Combinatorial Patterns for Probabilistically Constrained Optimization Problems

Miguel A. Lejeune George Washington University

DIMACS-RUTCOR Workshop on Boolean and Pseudo-Boolean Functions in Memory of Peter L. Hammer

January 2009

Problem Formulation

Probabilistically constrained programming problem

$$\begin{aligned} & \text{min } g(x) \\ & \text{subject to } Ax \geq b \\ & \mathcal{P}\left(h_j(x) \geq \xi_j, j \in J\right) \geq p \\ & x \in \mathcal{R}_+ \times \mathcal{Z}_+ \end{aligned}$$

with ξ having a multivariate probability distribution with finite support

→ Prékopa (1990,1995); Sen (1992); Prékopa et al. (1998); Dentcheva et al. (2000); Ruszczyński (2002); Cheon et al. (2006); Lejeune, Ruszczyński (2007); Luedtke et al. (2007); Tanner, Ntaimo (2008)

Example

$$\begin{aligned} &\min x_1+2x_2\\ \text{subject to } \mathcal{P}\left\{\begin{array}{l} 8-x_1-2x_2\geq \xi_1\\ 8x_1+6x_2\geq \xi_2 \end{array}\right\}\geq 0.7\\ &x_1,x_2\geq 0 \end{aligned}$$

	k	ω_1^k	ω_2^k	$F(\omega^k)$
	1	6	3	0.2
	2	2	3	0.1
	3	1	4	0.1
	4	4	5	0.3
Set of realizations	5	3	6	0.3
$\omega^{\pmb{k}}\in\Omega$	6	4	6	0.5
	7	6	8	0.7
	8	1	9	0.2
	9	4	9	0.7
	10	5	10	0.8
with $n_{i} = 0.1 \ k = 1$		10		

with $p_k = 0.1, k = 1, \dots, 10$.

Example

Feasibility set is the union of the two following polyhedra:

$$\quad \bullet \ \, S_1 = \{(x_1,x_2) \in \mathcal{R}^2_+ : 8 - x_1 - 2x_2 \geq 6, \; 8x_1 + 6x_2 \geq 8 \} \; ,$$

$$\bullet \ S_2 = \{(x_1,x_2) \in \mathcal{R}^2_+ : 8 - x_1 - 2x_2 \geq 4, \ 8x_1 + 6x_2 \geq 9 \}$$
 ,

and is non-convex:

Could also be "disconnected" (Henrion, 2002).

Solution Methods

- *p*-efficiency concept (Prékopa, 1990): disjunctive problem:
 - Identification of finite, unknown number of *p*-efficient points
 - Enumerative algorithm (Prékopa, 1995; Prékopa et al., 1990;
 Beraldi, Ruszczyński, 2002; Lejeune, 2008) or optimization-based generation (Lejeune, Noyan, 2009)
 - Convexification cone generation algorithm (Dentcheva et al., 2001)
 - Column generation algorithm (Lejeune, Ruszczyński, 2007)
- Scenario approach
 - List possible realizations of multivariate random vector
 - Associate a binary variable with each scenario
 - MIP formulation with cover constraint
 - Use of structural properties (Ruszczyński, 2002; Cheon et al., 2006; Luedtke et al., 2007)
- Robust approach
 - Derivation of conservative and convex approximations (Calafiore, Campi, 2005; Nemirovski, Shapiro, 2005, 2006)

p-Efficiency

Definition (Prékopa, 1990)

Let $p \in [0, 1]$.

 $v \in \mathcal{R}^n$ is a *p*-efficient point of the discrete probability distribution F if:

$$F(v) \geq p$$
, and there is no $v' \leq v, v' \neq v$ such that $F(v') \geq p$.

