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Introduction

Problem setting

Problem setting

We are given:

a set of binary data A ∈ {0, 1}m×n

binary classes: Ω+ ⊂ {1, . . . ,m} and Ω− = {1, . . . ,m} \ Ω+

each observation i has weight w(i).

w(i) ai1 ai2 ai3 ai4 +/−
0.2374 1 0 0 1 +

1.7456 1 1 1 0 +

0.4357 0 0 0 1 +

1.4357 1 1 0 0 −
0.5127 1 1 0 1 −
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Introduction

Definitions: monomials and their coverage

Definitions

A monomial (a.k.a. a term)

pJ,C (x) =
∏
j∈J

xj

∏
c∈C

(1− xc)

where J and C are disjoint subsets of {1, . . . , n}

A monomial’s coverage

Given A ∈ {0, 1}m×n where Ai is the i th row of A

CoverA(J,C ) = {i ∈ {1, ...,m} | pJ,C (Ai ) = 1}
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Maximum Monomial Agreement (MMA) – statement of the problem

Statement of the problem

Maximum Monomial Agreement (MMA)

Given A ∈ {0, 1}m×n, w : {1, . . . ,m} → R, Ω+ ⊆ {1, . . . ,m},
Ω− = {1, . . . ,m} \ Ω+, find a monomial corresponding to J,C ⊆
{1, . . . , n}, J ∩ C = ∅ such that:

f (J,C ) =
∣∣w(Cover(J,C ) ∩ Ω+)− w(Cover(J,C ) ∩ Ω−)

∣∣
is maximized.

A monomial classifier’s accuracy is maximized by the above
objective.

It is precisely the objective of the “weak learner” subproblem
within boosting (e.g., LP-Boost) when combining monomials.



Motivation

Weighted voting classification methods:

1 combine simple classifiers hp : {0, 1}n → {−1, 0, 1} for p ∈ P
2 find a separating hyperplane g(x) = α0 +

∑
p αphp(x) in

[0, 1]|P|, e.g., maximizing the L1 margin
3 classify any x ∈ {0, 1}n based on sgn(g(x))

A boosting algorithm iteratively finds g by linearly combining
the classifiers hp computed by a “base learner” / subroutine.
Note: the weight of observation i , w(i), is a dual variable value of an LP.

x1

x2
−→ x1x2

x̄1x2
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Solution technique

Our solution approach

The MMA problem is NP-hard (Kearns, Schapire & Sellie 1994)

Solving the problem exactly using a B&B algorithm can
improve on classification performance when used with robust
boosting algorithm (Goldberg & Shan 2007)

We also solve the problem using a branch-and-bound
algorithm.

We improve the simple upper bound used in the previous
branch-and-bound algorithm (GS 2007).
We consider more sophisticated dynamic branching schemes.
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Solution technique

Branch-and-bound overview

Branch-and-bound overview

A branch-and-bound algorithm is an enumeration (search tree)
scheme whose practical efficiency depends on the ability to prune
the search space as quickly as possible. More concretely the ability
to prune depends on:

effective heuristics for branching – recursively partitioning the
search space into subproblems

the quality of bound on the objective function of descendent
subproblems

the queueing discipline of “open subproblems”
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Solution technique

Branch-and-bound for MMA

Our solution technique

We define a subproblem as a partition of the variable indices
{1, . . . , n} into (J,C ,E ,F ), where:

J - the set of variables fixed to be in the monomial
C - the set of variables fixed to be complemented in the
monomial
E - the set of variables fixed to be excluded from the
monomial
F - the set of free variables

At the root we start with all variables free - (∅, ∅, ∅, {1, . . . , n})
We branch by removing one or more variables from F , adding
each to one of J,C or E .



2× |F | branching (based on G & S)

(J,C ,E , {f1, f2, f3})

(J ∪ {f1},C ,E , {f2, f3})

(J,C ∪ {f1},E , {f2, f3})

(J ∪ {f2},C ,E ∪ {f1}, {f3})

(J,C ∪ {f2},E ∪ {f1}, {f3})

(J ∪ {f3},C ,E ∪ {f1, f2}, ∅)

(J,C ∪ {f3},E ∪ {f1, f2}, ∅)(J,C ,E ∪ {f1, f2, f3}, ∅)

Figure: Branching of subproblem (J,C ,E ,F ) into 2× |F | children. In
the previous algorithm the ordering f1, f2, f3 is lexical (i.e., it is static).
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Solution technique

Branch-and-bound for MMA

Simple upper bound (GS 2007)

ugs(J,C ) = max{w(Cover(J,C ) ∩ Ω+),w(Cover(J,C ) ∩ Ω−)}

For example:

f (J,C ) = 1

but ugs(J,C ) = 3.

may be optimistic...

Cover(J,C )
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Solution technique

Branch-and-bound for MMA

Inseparability

Definition

Two binary vectors x , y ∈ {0, 1}n are inseparable with respect to a
set E ⊆ {1, ..., n}, if, for all j ∈ {1, ..., n} \ E , one has xj = yj .

