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Problem Formulation

Probabilistically constrained programming problem

min g(x)
subjectto Ax > b
P(hi(x)>¢§.jed)>p
X &€ R+ X Z+

with & having a multivariate probability distribution with finite support

— Prékopa (1990,1995); Sen (1992); Prékopa et al. (1998);
Dentcheva et al. (2000); Ruszczyhski (2002); Cheon et al. (2006);
Lejeune, Ruszczyhski (2007); Luedtke et al. (2007); Tanner, Ntaimo
(2008)
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min X1 + 2Xo
- B—X1—2X2 > &
subject to 73{ 8, + 6Xp > & } > 0.7
X1, X2 2 0

Lk [ ok b |FX)

1|6 3 0.2

2| 2 3 0.1

3 1 4 0.1

4 | 4 5 0.3

Set of realizations || 5 3 6 0.3

Wk e 6 | 4 6| 05

71 6 8 0.7

8 1 9 0.2

914 9 0.7

10| 5 10 0.8

withpy =0.1,k =1,...,10.
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Feasibility set is the union of the two following polyhedra:
@ S; = {(X1,X2) € R4 : 8 —x; — 2Xp > 6, 8%y + 6X2 > 8},
0 Sy = {(Xg,X2) € RZ : 8 — X1 — 2Xp > 4, 8%y + 6X2 > 9},
and is non-convex:

a

ho) | @9

(6.8)

h1(x)

Could also be “disconnected” (Henrion, 2002).
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Solution Methods

@ p-efficiency concept (Prékopa, 1990): disjunctive problem:
@ Identification of finite, unknown number of p-efficient points
@ Enumerative algorithm (Prékopa, 1995; Prékopa et al., 1990;
Beraldi, Ruszczynski, 2002; Lejeune, 2008) or optimization-based
generation (Lejeune, Noyan, 2009)
@ Convexification - cone generation algorithm (Dentcheva et al.,
2001)
@ Column generation algorithm (Lejeune, Ruszczyhski, 2007)
@ Scenario approach
@ List possible realizations of multivariate random vector
@ Associate a binary variable with each scenario
@ MIP formulation with cover constraint
@ Use of structural properties (Ruszczyhski, 2002; Cheon et al.,
2006; Luedtke et al., 2007)

@ Robust approach

@ Derivation of conservative and convex approximations (Calafiore,
Campi, 2005; Nemirovski, Shapiro, 2005, 2006)
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p-Efficiency

Definition (Prékopa, 1990)
Letp € [0, 1].
v € R" is a p-efficient point of the discrete probability distribution F if:

F(v)>p, and
thereisno v’ <v,v' #v suchthatF(v')>p.

Identification of finite, unknown number of p-efficient points
Disjunctive problem
min g(x)
subjectto Ax > b

h(x)e U K°®
() eesP

XERXZ

where K& =ve+R,., vé €SP
is the cone associated with v€, SP is the set of p-efficient points.
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MIP reformulation min g(x)
subjectto Ax > b

hj(x)>60°-v?, jeJeecsP

doe>1

ecsSp
6 € {0,1}
XERXZ

Convexification min g(x)
subjectto Ax > b
hi(x)> > X-vP jelecsP
eesP

dox=1

eesp
A eRy
XERXZ
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Scenario Approach

@ List possible realizations &5 of the multivariate random vector
@ Associate a binary variable 6° with each scenario s:

05 0 ifall constraints in s are satisfied
| 1 otherwise

@ MIP reformulation with cover constraint
min g(x)

subjectto Ax > b
hi(x) > & - (1—6°), jed,vs

> ps6°<1-p

S

6° € {0,1}, Vs
XERXZ

with ps = probability of scenario s
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Solution framework based on combinatorial pattern theory:
P(h(x)>¢§,jed)>p

@ Binarization of probability distribution F

@ Representation of combination (F, p) of probability distribution F
and probability level p as partially defined Boolean function (pdBf)

@ Compact extension

Optimization-Based generation of combinatorial patterns

@ Derivation of disjunctive normal form (DNF) representing sufficient
conditions for probabilistic constraint to hold
@ Integrated DNF generation
@ Sequential DNF generation
o Deterministic reformulations and solution
@ Concurrent pattern generation and solution

Numerical implementation
Conclusion
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p-Sufficient and p-Insufficient Realizations

Definition (p-Sufficient Realization)

A realization w¥ is p-sufficient if P(¢ < wk) = F(w*) > p andis
p-insufficient if F (wX) < p.