Identification of finite, unknown number of p-efficient points Disjunctive problem

$$egin{aligned} \mathsf{min} \; g(x) \ \mathsf{subject} \; \mathsf{to} \; \mathsf{A} x & \geq b \ h(x) \in \mathop{\cup}\limits_{e \in \mathcal{S}^p} \mathsf{K}^e \ x \in \mathcal{R} imes \mathcal{Z} \end{aligned}$$

where

$$K^e = v^e + \mathcal{R}_+, \ v^e \in S^p$$

is the cone associated with v^e , S^p is the set of p-efficient points.

p-efficiency

$$\min g(x)$$

subject to
$$Ax \ge b$$

$$h_{j}(\mathbf{x}) \geq \theta^{\mathbf{e}} \cdot \mathbf{v}_{j}^{\mathbf{e}}, \ j \in J \ \mathbf{e} \in \mathcal{S}^{p}$$

$$\sum_{\mathbf{e} \in \mathcal{S}^{p}} \theta^{\mathbf{e}} \geq 1$$

$$\theta \in \{0, 1\}$$

$$\mathbf{x} \in \mathcal{R} \times \mathcal{Z}$$

$$\min g(x)$$

subject to
$$Ax \ge b$$

$$h_j(x) \geq \sum_{e \in S^p} \lambda^e \cdot v_j^e, \ j \in J \ e \in S^p$$

$$\sum_{e \in S^p} \lambda^e = 1$$

$$\lambda^{\mathsf{e}} \in R_{+}$$

$$\textbf{\textit{x}} \in \mathcal{R} \times \mathcal{Z}$$

Scenario Approach

- List possible realizations ξ^s of the multivariate random vector
- Associate a binary variable θ^s with each scenario s:

$$\theta^s = \left\{ egin{array}{ll} 0 & \mbox{if all constraints in } s \mbox{ are satisfied} \\ 1 & \mbox{otherwise} \end{array} \right.$$

MIP reformulation with cover constraint

$$\begin{aligned} & \text{min } g(x) \\ & \text{subject to } Ax \geq b \\ & h_j(x) \geq \xi_j^s \cdot (1-\theta^s), \quad j \in J, \forall s \\ & \sum_s p_s \cdot \theta^s \leq 1-p \\ & \theta^s \in \{0,1\}, \qquad \forall s \\ & x \in \mathcal{R} \times \mathcal{Z} \end{aligned}$$

with p_s = probability of scenario s

Structure

Solution framework based on combinatorial pattern theory:

$$\mathcal{P}\left(h_{j}(\mathbf{x})\geq \xi_{j}, j\in \mathbf{J}\right)\geq \mathbf{p}$$

- Binarization of probability distribution F
- Representation of combination (F, p) of probability distribution F and probability level p as partially defined Boolean function (pdBf)
- Compact extension
- Optimization-Based generation of combinatorial patterns
- Derivation of disjunctive normal form (DNF) representing sufficient conditions for probabilistic constraint to hold
 - Integrated DNF generation
 - Sequential DNF generation
 - Deterministic reformulations and solution
 - Concurrent pattern generation and solution

Numerical implementation Conclusion

p-Sufficient and p-Insufficient Realizations

Definition (*p*-Sufficient Realization)

A realization ω^k is *p*-sufficient if $\mathcal{P}(\xi \leq \omega^k) = F(\omega^k) \geq p$ and is *p*-insufficient if $F(\omega^k) < p$.

Corollary

The satisfaction of the |J| requirements

$$h_j(\mathbf{x}) \geq \omega_j^k, \ j \in \mathbf{J}$$

defined by a p-sufficient realization ω^k allows attainment of probability level p.