Example: If {2, 4} ⊆ E , then A1 and A2 are inseparable

A1 1 0 0 1

A2 1 1 0 0
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Branch-and-bound for MMA

Inseparability equivalence classes

E induces a partition of the observations into equivalence
classes V E

` , for ` = 1, . . . , q(E )

For given E the objective of any monomial restricted to V E
` is

(tightly) bounded by
∣∣w+

` (J,C ,E )− w−` (J,C ,E )
∣∣

where w+
` (J, C , E) is the sum of weights of positive observations in

Cover(J, C) ∩ V E
`

E = ∅, F = {f1, f2, f3, f4}
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Solution technique

Branch-and-bound for MMA

Inseparability equivalence classes

E induces a partition of the observations into equivalence
classes V E

` , for ` = 1, . . . , q(E )

For given E the objective of any monomial restricted to V E
` is

(tightly) bounded by
∣∣w+

` (J,C ,E )− w−` (J,C ,E )
∣∣

where w+
` (J, C , E) is the sum of weights of positive observations in

Cover(J, C) ∩ V E
`

E = {f1}, F = {f2, f3, f4}
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Branch-and-bound for MMA

Inseparability equivalence classes

E induces a partition of the observations into equivalence
classes V E

` , for ` = 1, . . . , q(E )

For given E the objective of any monomial restricted to V E
` is

(tightly) bounded by
∣∣w+

` (J,C ,E )− w−` (J,C ,E )
∣∣

where w+
` (J, C , E) is the sum of weights of positive observations in

Cover(J, C) ∩ V E
`

E = {f1, f2}, F = {f3, f4}
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Solution technique

Branch-and-bound for MMA

An improved upper bound

u(J,C ,E ) = max


∑q(E)

`=1

(
w+

` (J,C ,E )− w−` (J,C ,E )
)

+
,∑q(E)

`=1

(
w−` (J,C ,E )− w+

` (J,C ,E )
)

+


= ugs(J,C )−

q(E)∑
`=1

min{w+
` (J,C ,E ),w−` (J,C ,E )}

Back to our example:

f (J,C ) = 1

ugs(J,C ) = 3

u(J,C ,E ) =
(1− 1) + (2− 1) = 1
which is tight

Cover(J,C )
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Solution technique

Branch-and-bound for MMA

Branching on a k-set of variables

Branching on all of F entails a large branching factor

Given k , we find {f1, . . . , fk} ⊆ F that maximizes the
inseparability φ(J,C , ·). Recall:

u(J,C ,E ) = ugs(J,C )− φ(J,C ,E )

where

φ(J,C ,E ) =

q(E)∑
`=1

min{w+
` (J,C ,E ),w−` (J,C ,E )}

This problem itself is NP-hard

φ(J,C , ·) is supermodular

Use a reverse greedy heuristic to find {f1, . . . , fk} and then
partition into subproblems corresponding to excluding
∅, {f1}, {f1, f2}, . . . , {f1, . . . , fk}.
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Solution technique

Branch-and-bound for MMA

Three way branching (k = 1)

(J,C ,E , {f1, f2, f3})

(J ∪ {f1},C ,E , {f2, f3})

(J,C ∪ {f1},E , {f2, f3})

(J,C ,E ∪ {f1}, {f2, f3})

Figure: Branching of subproblem (J,C ,E ,F ) into three children.

When branching on a single variable:

we select the variable j that minimizes the maximum bound of
the associated children (breaking ties lexicographically).

it is less computationally intensive per search node than
branching on k-sets
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Computational results - cont’d

ugs bound lex strong branching
k = |F | k = |F | k = d|F | /2e k = 1

LP-
Dataset Boost CPU BB CPU BB CPU BB CPU BB
, # Features Iters Sec Nodes Sec Nodes Sec Nodes Sec Nodes

SPECTHRT 1-15 0.6 7791.5 0.2 21.5 0.2 22.4 0.1 50.5
n = 22 16-30 1.8 22751.1 0.4 74.6 0.4 78.5 0.3 162.9
CLEVHRT 1-15 29.7 89551.2 16.9 626.2 17.3 654.7 9.5 1638.3
n = 35 16-30 99.8 317537.9 40.7 1872.3 41.2 1941.6 23.6 4831.6
HEPATITIS 1-15 17.3 83365.6 7.2 442.5 7.3 464.7 3.2 917.1
n = 37 16-30 Q LIMIT 13.5 970.9 13.8 1021.5 7.3 2650.3
PIMA 1-15 Q LIMIT 89.2 1290.5 90.0 1323.2 66.0 4606.3
n = 33 16-30 Q LIMIT 269.9 5499.3 269.6 5582.7 224.7 20907.1
CMC 1-15 Q LIMIT 1161.0 969.3 1158.6 972.7 496.9 3647.3
n = 58 16-30 Q LIMIT LIMIT LIMIT 1738.6 19437.3
HUNGHRT 1-15 Q LIMIT LIMIT LIMIT 264.0 14169.3
n = 72 16-30 Q LIMIT LIMIT LIMIT 763.6 47657.2

Table: Runtime and node averages over the specified LP-Boost (Demiriz, Bennett and Shawe-Taylor 2002)

iterations, applying our algorithm to (binarized) UCI datasets. “Q LIMIT” indicates an iteration encountered the

500,000-node queue limit, and “LIMIT” indicates an iteration encountered the 1-hr time limit.
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Conclusions and future work

Three way branching is faster than both the previous (G&S)
algorithm and k-set branching

k-set branching seems to have the fewest search nodes,
particularly for k ≥ d|F | /2e

Extend the problem and algorithm in order to incorporate
within a new boosting formulation with a discrete information
complexity penalty (“L0 regularization”).
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Conclusion and ongoing work

Thank you!

To contact me:

Noam Goldberg
Email: ngoldberg@rutcor.rutgers.edu
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