
Multi-Level Logic with Constant Depth: Multi-Level Logic with Constant Depth:

Recent Research from ItalyRecent Research from Italy

Researchers:

Anna Bernasconi (U. Pisa), Valentina Ciriani (U.
Milano-Crema) , Roberto Cordone (U. Milano-Crema),

Fabrizio Luccio (U. Pisa), Linda Pagli (U. Pisa),
Tiziano Villa (U. Verona, speaker)

DIMACS-RUTCOR Workshop on Boolean
and Pseudo-Boolean Functions

in Memory of Peter L. Hammer

Rutgers, January 19-22, 2009

2-SPP: synthesis and testing2-SPP: synthesis and testing

Three-level logicThree-level logic

Three level networks of the form (Debnath, Sasao, Dubrova,
Perkowski, Miller and Muzio):

f = g1 g2

Where:

 gi is an SOP form

 is a binary operator:

 = AND : AND-OR-AND forms
 = EXOR: AND-OR-EXOR forms (EX-SOP)

OR-AND-OR (Sasao)

SPP (Luccio, Pagli): EXOR-AND-OR

An SPP form is a sum (OR) of pseudoproducts

The SPP problemThe SPP problem: find an SPP form for a
function F with the min. number of literals

PseudoproductPseudoproductPseudoproductPseudoproduct PseudoproductPseudoproduct

EXOR factorEXOR factor

SPP forms

SPP forms are a direct generalization of SOP forms:

15132154321 x)x)(xxx(xx)xxx(x +⊕⊕⊕+⊕⊕⊕

SPP forms

15132154321 x)x)(xxx(xx)xxx(x +⊕⊕⊕+⊕⊕⊕

x1
x2

x3

x4

x1
x5

x1
x2

x3

x5

x1

SPP forms

Advantages

 Compact expressions

 Good testability of EXORs

 Three levels of logic

Disadvantages

Unbounded fan-in
EXORs

 Impractical for many
technologies

Huge minimization
time

The affine space A over the vector space
V ⊆ {0,1}n (with operator ⊕) is:

A = {p ⊕ v | v∈V} = p ⊕ V

Translation
Point

Vector
Space

Affine spaces

 x1 x2 x3 x4
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

=

A

Affine space

⊕ 1 0 0 0

p

Translation point
 x1 x2 x3 x4
 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 0

V

Vector space

Pseudocubes

ProductProduct = characteristic function of a cubecube

41 xx ⋅

PseudoproductPseudoproduct = characteristic function of a
pseudocubepseudocube

X1 X2 X3 X4
 1 0 0 1
 1 0 1 1
 1 1 0 1
 1 1 1 1

)xx(xx 4321 ⊕⊕⋅

X1 X2 X3 X4
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

Canonical Expressions CEX

One of them is called CEXCEX

A pseudocube can be represented by
different pseudoproducts

)x)(xx(x 4131 ⊕⊕
X1 X2 X3 X4
 0 0 1 1
 0 1 1 1
 1 0 0 0
 1 1 0 0

)x)(xx(x 4331 ⊕⊕

)x)(xx(x 4341 ⊕⊕

CEX(P) =CEX(P) =

P =

Pseudocubes and Affine Spaces

Theorem:

PseudocubesPseudocubes ⇔⇔ Affine Spaces Affine Spaces

Corollary:

Cubes Cubes ⊆⊆ Affine Spaces Affine Spaces

Pseudocube can be represented by:
CEX
Affine Space: p ⊕ V

Affine Spaces Affine Spaces

X1 X2 X3 X4
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0

X3 X4
X1 X2

00

01

11

10

00 01 11 10

Pseudoproduct:
)xx(xx 4321 ⊕⊕⋅

⊕
X1 X2 X3 X4
 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 0

 1 0 0 0=

Red: canonical variables

Black: non canonical variables

Cubes as Affine Spaces Cubes as Affine Spaces

X1 X2 X3 X4
 1 0 0 1
 1 0 1 1
 1 1 0 1
 1 1 1 1

X3 X4
X1 X2

00

01

11

10

00 01 11 10

Red: canonical variables

Black: non canonical variables

Product:

41 xx ⋅

⊕
X1 X2 X3 X4
 0 0 0 0
 0 0 1 0
 0 1 0 0
 0 1 1 0

 1 0 0 1=

Union of PseudocubesUnion of Pseudocubes

The union of of two pseudocubes is a
pseudocube iff they are affine spaces over the
same vector spacevector space.