Partition

Partition of Ω with Boolean parameter \mathcal{I}^k

$$\mathcal{I}^k = \left\{ \begin{array}{ll} 1 & \text{if } F(\omega^k) \geq p \ \rightarrow \ p - \text{sufficient realization} \\ 0 & \text{otherwise} \end{array} \right. \rightarrow \left. \begin{array}{ll} p - \text{sufficient realization} \\ \end{array}$$

Example

	k	ω_1^k	ω_2^k	\mathcal{I}^{k}
	1	6	3	0
	2	2	3	0
Set Ω^- of	3	1	4	0
<i>p</i> -insufficient realizations	4	4	5	0
	5	3	6	0
	6	4	6	0
	8	1	9	0
Set Ω^+ of	7	6	8	1
p-sufficient realizations	9	4	9	1
	10	5	10	1

Binarization of Probability Distribution

- Introduction of binary attributes β_{ii}^k for each $\omega^k \in \Omega$
- Definition of their value with respect to cut points c_{ij}

$$eta_{ij}^k = \left\{ egin{array}{ll} 1 & ext{if } \omega_j^k \geq c_{ij} \ 0 & ext{otherwise} \end{array}
ight., i = 1, \ldots, n_j, j \in J$$

with

$$c_{i'j} < c_{ij} \implies \beta_{ij}^k \le \beta_{i'j}^k$$
 for any $i' < i, j \in J$,

and C is the set of cut points: $|C| = \sum_{i \in J} n_i$.

Each numerical realization ω^k , $k \in \Omega$ is mapped to a binary vector:

$$\beta^{k} = \left[\beta_{11}^{k}, \beta_{21}^{k}, \dots, \beta_{ij}^{k}, \dots\right]$$

Representation of (F, p) as a pdBf

Associating β^k with \mathcal{I}^k provides a pdBf representation of (F, p)

Example

$$C = \{c_{11} = 5; c_{12} = 4; c_{22} = 6; c_{32} = 10\}$$

k	β_{11}^k	eta_{12}^k	β_{22}^k	β_{32}^k	\mathcal{I}^k	
1	1	0	0	0	0	
2	0	0	0	0	0	
3	0	1	0	0	0	
4	0	1	0	0	0	Binary Image Ω_B^- of Ω^-
5	0	1	1	0	0	
6	0	1	1	0	0	
8	0	1	1	0	0	
7	1	1	1	0	1	
9	0	1	1	0	1	Binary Image Ω_B^+ of Ω^+
10	1	1	1	1	1	

Definition of Set of Cut Points

Objective: define conditions for $\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p$ to hold

Set of cut points cannot be defined arbitrarily

Example

$$C = \{c_{11} = 5; c_{12} = 4; c_{22} = 6\}$$

Necessary Conditions

- Preserves the *disjointedness* between Ω^+ and Ω^-
- Consistency of the set of cut points:
 - basic: immediate: $C = \{c_{ij} : c_{ij} = \omega_i^k, j \in J, k \in \Omega\}$
 - master: polynomial-time algorithm
 - minimal: set covering formulation

Necessary Conditions

Consistency of set of cut points is not sufficient.

Example

Consider the minimal set of cut points: $C = \{c_{11} = 4; c_{12} = 8\}.$

$$\left\{ \begin{array}{ll} \omega_1^k \geq 4 \\ \omega_2^k \geq 8 \end{array} \right. \Rightarrow \begin{array}{ll} \text{Satisfied by each} \quad \omega^k \in \Omega^+ \\ \text{Not satisfied by any } \omega^k \in \Omega^- \end{array} \right.$$

$$\mathcal{P}\left\{\begin{array}{l} 8 - x_1 - 2x_2 \ge \xi_1 \\ 8x_1 + 6x_2 \ge \xi_2 \end{array}\right\} \ge 0.7 \Leftrightarrow \left\{\begin{array}{l} 8 - x_1 - 2x_2 \ge 4 \\ 8x_1 + 6x_2 \ge 8 \end{array}\right.$$

Set
$$8 - x_1 - 2x_2 = 4$$
 and $8x_1 + 6x_2 = 8$: $\mathcal{P}(4 \ge \xi_1, 8 \ge \xi_2) = 0.5 < p$

Consistency does not guarantee *exact* representation of all the *p*-sufficient realizations:

$$\omega_j^k = \bigvee_{i=1,\dots,n_j} \beta_{ij}^k \cdot \mathbf{c}_{ij} \ , \ j \in \mathbf{J}, \omega^k \in \Omega^+$$