Corollary
The satisfaction of the |J| requirements

defined by a p-sufficient realization w¥ allows attainment of probability
level p.
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Partition of 2 with Boolean parameter Z

w_[1 if F(w) >p — p — sufficient realization
1 0 otherwise — p — insufficient realization

|k [wf wf|Z¢

116 3|0

212 3|0

Set Q™ of 3|1 4]0
p-insufficient realizations || 4 | 4 5 | O
513 6|0

6 |4 6|0

8|1 9|0

Set QF of 716 8|1
p-sufficient realizations 9 14 9 |1
10| 5 10| 1

v
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Binarization of Probability Distribution

@ Introduction of binary attributes i for each w* € Q
@ Definition of their value with respect to cut points c;

1 ifwk >c
K _ == i
bi { 0 otherwise ' 1M €d

with
Cij<cj = B <pl forany i'<i jeJ,

and C is the set of cut points: |C| = > nj.
jed

Each numerical realization w¥, k € Q is mapped to a binary vector:

gk = [ﬁll(laﬁlz(lv""ﬁilj(v"']
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Representation of (F,p) as a pdBf

Associating g% with Z* provides a pdBf representation of (F,p)

C ={c11 =5; C12 =4; Cxp =6; Cc3, = 10}

k [ 8y B, B 85|74
1 0 0 00

Binary Image Q; of 2~

O N|oo O U1k WN P

Binary Image Qf of Q*

R oOoRroooooo
P RPRRPRRRPRREPRO
P R RRPRPRRPLROOO
R OoOOoOocoooooo
PP RrROOOOOO

[ =Y
o
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Definition of Set of Cut Points

Objective: define conditions for P (hj(x) > &,j € J) > p to hold

Set of cut points cannot be defined arbitrarily

Example
C = {c11 =5; C12 =4; C» = 6}
©0.1,1) lwm @11
w? w?® 1
(e} [ ] 1
I ‘e
I
I
w® wb 1
Cp=6 | === ———— ===t —————————-
(0,1,0) I (1,1,0)
o 1
3 w' 1
Cp=4 =L om e .:. ___________
I
wzo : wlO
(0,0,0) ! (1,0,0)
Cc; ;=5

Workshop in Memory of Peter L. Hammer M. Lejeune January 2009 14 /34



Necessary Conditions

@ Preserves the disjointedness between Q+ and Q~
@ Consistency of the set of cut points:
@ basic: immediate: C = {cj : ¢ = wjk, jed kel
@ master: polynomial-time algorithm
@ minimal: set covering formulation

BASIC SET OF CUT POINTS MASTER SET OF CUT POINTS MINIMAL SET OF CUT POINTS
[ T T T B [ I
. [ I | we I i I
Co~l0f == == === ——9——T- Wpmm e = -1- 10 1 °
W w0 o |
=g = ———$=—t——1-  o|-—0=—————= +-—4—-1- | o ’
[ T B A | 1
Cr == =m— e — —— @ - gl e ] === — - 8 e ——————— - ————— *-
R [ 1
o= Tmmbm AL [ I
e . '
c=6 F-—-=% T~ o b 1 S
PR S O S NS S Lo ]
S35ttty it ety il o e Q
wl e o i
4 ——or——p—d—— ==t —— - o [ o I
Vo0 [ I
=3 bbb o I o i o
Vel 101wl [ I
i i i [ i
4 8 e < o oo 4 5 6 4 6
A R A
§ 0§ & § & &
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Necessary Conditions

Consistency of set of cut points is not sufficient.

