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The function evaluation problem

Input:

a function f over the variables x1, . . . , xn

each variable has a positive cost of reading its value

an unknown assignment x1 = a1, . . . , xn = an

Goal:

Determine f (a1, . . . an)

adaptively reading the values of the variables
incurring little cost
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The function evaluation problem

f = (x and y) or (x and z)

x , y , z: binary variables

for some inputs it is possible to evaluate f without reading
all variables

Example:

(x , y , z) = (0, 1, 1)

It is enough to know the value of x

Cicalese–Milani č Threshold Functions and Game Trees



The function evaluation problem

f = (x and y) or (x and z)

x , y , z: binary variables

for some inputs it is possible to evaluate f without reading
all variables

Example:

(x , y , z) = (0, 1, 1)

It is enough to know the value of x
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Algorithms for evaluating f

• Dynamically select the next variable based on the values of
the variables read so far

• Stop when the value of f is determined
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Evaluation measure

Evasive Functions

• For any possible algorithm, all the variables must be read
in the worst case.

• f = (x and y) or (x and z)

• Some important functions are evasive (e.g. game trees,
AND/OR trees and threshold trees).

Worst case analysis cannot distinguish among the
performance of different algorithms.

Instead, we use competitive analysis (Charikar et
al. 2002)
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Cost of evaluation

f = (x and y) or (x and z)
cost(x) = 3, cost(y) = 4, cost(z) = 5

Asignment (x , y , z) Value of f Cheapest Proof Cost
(0,0,0) 0 {x} 3
(1,1,0) 1 {x,y} 3+4=7
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The competitive ratio

(x, y , z) f (x, y , z) Cost of Algorithm Ratio

Cheapest Cost

Proof

(0,0,0) 0 3 9 3
(1,0,0) 0 9 9 1
(0,1,0) 0 3 7 7/3
(0,0,1) 0 3 12 4
(1,1,0) 1 7 7 1
(1,0,1) 1 8 12 3/2
(0,1,1) 0 3 7 7/3
(1,1,1) 1 7 7 1
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Measures of algorithm’s performance

Competitive ratio of algorithm A for (f , c):

max
all assignments σ

cost of A to evaluate f on σ

cost of cheapest proof of f on σ

In this talk:
Extremal competitive ratio of A for f :

max
all assignments σ,
all cost vectors c

cost of A to evaluate f on (σ, c)

cost of cheapest proof of f on (σ, c)
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Measure of function’s complexity

Extremal competitive ratio of f :

min
all deterministic algorithms A

that evaluate f

{

extremal competitive ratio of A for f
}
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The function evaluation problem

Given:
a function f over the variables x1, x2, . . . , xn

Combinatorial Goal:

• Determine the extremal competitive ratio of f

Algorithmic Goal:
• Devise an algorithm for evaluating f that:

1. achieves the optimal (or close to optimal) extremal
competitive ratio

2. is efficient (runs in time polynomial in the size of f )

The algorithm knows the reading costs.
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Applications

Applications of the function evaluation problem:

Reliability testing / diagnosis
Telecommunications: testing connectivity of networks

Manufacturing: testing machines before shipping

Databases
Query optimization

Artificial Intelligence
Finding optimal derivation strategies in knowledge-based systems

Decision-making strategies (AND-OR trees)

Computer-aided game playing for two-player zero-sum games with

perfect information, e.g. chess (game trees)
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Related work - other models/measures

Non-uniform costs & competitive analysis
Charikar et al. [STOC 2000, JCSS 2002]

Unknown costs
Cicalese and Laber [SODA 2006]

Restricted costs (selection and sorting)
Gupta and Kumar [FOCS 2001], Kannan and Khanna [SODA 2003]

Randomized algorithms
Snir [TCS 1985], Saks and Wigderson [FOCS 1986], Laber [STACS 2004]

Stochastic models
Random input, uniform probabilities

Tarsi [JACM 1983], Boros and Ünlüyurt [AMAI 1999]
Charikar et al. [STOC 2000, JCSS 2002], Greiner et al. [AI 2005]

Random input, arbitrary probabilities
Kaplan et al. [STOC 2005]

Random costs
Angelov et al. [LATIN 2008]
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How to evaluate general functions?

Good algorithms are expected to test. . .

• cheap variables

• important variables ???