Sufficient Conditions

$$\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p \text{ if } P\left(h_{j}(x) \geq \xi_{j}\right) \geq p, \ j \in J$$

Definition

A sufficient-equivalent set of cut points C^E comprises a cut point c_{ij} for any value ω_j^k taken by any of the p-sufficient realizations on any of the marginals j:

$$C^E = \{c_{ij} : F_j(c_{ij}) \ge p, \ i = 1, \dots, n_j, j \in J, k \in \Omega\}$$

Allows the *exact* representation of all the *p*-sufficient realizations, and is thus consistent.

Example

$$C^E = \{\underbrace{4,5,6}_{\xi_1}; \ \underbrace{8,9,10}_{\xi_2}\}.$$

Coincides here with master set of cut points.

Extension

- Objective: Simple and compact representation of (F, p)
- Definition: f is an extension of pdBf $g(\Omega_B^+, \Omega_B^-)$ if:

$$\Omega_B^+ \subseteq \Omega_B^+(f)$$
 and $\Omega_B^- \subseteq \Omega_B^-(f)$

- Existence: Boolean extension f exists if and only if $\Omega_B^+ \cap \Omega_B^- = \emptyset$
- Description: Disjunctive normal form
 - Binary mapping of realization: $\omega^k \to \beta^k = \left[\beta^k_{11}, \dots, \beta^k_{ij}, \dots\right]$
 - Set of binary images: $\Omega_B = \Omega_B^+ \bigcup \Omega_B^-, \ \Omega_B^+ \bigcap \Omega_B^- = \emptyset$
 - Literals $\beta_{ij}, \ \bar{\beta}_{ij}$
 - Pattern: term (clause): $t = \bigwedge_{ij \in P_t} \beta_{ij} \bigwedge_{ij \in N_t} \bar{\beta}_{ij}$, $P_t \cap N_t = \emptyset$ with coverage condition
 - Term *covers* a realization ω^k if : $t(\omega^k) = 1 = \bigwedge_{ij \in P_t} \beta^k_{ij} \bigwedge_{ij \in N_t} \bar{\beta}^k_{ij}$,
 - Degree of a term: number of literals: $d = |P_t| + |N_t|$,
 - Disjunctive Normal Form: $f = \bigvee_{v \in V} t_s$.

Properties

Any Boolean extension of a consistent pdBf representing (F, p) is a:

- positive monotone,
- Horn,
- threshold

Boolean function.

Rationale for Optimization-Based Generation

• Patterns included in DNF representing (F, p) are of degree at least equal to |J|.

Recall: $\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p$

- Patterns often generated though term enumeration methods (Boros et al., 1997, 2000; Alexe, Hammer, 2006, 2007; Torvik, Triantaphyllou, 2006)
- Needs considering $\sum_{d'=1}^{d} 2^{d'} \begin{pmatrix} n \\ d' \end{pmatrix}$ terms for patterns of degree d
- Very efficient except for patterns of high degree (larger than 4) (Boros et al., 1997, 2000; Ryoo, 2006, 2008)

Optimization-Based Generation of Patterns - IP I

Consider a sufficient-equivalent set of cut points and pdBf for (F, p).