A = p ⊕ V, A’ = p’ ⊕ V and p ⊕ p’ ∉ V

Bases of V v1, … ,vk

 A ∪ A’= p ⊕ V’

Bases of V’ v1, … , vk, p ⊕ p’

2-SPP forms

15132542 x)x)(xx(xx)x(x +⊕⊕+⊕

x2

x4

x1

x5

x2

x3

x5

x1

2-pseudoproduct 2-EXOR

Solving the Disadvantages of SPP

2-SPP forms:

 Are still very compact
 Only 4% more literals than SPP expressions

 Have a reduced minimization time
 92% less time than SPP synthesis

 Are practical for the current technology
 EXOR gates with fan-in 2 are easy to implement

Parity Function

SOP: is the sum of all the minterms with an odd
number of positive literals.

Costs

 SPP: polynomial cost in n

 SOP: exponential cost in n

)x . xxx(x n4321 ⊕⊕⊕⊕⊕ ..SPP:

2-SPP gives exponential gain

SOP: is the sum of all the minterms (2n/2)

Costs

 2-SPP: polynomial cost in n

 SOP: exponential cost in n (2n/2)

2-SPP:)x (x ...)x)(xx(x n1-n4321 ⊕⊕⊕

 x1 x2 x3 x4

 0 0 0 1
 0 0 1 1
 0 1 0 1
 0 1 1 1

x3 x4
x1 x2

00

01

11

10

00 01 11 10

Product:

41 xx ⋅

CubesCubes

 x1 x2 x3 x4

 0 0 0 1
 0 0 1 0
 0 1 0 1
 0 1 1 0

x3 x4
x1 x2

00

01

11

10

00 01 11 10

2-pseudoproduct:

)x(xx 431 ⊕⋅

2-Pseudocubes2-Pseudocubes

Representation of 2-pseudocubes

A cube has an unique representation

A 2-pseudocube can be represented by different 2-pseudoproducts

97353421 x)x)(xx(x)xx(x ⊕⊕⊕

97553421 x)x)(xx(x)xx(x ⊕⊕⊕

97573421 x)x)(xx(x)xx(x ⊕⊕⊕

Canonical RepresentationCanonical Representation

97353421 x)x)(xx(x)xx(x ⊕⊕⊕

1x

1)x(x

1)x(x

1x

1)x(x

9

73

53

4

21

=
=⊕
=⊕

=
=⊕

} x,{x 21

=
=
=
=
=

=

1x

xx

xx

1x

xx

9

73

53

4

21

 }x , x{1, 94 }x , x,{x 753 }{x }{x 86

Representation of cubesRepresentation of cubes

97542 xxxxx

1x

1x

1x

1x

1x

9

7

5

4

2

=
=
=
=
=

 }x , x,x , x,x {1, 97542 }{x }{x }{x }{x 8631

Structure of 2-pseudoproductsStructure of 2-pseudoproducts

 }x , x{1, 94 }x , x,{x 753 }{x }{x 86} x,{x 21

Structure:

are the sets without complementations

 } x, x{1, 94 } x, x,{x 753 }{x }{x 86} x,{x 21

Structure

Union of 2-pseudocubes

A union of two 2-pseudocubes is a 2-pseudocube if

 The 2-pseudocubes have the same structure

 The complementations differ in just one set

 }x , x{1, 94 } x,x ,{x 753 }{x }{x 86} x,{x 21

 }{x }{x 86 }x , x{1, 94 }x , x,{x 753} x,{x 21

Union of 2-pseudocubes

The set with different complementations is split into two sets:
 A set containing the variables with the different

complementations
 A set containing the variables with the same complementations

∪
} x,x ,{x 753 }x , x{1, 94

 }{x }{x 86} x,{x 21

 }x , x{1, 94} x,{x 21 }x , x,{x 753
 }{x }{x 86

 }{x }{x 86

=
 }x , x{1, 94} x,{x 21 }x ,{x 75}{x3

2-SPP Minimization Problem2-SPP Minimization Problem

Boolean function F:
 single output
 represented by its ON-set

Problem:

Find a sum of 2-pseudoproducts that is a characteristic function for

F, and is minimal w.r.t. the number of literals/products

2-SPP Synthesis2-SPP Synthesis

Start with the minterms (points of the
function)