We use
a linear program that captures the impact of the variables

(C.-Laber 2008)
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The minimal proofs

f - a function over V = {x1, . . . , xn}

R - range of f

Definition
Let r ∈ R. A minimal proof for f (x) = r is a minimal set of
variables P ⊆ V such that there is an assignment σ of values to
the variables in P such that fσ is constantly equal to r .

Example: f (x1, x2, x3) = (x1 and x2) or (x1 and x3), R = {0, 1}

minimal proofs for f (x) = 1: {{x1, x2}, {x1, x3}}

minimal proofs for f (x) = 0: {{x1}, {x2, x3}}
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The Linear Program (C.-Laber 2008)

LP(f )















Minimize
∑

x∈V s(x)
s.t.
∑

x∈P s(x) ≥ 1 for every minimal proof P of f
s(x) ≥ 0 for every x ∈ V

Intuitively, s(x) measures the impact of variable x .

The feasible solutions to the LP(f ) are precisely the fractional
hitting sets of the set of minimal proofs of f .
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LP(f ): example

f (x1, x2, x3) = (x1 and x2) or (x1 and x3)

minimal proofs for f = 1: {{x1, x2}, {x1, x3}}

minimal proofs for f = 0: {{x1}, {x2, x3}}

LP(f )







































Minimize s1 + s2 + s3

s.t.
s1 + s2 ≥ 1
s1 + s3 ≥ 1

s1 ≥ 1
s2 + s3 ≥ 1

s1, s2, s3 ≥ 0

Optimal solution: s = (1, 1/2, 1/2)
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The Linear Programming Approach

LPA(f : function)

While the value of f is unknown

Select a feasible solution s() of LP(f )

Read the variable u which minimizes c(x)/s(x)
(cost/impact)

c(x) = c(x)− s(x)c(u)/s(u)

f ← restriction of f after reading u

End While
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The LPA bounds the extremal competitive ratio

The selection of solution s determines both the computational
efficiency and the performance (extremal competitive ratio) of
the algorithm.

Key Lemma (C.-Laber 2008)

Let K be a positive number. If

ObjectiveFunctionValue(s) ≤ K ,

for every selected solution s

then

ExtremalCompetitiveRatio(f ) ≤ K .
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Cross-intersecting families

A

B

• cross-intersecting: A ∈ A, B ∈ B ⇒ A ∩ B 6= ∅
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Minimal proofs and cross-intersecting families

f : S1 × · · · × Sn → S, a function over V = {x1, . . . , xn}

R - range of f

For r ∈ R, let P(r) denote the set of minimal proofs for
f (x) = r .

Then:

for every r 6= r ′, the families P(r) and P(r ′) are
cross-intersecting
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The Linear Program and cross-intersection

LP(f )















Minimize
∑

x∈V s(x)
s.t.
∑

x∈P s(x) ≥ 1 for every P ∈ P
s(x) ≥ 0 for every x ∈ V

P = ∪r∈RP(r)

union of pairwise cross-intersecting families

For every function f : S1 × · · · × Sn → S, the LP(f ) seeks a
minimal fractional hitting set of a union of pairwise
cross-intersecting families.
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Cross-intersecting lemma

Cross-Intersecting Lemma (C.-Laber 2008)

Let A and B be two non-empty cross-intersecting families of
subsets of V .
Then, there is a fractional hitting set s of A ∪ B such that

‖s‖1 =
∑

x∈V

s(x) ≤ max{|P| : P ∈ A ∪ B} .

• geometric proof

• generalizes to any number of pairwise cross-intersecting
families
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Applications of the cross-intersecting lemma

1 f : S1 × · · · × Sn → S, nonconstant:
ExtremalCompetitiveRatio(f ) ≤ PROOF (f )

(PROOF (f ) = size of the largest minimal proof of f )

2 Monotone Boolean functions:
ExtremalCompetitiveRatio(f ) = PROOF (f )

3 Game trees: ExtremalCompetitiveRatio(f ) ≤ TBA
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Game trees
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Cicalese–Milani č Threshold Functions and Game Trees



Game trees
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Game trees
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Minterms of game trees

Minterm : minimal set A ⊆ V of variables such that

value of f ≥ value of A := min value of variables in A

Minterms can prove a lower bound for the value of f .
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Maxterms of game trees

Maxterm : minimal set B ⊆ V of variables such that

value of f ≤ value of B := max value of variables in B

Maxterms can prove an upper bound for the value of f .
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Maxterms of game trees

Maxterm : minimal set B ⊆ V of variables such that

value of f ≤ value of B := max value of variables in B

Maxterms can prove an upper bound for the value of f .
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Lower bound for the extremal competitive ratio

• k(f ) = max{|A| : A minterm of f}

• l(f ) = max{|B| : B maxterm of f}

Theorem (Cicalese-Laber 2005)

Let f be a game tree with no minterms or maxterms of size 1.
Then,

ExtremalCompetitiveRatio(f ) ≥ max{k(f ), l(f )} .