Consider the minimal set of cut points: C = {c;; = 4; ¢;» = 8}.

wk >4 _ Satisfied by each  wk € QF
wk > 8 Not satisfied by any w* € Q~

8—X1 —2X2 > & 8—X1 —2x, >4
P{8X1—|—6X22§2 }20'7@{8X1+6X228

Set8—x1—2x2:4and8x1—|—6x2:8:P(42§1,82£2):0.5<p

Consistency does not guarantee exact representation of all the
p-sufficient realizations:

wf=\/ B c.jelfeqr

i:l,...,nj
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Sufficient Conditions

P (hj(x) > ¢&,j€d) = pifP (hj(x) > &) >p,jed

Definition

A sufficient-equivalent set of cut points CE comprises a cut point c;; for
any value wjk taken by any of the p-sufficient realizations on any of the

marginals j:
CE = {Cij :Fj(cij) >p, i :1,...,nj,j €J,k € Q}

Allows the exact representation of all the p-sufficient realizations, and
is thus consistent.

CE ={4,5,6; 8,9,10}.
—— N———
& &2
Coincides here with master set of cut points.
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Extension

@ Objective: Simple and compact representation of (F, p)
@ Definition: f is an extension of pdBf g(Qg, Q) if:
Qi C Qf(f) and Q5 C Q5 (f)

@ Existence: Boolean extension f exists if and only if QF Qg =0
@ Description: Disjunctive normal form

@ Binary mapping of realization: w* — g% = [6‘1‘1, LB }

@ Set of binary images: Qg = Qf UQg, Qg N5 =0

o Literals G, Bij

o Pattern: term (clause): t = A Gj A Bj, Pt(INe=0 with

jePy  ijeN
coverage condition
o Term covers a realization w* if : t(w¥) = 1= A 8 A B,
jePc  ijEN
o Degree of a term: number of literals: d = |P¢| + |N¢|,

@ Disjunctive Normal Form: f = \/ ts.
vev
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Any Boolean extension of a consistent pdBf representing (F, p) is a:
@ positive monotone,
@ Horn,
@ threshold

Boolean function.
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Rationale for Optimization-Based Generation

@ Patterns included in DNF representing (F, p) are of degree at
least equal to |J].
Recall: P(hi(x)>¢,jed)=p

@ Patterns often generated though term enumeration methods
(Boros et al., 1997, 2000; Alexe, Hammer, 2006, 2007; Torvik,
Triantaphyllou, 2006)

d
@ Needs considering >’ 2d' < c?’ ) terms for patterns of degree d
d'=1

@ Very efficient except for patterns of high degree (larger than 4)
(Boros et al., 1997, 2000; Ryoo, 2006, 2008)
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Optimization-Based Generation of Patterns - IP |

Consider a sufficient-equivalent set of cut points and pdBf for (F, p).

IP I z=min 3 y¥
ket

subjectto 3" Zﬁ” uj + Z BTy +ny* >d, keQf

jeJi=

ZZ@JUU‘FZ@,UUSd—l kGQE

jedi=
unjkal—bk, keQi,jed
> be=10g-1
keQd
uij—s—Gijgl i=1...,n,jed
ZZ(UIJ+UIJ) d
jedi=
0<b*<1, k e Qf
3] <d <2n
ujj, Ui 6{0,1}, i=1,...,n,jed
y* € {0,1}, keQi
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Properties

Theorem (Pattern Generation - IP |)

IPI:

(i) is always feasible;

(i) has an upper bound equal to [Q}| — 1; and

(iii) any of its feasible solutions (u,y, d,b) defines a p-sufficient pattern

t= A B8 /\ B ofdegree d and coverage (|Qf|-2)
Uij=l UHZl
i=1,...,n;,j€d i=1,..,nj,j€d
Remarks:
@ Complexity: 2n + |Q™| integer variables

Increases with number of cut points and p-sufficient realizations
Number of p-sufficient realizations is a decreasing function of p
Does not need to be solved to optimality

Optimal solution is a p-sufficient strong pattern (Hammer et al.,

2004)
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Pattern Derivation

Definition (Hammer et al., 2004)

A pattern is prime if the removal of any one of its literals results in the
coverage of a realization of opposed “sign”.