Perform the union of 2-pseudocubes in order
to find the set of

prime 2-pseudocubes

Set covering step

Data structure for the union

 We represent each different structure only once

Partitions with the same structure are grouped together

 We perform the union only inside the same
group

Minimal form property

SPP form: the minimal form depends on the variable ordering

SOP form: the minimal form does not depend on the variable
ordering

2-SPP form: the size of the minimal form does not depend on the
variable ordering

 Different 2-pseudoproducts represent the same 2-pseudocube

 But they have the same cost

A minimization exampleA minimization example

F = {0001, 0010, 0101, 0110, 1101}

X3 X4
X1 X2

00

01

11

10

00 01 11 10

An exampleAn example
the minterms:

0001 0010 0101 0110 1101

}x,x,x,x{1, 4321 }x,x,x,x{1, 4321}x,x,x,x{1, 4321 }x,x,x,x{1, 4321}x,x,x,x{1, 4321

have the same structure: } x,x, x, x{1, 4321

}x,x,x,x{1,}x,x,x,x{1, 43214321 ∪ }x ,{x }x ,x {1, 4321=

}x,x,x,x{1,}x,x,x,x{1, 43214321 ∪ }{x } x,x ,x {1, 2431=

…

An example: the unionAn example: the union

Structure: Sets:

 } x,{x } x, x{1, 4321

 }{x } x, x, x{1, 2431

 } x,x, x{ } x{1, 4321

 } x,{x } x, x{1, 2143

 } x,x, x,{x {1} 4321

 }{x } x, x, x{1, 1432

 } x, x, x{ }x{1, 4312

and

and

 }x ,{x }x ,x {1, 4321 }x ,{x } x,x {1, 4321and

 }{x } x,x ,x {1, 2431 }{x }x , x,x {1, 2431

 } x,x, x{ }x {1, 4321 }x ,x, x{ }x {1, 4321

 } x,{x } x,x {1, 2143

 } x,x, x,{x {1} 4321

 }{x } x,x , x{1, 1432

 } x,x , x{ }x{1, 4312

An exampleAn example

 }x ,{x }x ,x {1, 4321 }x ,{x } x,x {1, 4321∪
 }x ,{x }{x }x {1, 4321

 }{x } x,x ,x {1, 2431 ∪ }{x }x , x,x {1, 2431

 }x ,{x }{x }x {1, 4321

 }x ,{x }{x }x {1, 4321

 } x,x, x{ }x {1, 4321 ∪ }x ,x, x{ }x {1, 4321

An example: set coveringAn example: set covering

Prime 2-pseudoproducts:

 } x,{x } x,x {1, 2143

 } x,x, x,{x {1} 4321

 }{x } x,x , x{1, 1432

 } x,x , x{ }x{1, 4312

 }x ,{x }{x }x {1, 4321

Set covering

 }x ,{x }{x }x {1, 4321

 }{x } x,x , x{1, 1432

An example

2-SPP minimal form:

SOP minimal form:

)x(xxxxx 431432 ⊕+

431431432 xxxxxxxxx ++

Testability of 2-SPP forms

In collaboration with Rolf Drechsler

Testability is a major aspect of design process

Testability of 2-SPP Three-Level Logic Networks.Testability of 2-SPP Three-Level Logic Networks.

Fault models:Fault models:

 Stuck at fault Stuck at fault

 Cellular faultCellular fault

Fault Model

Fault model: Stuck at fault

 One input/output of a gate in circuit has a fixed constant value
(0 or 1)

x2
x4

x1
x5

x2
x3

x5x1

0
0
0
0
0
0

0
1

1

0

1

0

0

1

0

0

Redundancies

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

)x(xx)xx(x 431243 ⊕+⊕Ff =

=

Fully testable networks

A gate is fully testable if there does not exist
redundant fault on it

A circuit is fully testable if all its gates are fully
testable.

Our Aim

Study the testability of 2-SPP networks.

Are the minimal 2-SPP networks fully testable?

How can we improve the testability of a network?