$$\begin{aligned} & \text{Subject to} & \quad z = \min \ \sum_{k \in \Omega_B^+} y^k \\ & \text{subject to} & \quad \sum_{j \in J} \sum_{i=1}^{n_j} \beta_{ij}^k u_{ij} + \sum_{e=1}^n \bar{\beta}_{ij}^k \bar{u}_{ij} + ny^k \geq d, \quad k \in \Omega_B^+ \\ & \quad \sum_{j \in J} \sum_{i=1}^{n_j} \beta_{ij}^k u_{ij} + \sum_{e=1}^n \bar{\beta}_{ij}^k \bar{u}_{ij} \leq d-1, \quad k \in \Omega_B^- \\ & \quad U_{\eta_j^k j} \geq 1 - b^k, \qquad k \in \Omega_B^+, j \in J \\ & \quad \sum_{k \in \Omega_B^+} b_k = |\Omega_B^+| - 1 \\ & \quad U_{ij} + \bar{u}_{ij} \leq 1, \qquad i = 1, \dots, n_j, j \in J \\ & \quad \sum_{j \in J} \sum_{i=1}^{n_j} (u_{ij} + \bar{u}_{ij}) = d \\ & \quad 0 \leq b^k \leq 1, \qquad k \in \Omega_B^+ \\ & \quad |J| \leq d \leq 2n \\ & \quad u_{ij}, \bar{u}_{ij} \in \{0, 1\}, \qquad i = 1, \dots, n_j, j \in J \\ & \quad y^k \in \{0, 1\}, \qquad k \in \Omega_B^+ \end{aligned}$$

Properties

Theorem (Pattern Generation - IP I)

IP I:

- (i) is always feasible;
- (ii) has an upper bound equal to $|\Omega_B^+| 1$; and
- (iii) any of its feasible solutions $(\mathbf{u}, \overline{\mathbf{y}}, \mathbf{d}, \mathbf{b})$ defines a p-sufficient pattern

$$t = \bigwedge_{\substack{\mathbf{u}_{ij} = \mathbf{1} \\ i = 1, \dots, n_j, j \in J}} \beta_{ij} \bigwedge_{\substack{\bar{\mathbf{u}}_{\bar{ij}} = 1 \\ i = 1, \dots, n_j, j \in J}} \bar{\beta}_{ij} \quad \text{of degree } d \text{ and coverage } (\left|\Omega_B^+\right| - \mathbf{z})$$

Remarks:

- Complexity: $2n + |\Omega^+|$ integer variables
- Increases with number of cut points and p-sufficient realizations
- Number of p-sufficient realizations is a decreasing function of p
- Does not need to be solved to optimality
- Optimal solution is a *p*-sufficient strong pattern (Hammer et al., 2004)

Pattern Derivation

Definition (Hammer et al., 2004)

A pattern is *prime* if the removal of any one of its literals results in the coverage of a realization of opposed "sign".

Observation:

 ω_i is positive monotone in F:

$$\mathcal{P}(\xi_j \leq \omega_j^k) \leq \mathcal{P}(\xi_j \leq \omega_j^{k'}) \text{ for } \omega_j^k \leq \omega_j^{k'}, j \in J$$

 β_{ij} is positive monotone in the Boolean extension f:

$$f(\beta_{11}, \beta_{21}, \ldots, \beta_{i-1j}, 0, \beta_{i+1j}, \ldots) \leq f(\beta_{11}, \beta_{21}, \ldots, \beta_{i-1j}, 1, \beta_{i+1j}, \ldots)$$

- \Rightarrow Prime patterns included in a DNF f representing (F, p)
 - do not include complemented literals: monotonicity property of Boolean variable (Boros et al., 2000)
 - one uncomplemented literal per component ξ_i

Optimization-Based Generation of Patterns - IP II

$$\begin{split} & IP\ II \qquad z = \min \ \sum_{k \in \Omega_B^+} y^k \\ & \text{subject to} \quad \sum_{j \in J} \sum_{i=1}^{n_j} \beta_{ij}^k u_{ij} + y^k \geq |J|, \quad k \in \Omega_B^+ \\ & \quad \sum_{j \in J} \sum_{i=1}^{n_j} \beta_{ij}^k u_{ij} \leq |J| - 1, \quad k \in \Omega_B^- \\ & \quad u_{\eta_j^k j} \geq 1 - b^k, \qquad k \in \Omega_B^+, j \in J \\ & \quad \sum_{k \in \Omega_B^+} b_k = |\Omega_B^+| - 1 \\ & \quad \sum_{i=1}^{n_j} u_{ij} = 1, \qquad j \in J \\ & \quad 0 \leq b^k \leq 1, \qquad k \in \Omega_B^+ \\ & \quad u_{ij} \in \{0,1\}, \qquad j \in J, i = 1, \dots, n_j \\ & \quad 0 \leq y^k \leq |J|, \qquad k \in \Omega_B^+ \end{split}$$

