants of the algorithm

 without remainder (N) and with remainder (R)

 with global frequency (G) and local frequency (L)
(the same couple of variables for all outputs 
or a specific couple for each output)

 Physical area and delay computed by SIS

 Pentium 1.6 GHz with 1GB RAM 



Experimental results (2)Experimental results (2)

The area of the XOR gates cannot be neglected (esp. for L)

Nevertheless, in 35% of the cases EP-SOP has a lower area



Experimental results (3)Experimental results (3)

On average, the best algorithm is RG

The area can reduce by 40%-50% (adr4, f51m, root, z4)



Experimental results (4)Experimental results (4)

We have compared the results of our heuristics with the optimal EP-
SOP:

 without rest:
 for the 76% of the benchmarks, the result is optimal
 for the 88% of the benchmarks, the gap is below 10%

 with rest:
 for the 64% of the benchmarks, the result is optimal
 for the 84% of the benchmarks, the gap is below 10%



ConclusionsConclusions

The heuristic algorithm often finds the optimal form

In 35% of the cases EP-SOP has a lower area

Projection and reoptimization add a limited time overhead 

This suggests to use EP-SOPs as a fast post-processing step after 
SOP minimization