2-SPP forms

15132542 x)x)(xx(xx)x(x +⊕⊕+⊕

x2

x4

x1

x5

x2

x3

x5

x1

SOP

Testability

Prime and irredundant SOP networks are fully testable in the
SAFM

2-SPP minimal forms contain:
 EXOR part
 SOP part

 prime
 irredundant

We must show:
 EXOR gates are fully testable
 The inputs to the SOP part can have all possible values

Inputs to the SOP partInputs to the SOP part

1x

1)x(x

1)x(x

1x

1)x(x

9

73

53

4

21

=
=⊕
=⊕

=
=⊕

=

1x

1)x(x

1)x(x

1)x(x

1x

1)x(x

9

75

73

53

4

21

=
=⊕
=⊕
=⊕

=
=⊕

System of maximum rank

=⊕⊕⊕ 97353421 x)x)(xx(x)xx(x

9757353421 x)x)(xx)(xx(x)xx(x ⊕⊕⊕⊕

Testability of 2-SPPs

Main results:

 Theorem: 2-SPP forms minimal w.r.t. the number of 2-
pseudoproducts are

NOT fully testable

 Theorem: 2-SPP forms minimal w.r.t. the number of literals are

fully testable

Counter-example: Theorem 1

)x(xx)xx(x 431243 ⊕+⊕

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

Ff =

=

Theorem 2

Theorem 2: 2-SPP forms minimal w.r.t. the number of literals are
fully testable

Proof (sketch):

 2-SPP is a SOP with an upper EXOR level

 The SOP networks are fully testable

 All possible values can be applied to the AND layer (max. rank
of the system of EXORs)

 The EXOR gates are fully testable

Improving the testability

Is the minimality really necessary for testability?

No

For SOP forms:
 Irredundancy (OR)
 Primality (AND)

For 2-SPP forms:
 Irredundancy (OR)
 AND-Irredundancy (AND)
 EXOR-Irredundancy (EXOR)

SOP properties

Irredundancy:

 A SOP form for a function f is irredundant if deleting any
product from it

 we get a different function

Primality:

 A SOP form for a function f is prime if deleting any literal from
any product

 we get a different function

2-SPP properties

Irredundancy:

 A 2-SPP form for a function f is irredundant if deleting any 2-
pseudoproduct from it

 we get a different function

AND-Irredundancy

 A 2-SPP form for a function f is AND-irredundant if deleting any
factor from any 2-pseudoproduct

 we get a different function

EXOR-Irredundancy

A 2-SPP form for a function f is EXOR-irredundant if replacing
any literal with 0 or 1 in any EXOR factor

 we get a different function

)x(xx)xx(x 431243 ⊕+⊕

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

=

Is not EXOR-irredundant!

Minimal 2-SPP forms

Definition: a 2-SPP form is OR-AND-EXOR-
irredundant if it satisfies the three properties.

Theorem: OR-AND-EXOR-irredundant 2-SPP forms
are fully testable in the SAFM.

2-SPP minimal w.r.t. literals:
 are OR-AND-EXOR- irredundant

2-SPP minimal w.r.t. 2-pseudoproducts:
 are not EXOR- irredundant

Making a network testable

We try to replace each

with

without changing the function

p)x(x ji ⊕

px or px or pxor px jiji

Example

x3
x4

x1
x2

x3
x4

x2

0
x1

)x)(xx(x)xx(x 4321243 ⊕⊕+⊕F =

)x(xx)xx(x 431243 ⊕+⊕F =

Fully testable!

Practical Issues

 The synthesized form could be non-minimal:
The set covering phase is not always exact

 We seldom have redundancies in practice

 We can design fully testable non- minimal
forms (heuristics)

MetricsMetrics

CMOS:
 k fan-in AND/OR gates cost k literals
 k fan-in EXOR gates cost 4(k-1) literals

 2-EXOR gates cost 4 literals:

FPGA:
 k fan-in AND/OR/EXOR gates cost k literals

 2-EXOR gates cost 2 literals

212121 xxxx)x(x +=⊕

Conclusion

Theoretical results:
 2-SPP minimal w.r.t. the number of literals are fully testable
 2-SPP minimal w.r.t. the number of 2-pseudoproducts are NOT

fully testable
 But we can make them fully testable

2-SPP vs SOP
 2-SPP forms are more compact
 SOP and 2-SPP are fully testable
 Minimization time for 2-SPP is too high

 heuristics

EXOR Projected Sum of ProductsEXOR Projected Sum of Products

Motivations

Two level logic (SOP) is the classical approach to logic synthesis

Three or four level networks

 are more compact (less area) than SOPs

 are harder to optimize

Our purpose is to find a compact formcompact form with

 a bounded number of levels

 an efficient minimization algorithm

Overview

Derivation of EP-SOPs (EXOR-Projected Sum of Products) from
SOPs

EP-SOP representation
 without remainder
 with remainder

Projection algorithms

Minimal EP-SOP forms:
 Computational complexity (NPNP-hard)
 Approximation algorithms