Cicalese–Milani č Threshold Functions and Game Trees



Minimal proofs of game trees

To prove that the value of f is b, we need:

• a minterm of value b [proves f ≥ b]

• a maxterm of value b [proves f ≤ b]

Every minimal proof = union of a minterm and a maxterm

A - minterm

B - maxterm

x9

x4

x1

x7 x6
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A first upper bound

It follows that

PROOF (f ) = size of the largest minimal proof of f
= k(f ) + l(f )− 1.

Theorem (Cicalese-Laber 2008)

f : S1 × · · · × Sn → S, nonconstant:
ExtremalCompetitiveRatio(f ) ≤ PROOF (f )

For a game tree f ,
ExtremalCompetitiveRatio(f ) ≤ k(f ) + l(f )− 1.

Lower bound: max{k(f ), l(f )}
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Can we close the gap?

Yes:

Claim

For every restriction f ′ of f , there is a fractional hitting set s of
the set of minimal proofs of f ′ such that

‖s‖1 ≤ max{k(f ), l(f )} .

By the Key Lemma ,

ExtremalCompetitiveRatio(f ) ≤ max{k(f ), l(f )}
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Restrictions of game trees
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Restrictions of game trees
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Restrictions of game trees
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Restrictions of game trees
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Minimal proofs of a restriction of a game tree

minterm

maxterm
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Case 1: No maxterm has been fully evaluated yet
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Case 1: No maxterm has been fully evaluated yet
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Let s be (the characteristic vector of) a minimal hitting set of
the shaded sets .

‖s‖1 ≤ k(f ) ≤ max{k(f ), l(f )}
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Case 2: There is a fully evaluated maxterm
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Cicalese–Milani č Threshold Functions and Game Trees



Case 2: There is a fully evaluated maxterm
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R: the family of the minterm proofs

B: the family of the maxterm parts of the non-minterm proofs
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Case 2: There is a fully evaluated maxterm

R and B are non-empty sets

R and B are cross-intersecting

every minimal proof contains a member of R ∪ B

By the Cross-intersecting lemma , there exists a feasible
solution s to the LP(f′) such that

‖s‖1 ≤ max{|P| : P ∈ R ∪ B} ≤ max{k(f ), l(f )} .
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The extremal competitive ratio for game trees

Theorem
Let f be a game tree with no minterms or maxterms of size 1.
Then,

ExtremalCompetitiveRatio(f ) = max{k(f ), l(f )} .
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Value dependent costs

Suppose that the cost of reading a variable can depend on
the variable’s value:

c(x) =

{

50, if x = 0;
1000, if x = 1.

Theorem
Let f be a monotone Boolean function or a game tree. Then,

ExtremalCompetitiveRatio(f , r) = r · ECR(f )− r + 1 ,

where

r = max
x∈V

cmax (x)

cmin(x)
.
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LPA has a very broad applicability

LPA does not depend on the structure of f

It can be used to derive upper bounds on the extremal
competitive ratios of very different functions :

f = minimum of a list:
ExtremalCompetitiveRatio(f ) ≤ n − 1 [Cicalese-Laber 2005]

f = the sorting function: ExtremalCompetitiveRatio(f ) ≤ n − 1
[Cicalese-Laber 2008]

f : S1 × · · · × Sn → S, nonconstant:
ExtremalCompetitiveRatio(f ) ≤ PROOF (f ) [Cicalese-Laber 2008]

f = monotone Boolean function:
ExtremalCompetitiveRatio(f ) = PROOF (f ) [Cicalese-Laber 2008]

f = game tree: ExtremalCompetitiveRatio(f ) ≤ max{k(f ), l(f )}
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Summary

We have seen:

the Linear Programming Approach for the development of
competitive algorithms for the function evaluation problem,

the extremal competitive ratio for game trees ,

the more general model of value dependent costs.
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Part II

