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Integers and Bit Vectors Correspondence

n-bit vector ~x ↔ integer n(~x)

significance of bits - x1 most, xn least
⇒ n(~x) =

∑n
i=1 xi2n−i

let π : {1, . . . ,n} → {1, . . . ,n} be a permutation
then ~xπ is a vector of length n such that

xπ
i = xj , where π(j) = i

Examples

i 1 2 3
π(i) 3 2 1

x1 x2 x3 n(~x) n(~xπ)

1 1 0 6 3
0 1 1 3 6
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Interval Representation of Boolean Functions

Definition
Boolean function f on n variables is represented by k
intervals [a1,b1] < [a2,b2] < . . . < [ak ,bk ] of n-bit integers
with respect to ordering π of variables if

∀~x ∈ {0,1}n : f (~x) = 1⇔ n(xπ) ∈ ∪k
i=1[a

i ,bi ]
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Example (1)

Example
F = x1 ∨ x2x3

0 1 2 3 4 5 6 7

x

x

x

1

2

3
ordering x1, x2, x3 → interval [3,7]

0 1 2 3 4 5 6 7

x

x

x

1

2

3

ordering x3, x2, x1 → 3 intervals
([1], [3] and [5,7])
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Example (2)

Example
F = x1x2 ∨ x2x3 ∨ x1x3

Variables are symmetrical→ all orderings are equivalent.

0 1 2 3 4 5 6 7

x

x

x

1

2

3

cannot be represented by 1
interval, only by 2 ([3] and [5,7, ])
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Definition
Boolean function f is called k -interval, if it can be represented
by at most k intervals (with respect to a suitable ordering).

Introduced in [Schieber et al., 05] where minimal DNF
representations of 1-interval functions were studied.
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Recognition of positive k -interval functions

Problem:
input: positive prime DNF F representing function f ,
positive integer k
output: ordering π and intervals [a1,b1] . . . [am,bm], m ≤ k ,
representing f w.r.t. π or NO when f is not k -interval
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Recognition of Positive 1-Interval Functions

if f is 1-interval then there must exist xi such that one of
the following conditions is satisfied:

1) F contains linear term xi

=0xi =1xi

1

2) F contains xi in all terms
=0xi =1xi

0

the input DNF represents 1-interval function⇔ F [xi := 0]
(resp. F [xi := 1]) represents 1-interval function

Theorem
Positive 1-interval functions can be recognized in O(l).
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Recognition of Positive 2-Interval Functions

What happens when none of the conditions 1) and 2) is
satisfied?

=0xi =1xi

⇒ F represents 2-interval⇔ ∃ i: F [xi := 0] and F [xi := 1]
represent 1-interval functions w.r.t. the same ordering π

How to find such a variable xi?



Introduction Recognition of positive k -interval functions Conclusion

Recognition of Positive 2-Interval Functions

What happens when none of the conditions 1) and 2) is
satisfied?

=0xi =1xi

⇒ F represents 2-interval⇔ ∃ i: F [xi := 0] and F [xi := 1]
represent 1-interval functions w.r.t. the same ordering π

How to find such a variable xi?



Introduction Recognition of positive k -interval functions Conclusion

Recognition of Positive 2-Interval Functions

What happens when none of the conditions 1) and 2) is
satisfied?

=0xi =1xi

⇒ F represents 2-interval⇔ ∃ i: F [xi := 0] and F [xi := 1]
represent 1-interval functions w.r.t. the same ordering π

How to find such a variable xi?



Introduction Recognition of positive k -interval functions Conclusion

Recognition of Positive 2-Interval Functions

What happens when none of the conditions 1) and 2) is
satisfied?

=0xi =1xi

⇒ F represents 2-interval⇔ ∃ i: F [xi := 0] and F [xi := 1]
represent 1-interval functions w.r.t. the same ordering π

How to find such a variable xi?



Introduction Recognition of positive k -interval functions Conclusion

Recognition of Positive 2-Interval Functions

1 Iterate over all variables and try out.
2 Smarter choice...

Theorem
Let F be a positive prime DNF representing f which is not
1-interval, moreover none of the conditions 1) or 2) is satisfied
in F . Then it suffices to try branching on one of variables x , y
for which F has the following form.

F = xy ∨ xG ∨ yH.
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Recognition of Positive 2-Interval Functions

Algorithm has two phases:
1 same as the algorithm recognizing positive 1-interval

functions, i.e. based on conditions 1) and 2)
2 choose candidate variable for branching (it suffices to try

one) and perform synchronously the recognition algorithm
for positive 1-interval functions on both subtrees.

Theorem
Positive 2-interval functions can be recognized in O(l).
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Recognition of Positive 3-Interval Functions

Phases of algorithm:
1 Based on conditions 1) and 2)...
2 Choose candidate for branching (don’t know how...)

=0xi =1xi =0xi =1xi

3 Synchronously recognize 1-interval and 2-interval
functions in subtrees.
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Recognition of Positive 3-Interval Functions

Implementation:
For the time being all the candidates for branching have to
be tried out

First branching.
Even in the case of 2-interval function in a subtree because
it might actually be 1-interval function but there might be no
ordering suitable for both subtrees.

Theorem

Positive 3-interval functions can be recognized in O(n2l).
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Generalization to Positive k -Interval Functions

In order to have at most k intervals we can branch only
k − 1 times.
For the time being we have to try all remaining variables at
each point of branching.
On any level if every subtree satisfies one of the conditions
1) or 2) for the same variable we can proceed without
branching using such variable.
Synchronization of ordering in several subtrees costs
alltogether O(kl).

Theorem

Positive k-interval functions can be recognized in O(knk−1l).
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Summary

Open problems:
Is it possible to eliminate the iteration over all variables at
each branching point?
Is it possible to construct a polynomial (in size of input and
output) algorithm recognizing positive k -interval functions?
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