Properties

Theorem (Pattern Generation - IP II)

IP II:

- (i) is always feasible, and
- (ii) any of its feasible solutions (u, y, b) defines a p-sufficient pattern

$$t = \bigwedge_{\substack{\mathbf{u}_{ij} = 1\\ j \in J, i = 1, \dots, n_j}} \beta_{ij}$$

of degree |J|.

Comparison:

- IP I: $2n + |\Omega^+|$ integer and $|\Omega^+| + 1$ continuous variables
- IP II: n integer and $2|\Omega^+|$ continuous variables

DNF Derivation - Integrated Approach: IP III

Properties

Theorem (Disjunctive Normal Form Model)

Any feasible solution $(\mathbf{u}, \mathbf{y}, \mathbf{r}, \mathbf{b})$ of IP III defines a DNF

$$f = \bigvee_{\mathbf{y_s} = \mathbf{0}} t_{\mathbf{S}}$$

including a set of patterns $Q = \{t_s : \mathbf{y_s} = 0, \forall s\}$:

- i) covering all p-sufficient realizations: $f\left(\omega^{k}\right)=1,\;k\in\Omega_{B}^{+}$, and
- ii) defining the sufficient conditions for $\mathcal{P}\left(h_{j}(x) \geq \xi_{j}, j \in J\right) \geq p$ to hold.

Remarks:

- each t_s in f is of degree |J|;
- each t_s in f has coverage $|\Omega^+| \sum_{k \in \Omega_n^+} \mathbf{y_s^k}$;
- the optimal solution of IP III defines an irredundant DNF.

DNF Derivation - Sequential Approach

- Iterative procedure
- Ordering of p-sufficient realizations with respect to their cumulative probability
- Concept of maximum positive pattern (Hammer, Bonates, 2006)

Definition

The maximum *p*-sufficient ω^k -pattern is the pattern covering ω^k which has the largest coverage.

- Differences with integrated approach:
 - Disjunctive normal form is not necessarily minimal
 - Solution of a finite sequence of LP problems

Deterministic Reformulation I

f: DNF defining sufficient conditions for satisfiability of

$$\mathcal{P}(h_i(x) \geq \xi_i, j \in J) \geq p$$

$$egin{aligned} \mathsf{min} \ g(x) \ \mathsf{subject} \ \mathsf{to} \ & Ax \geq b \ & f(h(x)) \geq 1 \ & x \in \mathcal{R}_+ imes \mathcal{Z}_+ \end{aligned}$$

$$f(h(x)) = \bigvee_{v=1,\dots,V} t_v(h(x)) \ge 1 \iff \sum_{v=1}^V t_v(h(x)) \ge 1$$

Deterministic Reformulation II

$$f(h(x)) = 1 \Leftrightarrow \bigvee_{v=1,\ldots,V} t_v(h(x)) \geq 1 \Leftrightarrow \sum_{v=1}^V t_v(h(x)) \geq 1$$

$$t_{V} = \bigwedge_{ij \in L_{V}} \beta_{ij} : t_{V}(h(x)) = 1 \Rightarrow h_{j}(x) \geq c_{ij}, \ ij \in L_{V}$$

 $\gamma_{\rm V} = \left\{ \begin{array}{l} {\rm 0, \ if \ all \ conditions \ defined \ by \ } \it{t_{\rm V}} \ {\rm are \ satisfied} \\ {\rm 1, \ otherwise} \end{array} \right.$

$$\left\{ \begin{array}{l} \gamma_{v} + t_{v}(\textit{h}(\textit{x})) = 1, \ \textit{v} = 1, \ldots, \textit{V} \\ \sum\limits_{v=1}^{\textit{V}} \gamma_{v} \leq \textit{V} - 1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} \textit{h}_{\textit{j}}(\textit{x}) + \textit{M}\gamma_{v} \geq \textit{c}_{\textit{ij}}, \ \textit{ij} \in \textit{L}_{\textit{v}} \\ \sum\limits_{\textit{v} = 1}^{\textit{V}} \gamma_{\textit{v}} \leq \textit{V} - 1 \end{array} \right.$$