Experimental results

Example SOP vs EP-SOPExample SOP vs EP-SOP

X3 X4
X1 X2

00

01

11

10

00 01 11 10

1

0

1

10

11

1

1

0

0

1

0 1 1

0

X3 X4
X1 = X2

 0

 1

00 01 11 10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00 01 11 10

1 01

11

1

0 1

Crossing product

Example SOP vs EP-SOPExample SOP vs EP-SOP

)x x xx x)(xx(x)x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

43321321321321 xx xxx xxx xx x xxx ++++
minimal SOP form

EP-SOP form

Minimization of the EP-SOPMinimization of the EP-SOP

X3 X4
X1 = X2

 0

 1

00 01 11 10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00 01 11 10

1 01

11

1

0 1

X1 = X2

 0

 1

00 01 11 10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00 01 11 10

1 01

11

1

0 1

Example SOP vs EP-SOPExample SOP vs EP-SOP

)xxx)(x(x)xx(x 43321321 +⊕+⊕

43321321321321 xx xxx xxx xx x xxx ++++
minimal SOP form

minimal EP-SOP form

EP-SOP networksEP-SOP networks

SOP1

two levels

SOP2

two levels

2ji1ji)SOPx(x)SOPx(x ⊕+⊕

xi

xJ

EP-SOP without remainderEP-SOP without remainder
Given Given

 a SOP expression a SOP expression φ φ

 a pair of variables xa pair of variables xi i and xand xjj

The SOP The SOP φ is equivalent toφ is equivalent to

where:where:

 is the projection of φ in the space is the projection of φ in the space

 is the projection of φ in the space is the projection of φ in the space

)x(x)x(x jiji ⊕⊕ ϕ⊕+ϕ⊕
EP-SOP without remainder

⊕ϕ
⊕ϕ

ji xx =

ji xx =

EP-SOP without remainder: projectionEP-SOP without remainder: projection

For each product For each product pp in in the SOP in in the SOP φ:φ:

 If If pp contains both variables contains both variables xxi i and xand xjj::

 it ends up in one of the two SOPs andit ends up in one of the two SOPs and

 with a literal removalwith a literal removal

 If If pp contains one variable or none (contains one variable or none (crossingcrossing):):

 it ends up in it ends up in bothboth SOPs and SOPs and

 ⊕ϕ ⊕ϕ

 ⊕ϕ ⊕ϕ

Example of projectionExample of projection

43321321321321 xx xx x xxx xxx xxx ++++

EP-SOP:EP-SOP:
)x x xx x)(xx(x)x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

min SOP:min SOP:

The EP-SOP form is not minimal!The EP-SOP form is not minimal!

Minimization of the EP-SOP formMinimization of the EP-SOP form

EP-SOP:EP-SOP:

)x x xx x)(xx(x)x x x x xx)(x(x 4332322143323221 ++⊕+++⊕

)xxx)(x(x)xx(x 43321321 +⊕+⊕

SOP minimization SOP minimization

Example EP-SOP with remainderExample EP-SOP with remainder

X3 X4
X1 X2

00

01

11

10

00 01 11 10

1

0

1

10

11

1

1

0

0

1

0 1 1

0

X3 X4

X1 = X2

 0

 1

00 01 11 10

0 10

00

1

1 1

X3 X4
X1 ≠ X2

 0

 1

00 01 11 10

1 01

11

0

0 0

X3 X4
X1 X2

00

01

11

10

00 01 11 10

1

0

0

00

00

0

1

0

0

1

0 0 1

0

remainder

Crossing
product

EP-SOP with remainderEP-SOP with remainder

Consider Consider

 a SOP expression a SOP expression φ φ

 a couple of variables xa couple of variables xi i and xand xjj

The SOP The SOP φ can be written asφ can be written as

ρ+ϕ⊕+ϕ⊕ ⊕⊕)x(x)x(x jiji

EP-SOP with remainder

remainder

EP-SOP with remainder: projectionEP-SOP with remainder: projection

Given a SOP Given a SOP φ and two variables xφ and two variables xi i and xand xj j ::