Observation:
wj is positive monotone in F:

(i is positive monotone in the Boolean extension f:
f(B11,B01, -5 fi=1j, 0, Biyaj, - - .) < (Br1, Boty - -+, Bizgjy 1y Bigajy - - -)

= Prime patterns included in a DNF f representing (F, p)

@ do not include complemented literals: monotonicity property of Boolean
variable (Boros et al., 2000)

@ one uncomplemented literal per component §
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Optimization-Based Generation of Patterns - IP Il

IP I z=min Y yK
keQt

subject to ZZB uj +yk >3, ke

jedi=
ZZﬁUuugm k € Qg
jedi=
Uy 2 1 — bk, keQt,jeld
> b= -1
ket
nj
Zuijzj., jEJ
i=1
0<b“<1, k eQf
UijE{O,l}, jeJ,i:l,...,nj
0<yk <], k e Qf
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Properties

Theorem (Pattern Generation - IP II)

P II:
(i) is always feasible, and
(i) any of its feasible solutions (u,y,b) defines a p-sufficient pattern

t= A B

ujj=1
jeJ,i:l,...,nj

of degree |J]|.

Comparison:
@ IPI:  2n+|Q7|integer and |Q7| + 1 continuous variables
@ IPIl: ninteger and 2|Q"| continuous variables
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1P 11l max

Q
Ys

s=1

nj
subjectto 30 3 Bfujs + NIyl >, keQfs=1,...

i=1jed

k> yE,
& k
Z rs S Q - 17
s=1

r: 2)/57

k

unjkj,s 21-bs,

ys= > bE+1-193],

.
ke

nj
> Ujs =1,
i=1
0<bk<1,
0<ré <1,
0<ys <1,

y& €{0,1},
uj,s € {0,1},

Workshop in Memory of Peter L. Hammer

M. Lejeune

DNF Derivation - Integrated Approach: IP Il

7Q
keQi,s=1,...,Q
ke
keQi,s=1,...,Q
keQf,jed,s=1,...,Q
S:17"'7Q
jeds=1,...,Q
keQi,s=1,...,Q
keQi,s=1,...,Q
8:17"'7Q
keQi,s=1,...,Q

i=1,...,n,jed,;s=1,...,Q
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Properties

Theorem (Disjunctive Normal Form Model)

Any feasible solution (u,y,r,b) of IP Ill defines a DNF
f: \/ ts
ys=0

including a set of patterns Q = {ts : ys = 0,Vs}:
i) covering all p-sufficient realizations: f (w*) =1, k € Qf, and
ii) defining the sufficient conditions for P (hj(x) > ¢,j € J) > p to hold.

Remarks:
@ eachtsinf is of degree |J| ;

@ eachts in f has coverage |QF| — > yX;
keQg

@ the optimal solution of IP Il defines an irredundant DNF.
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DNF Derivation - Sequential Approach

@ lIterative procedure

@ Ordering of p-sufficient realizations with respect to their
cumulative probability

@ Concept of maximum positive pattern (Hammer, Bonates, 2006)

Definition
The maximum p-sufficient wk-pattern is the pattern covering wX which
has the largest coverage.