Concurrent Generation and Solution

$$\min g(x)$$
 subject to $Ax \ge b$

$$egin{aligned} \sum_{i=1}^{n_j} u_{ij} &= 1, & j \in J \ u_{\eta_j^k j} &\geq 1 - b^k, & k \in \Omega_B^+, j \in J \ \sum_{k \in \Omega_B^+} b^k &\leq |\Omega_B^+| - 1 \ h_j(x) &\geq u_{ij} \cdot c_{ij}, & i = 1, \dots, n_j, j \in J \ 0 &\leq b^k &\leq 1, & k \in \Omega_B^+ \ u_{ij} &\in \{0, 1\}, & i = 1, \dots, n_j, j \in J \ x &\in \mathcal{R}_+ imes \mathcal{Z}_+ \end{aligned}$$

Optimal solution $(\mathbf{x}^*, \mathbf{u}^*, \mathbf{b}^*)$ defines a *p*-sufficient pattern $= \bigwedge_{\mathbf{x}}$

$$\bigwedge_{\substack{\mathbf{u}_{ij}^* = \mathbf{1} \\ = 1 \dots n: i \in J}} \beta_{ij}$$

representing the *minimal* conditions for $\mathcal{P}(h_j(x) \ge \xi_j, j \in J) \ge p$ to hold.

Numerical Implementation

Stochastic cash matching (Dentcheva et al., 2004; Henrion, 2004)

$$\max \sum_{i=1}^n \left(a_{i|J|} - p_i\right) x_i$$
 subject to $\mathcal{P}(K + \sum_{i=1}^n \left(a_{ij} - p_i\right) x_i \ge \xi_j, \ j \in J) \ge p$ $x \in \mathcal{R}_+$

Data: face value, yield structure, maturity of more than 200 bonds Sources: Center for Research and Security prices (CRSP); Mergent Fixed Income Securities Database (FISD).

Generation of 32 problem instances differing along:

- number (M = 150, 200) of bonds
- length of planning horizon (i.e., dimensionality: |J| = 8, 12 of the random vector ξ)
- value (p = 0.8, 0.85, 0.9, 0.95) of enforced probability level
- number (Ω = 1000, 2000) of realizations

Numerical Results

Sequential procedure AMPL modeling, 11.1 solver for MIP

		ρ								
	0.8		0.85		0.9		0.95			
		$ \Omega $								
М	J	1000	2000	1000	2000	1000	2000	1000	2000	
150	8	305.0	369.3	145.3	239.2	68.9	94.3	14.2	20.9	
150	12	299.3	421.7	176.2	295.9	87.9	109.9	23.9	35.8	
200	8	341.9	375.9	146.3	248.9	71.9	100.3	12.2	24.9	
200	12	362.2	418.1	172.9	299.1	92.2	103.9	31.8	49.2	

Conclusions and Extensions

- Novel methodology for probabilistically constrained problems
- Derivation of combinatorial patterns and DNfs representing sufficient conditions for attainment of prescribed probability level
 - Binarization of probability distribution
 - Representation of (F, p) as pdBf
 - Extension of pdBf
 - Optimization-based derivation of patterns and DNFs
 - Deterministic reformulation
- Combinatorial pattern take into account "interactions" between components ξ_i of ξ on satisfiability of joint probabilistic constraint
- Commonalities with Logical Analysis of Data (Hammer, 1986; Crama et al., 1988; Boros et al., 1997, 2000)
- Numerical implementation
- Extensions possible to:
 - problems with random technology matrix
 - continuous probability distributions approximated by samples
 - two-stage stochastic problems.