For each product For each product pp in in φ φ

 If If pp contains both variables contains both variables
it ends up in one of the two SOPs andit ends up in one of the two SOPs and

 If If pp contains one variable or none (contains one variable or none (crossingcrossing))
it ends up in the remainder it ends up in the remainder ρρ

 ⊕ϕ ⊕ϕ

43321321 xxx)x(x)xx(x +⊕+⊕
43321321321321 xx xxx xxx xx x xxx ++++SOPSOP

EP-SOPEP-SOP

EP-SOP forms EP-SOP forms

43321321 xxx)x(x)xx(x +⊕+⊕

43321321321321 xx xxx xxx xx x xxx ++++
SOP form

EP-SOP form without remainder
)xxx)(x(x)xx(x 43321321 +⊕+⊕

EP-SOP form with remainder

Minimal forms

SOP and EP-SOP have related sizes

 Does a minimal SOP produce a minimal EP-SOP?

 How to choose xHow to choose xi i and xand xjj?

Minimal forms

Trivial idea:

 try all variables pairs

 project the SOPs (the projection algorithms are
polynomial)

 If is an optimal SOP
 and might be optimal

 Bad news: and are not optimal even if is! ⊕ϕ ⊕ϕ

 ⊕ϕ ⊕ϕ

ϕ

ϕ

Minimizing and is as difficult as
optimizing a generic SOP form.

Theorem: Even if is optimal, minimizing
and is an NPNP-hard problem.

Computational complexity

Even if the original SOP form is minimal,
we must further minimize and : ⊕ϕ ⊕ϕ

min
ji

min
ji)x(x)x(x ⊕⊕ ϕ⊕+ϕ⊕

 ⊕ϕ ⊕ϕ

ϕ ⊕ϕ
 ⊕ϕ

Approximation algorithms

Good news:

 If we choose a good strategy we can produce a near-optimal EP-
SOP in polynomial time

 Strategy:
– Choose the pair of variables appearing in the largest number of

products of φφ
– Project φ with respect to that couple φ with respect to that couple

3.3. minimize the two projected SOPs with a two-level logic heuristic minimize the two projected SOPs with a two-level logic heuristic

 The algorithm is polynomial:The algorithm is polynomial:
 O((nO((nvarvar))22 ∙ n ∙ nprodprod))

 O(nO(nvarvar ∙ n ∙ nprodprod))

 polynomial (e.g., using Espresso not exact)polynomial (e.g., using Espresso not exact)

Approximation algorithms

Theorem. The resulting number of products is at The resulting number of products is at
most:most:

(4 - 2ν/ |φ|φ|) times the optimum (without remainder)

twice the optimum (with remainder)

even without reoptimizing and .

The polynomial reoptimization of the two SOPs can improve the
result

 ⊕ϕ ⊕ϕ

Approximation algorithms

A sketch of the proof:

 The optimal EP-SOP costs at least ½ of the optimal SOP

 Without remainder:
 the products with both variables appear only once in the projected

SOPs
 the other products appear twice

 With remainder:
 the products with both variables appear only once in the projected

SOPs
 the other products appear in the remainder

Experimental results (1)Experimental results (1)

 ESPRESSO benchmark suite

 Four variants of the algorithm

 without remainder (N) and with remainder (R)

 with global frequency (G) and local frequency (L)
(the same couple of variables for all outputs
or a specific couple for each output)

 Physical area and delay computed by SIS

 Pentium 1.6 GHz with 1GB RAM

Experimental results (2)Experimental results (2)

The area of the XOR gates cannot be neglected (esp. for L)

Nevertheless, in 35% of the cases EP-SOP has a lower area

Experimental results (3)Experimental results (3)

On average, the best algorithm is RG

The area can reduce by 40%-50% (adr4, f51m, root, z4)

Experimental results (4)Experimental results (4)

We have compared the results of our heuristics with the optimal EP-
SOP:

 without rest:
 for the 76% of the benchmarks, the result is optimal
 for the 88% of the benchmarks, the gap is below 10%

 with rest:
 for the 64% of the benchmarks, the result is optimal
 for the 84% of the benchmarks, the gap is below 10%

ConclusionsConclusions

The heuristic algorithm often finds the optimal form

In 35% of the cases EP-SOP has a lower area

Projection and reoptimization add a limited time overhead

This suggests to use EP-SOPs as a fast post-processing step after
SOP minimization