@ Differences with integrated approach:
@ Disjunctive normal form is not necessarily minimal
@ Solution of a finite sequence of LP problems
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Deterministic Reformulation |

f: DNF defining sufficient conditions for satisfiability of

P(hi(x)>¢&,j€d)>p

min g(x)
subjectto Ax > b
f(h(x)) >1
XERy X Zy
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Deterministic Reformulation Il

\%
fhx) =1« \/ thx)=1e > t(hx)=>1
v=1

v=1,...,V

ty = /\ By : ty(h(x)) =1 = hj(x) > cj, ij €Ly
ijeLy

__ [ 0, if all conditions defined by t, are satisfied
W7 1, otherwise

M<

\%
w<V-1 w<V-1

v=1

-

v=1
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Concurrent Generation and Solution

min g(x)
subjectto Ax > b

n
ZU"':]., jed
i=1

Uy > 1— b, keQf,jed
]
Sk <0z -1
keQy
hj(X)ZUij-Cij, i=1...,n,jed
0<b“<1, k € QF
uj € {0,1}, i=1...,n,jed
X € R+ X Z+
Optimal solution (x*,u*, b*) defines a p-sufficient pattert = /\ B
ui=1
|:l,..J.,nj,j€J

representing the minimal conditions for P(h;(x) > ¢, j € J) > p to hold.
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Numerical Implementation

Stochastic cash matching (Dentcheva et al., 2004; Henrion, 2004)
n
max Z (ai|J| - pi) Xi
i=1

n
subjectto P(K + > (a5 —pi)xi > §, j€d)>p
i—1
X eR:

Data: face value, yield structure, maturity of more than 200 bonds
Sources: Center for Research and Security prices (CRSP); Mergent
Fixed Income Securities Database (FISD).
Generation of 32 problem instances differing along:

@ number (M = 150, 200) of bonds

@ length of planning horizon (i.e., dimensionality: |J| = 8, 12 of the

random vector &)
@ value (p = 0.8, 0.85, 0.9, 0.95) of enforced probability level
@ number (2 = 1000, 2000) of realizations
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Numerical Results

Sequential procedure
AMPL modeling, 11.1 solver for MIP

p
0.8 [ 085 | 09 | 095
Q]
M [ [3] || 1000 | 2000 | 1000 | 2000 | 1000 | 2000 | 1000 | 2000
150 | 8 [ 305.0 | 369.3 | 145.3 | 239.2 | 68.9 | 943 | 14.2 | 20.9
150 | 12 || 299.3 | 421.7 | 176.2 | 295.9 | 87.9 | 109.9 | 23.9 | 35.8
200 | 8 || 341.9 | 375.9 | 146.3 | 248.9 | 71.9 | 100.3 | 12.2 | 24.9
200 | 12 || 362.2 | 418.1 | 172.9 | 299.1 | 92.2 | 103.9 | 31.8 | 49.2

250 — 250 —
N .- S -
G200 B G200
& &
D150 D150
a o a
8 o [S)
100 > 100
E ——{|3I=8; 1000 realizations} £ ——{|J/=8; m=100} E —e— {m=100;1000 realizations}
= — - - {|=12;2000 realizations} = — & - {J|=12; m=200} = — = - {m=200;2000 realizations}
0 4 o
100 150 200 1000 1500 2000 8 12
Number m of Bonds Number of Realizations Dimension |J| of Random Vector
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Conclusions and Extensions

@ Novel methodology for probabilistically constrained problems

@ Derivation of combinatorial patterns and DNfs representing
sufficient conditions for attainment of prescribed probability level

@ Binarization of probability distribution

Representation of (F, p) as pdBf

Extension of pdBf

Optimization-based derivation of patterns and DNFs

Deterministic reformulation

@ Combinatorial pattern take into account "interactions" between
components ¢; of £ on satisfiability of joint probabilistic constraint

@ Commonalities with Logical Analysis of Data (Hammer, 1986;
Crama et al., 1988; Boros et al., 1997, 2000)

@ Numerical implementation

@ Extensions possible to:
@ problems with random technology matrix
@ continuous probability distributions approximated by samples
@ two-stage stochastic problems.

® © & ¢
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