Threshold functions
and

Extended threshold tree functions
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Algorithmic issues: the state of the art

Are there efficient algorithms with optimal competitiveness?

game trees: there is a polynomial-time algorithm

monotone Boolean functions ??? OPEN QUESTION
subclasses of monotone Boolean functions:

AND/OR trees = game trees with 0-1 values
[Charikar et al. 2002]
threshold tree functions [Cicalese-Laber 2005]

This talk:
threshold functions (a quadratic algorithm )
extended threshold tree functions
(a pseudo-polynomial algorithm )
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Threshold Functions

f : {0, 1}n → {0, 1} is a threshold function if ∃w1, . . . , wn, t
integers s.t.

f (x1, . . . , xn) =

{

1 if
∑

i xiwi ≥ t
0 otherwise

Separating structure

(w1, . . . , wn; t) is a separating structure of f

We assume that 1 ≤ wi ≤ t for all i .
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Applications

Switching networks

Automatic diagnosis

Mutually exclusive mechanisms

Decision-making strategies

Neural networks

Weighted majority games
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Outline

Separating structures for f and feasible solutions for LP(f )
Quadratic γ(f )-competitive algo for threshold functions

γ(f ) = extremal competitive ratio of f

The range of separating structures of f

Extended threshold tree functions
Pseudo-polytime γ(f )-competitive algo for extended
threshold tree functions
The HLPf for studying function evaluation
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Certificates of a threshold function

f threshold function with separating structure (w1, . . . , wn; t).

X is a minterm (prime implicant) of f
∑

X

wi ≥ t and
∑

X\{j}

wi < t for every j ∈ X

X is a maxterm (prime implicate) of f
∑

V\X

wi < t and
∑

V\X∪{j}

wi ≥ t for every j ∈ X

Technical assumption

t ≤ 1
2(

∑

i wi + 1), i.e., f is dual major
then every maxterm contains a minterm
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Separating Structure and LP (f )

Lemma
Every separating structure (w1, . . . , wn; t) for f induces a
feasible solution s = (s(x1), . . . , s(xn)) for LP(f ).

s(xi ) = wi/t

X is a minterm of f
∑

i∈X

s(xi ) =
∑

i∈X

wi

t
≥ 1.

Y is a maxterm of f

∃X ⊆ Y s.t. X is a minterm ⇒
∑

i∈Y

s(xi) ≥
∑

i∈X

s(xi ) ≥ 1.
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Separating Structure and LP (f )

Lemma
Every separating structure (w1, . . . , wn; t) for f induces a
feasible solution s for LP(f ) s.t.

‖s‖1 = val(w; t) = 1/t
∑

wi .

How bad can the best separating structure be for the purpose
of the LPA?

Cicalese–Milani č Threshold Functions and Game Trees



Separating Structure and LP (f )

Lemma
Every separating structure (w1, . . . , wn; t) for f induces a
feasible solution s for LP(f ) s.t.

‖s‖1 = val(w; t) = 1/t
∑

wi .

How bad can the best separating structure be for the purpose
of the LPA?
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Separating Structure and LP (f )

Theorem
For any thr. func. f , there exists sep. str. (w; t) s.t.
val(w; t) =

∑

wi/t ≤ max{k(f ), l(f )}.

induces an optimal implementation of the LPA

Theorem

Every pair of separating structures (w; t), (w′; t ′) satisfies

max
{ ∑

wi/t
∑

w ′
i /t ′

,

∑

w ′
i /t ′

∑

wi/t

}

≤ 2
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Separating Structure optimal for the LP (f )

Theorem
For any thr. func. f , there exists sep. str. (w; t) s.t.
∑

wi/t ≤ max{k(f ), l(f )}.

Let f : (w; t) and suppose that
∑

wi/t > max{k(f ), l(f )}

Every maxterm has size l(f ) ≥ k(f )
if not

∑

V wi =
∑

P wi +
∑

V\P wi ≤ (l(f )− 1)t + t ≤ l(f )t
(contradiction)

Every pair of maxterms P1, P2 satisfies |P1 ∩ P2| = l(f )− 1
if not

∑

V wi ≤
∑

P1∩P2
wi +

∑

V\P1
wi +

∑

V\P2
wi ≤

(l(f )− 2)t + 2t = l(f )t
(contradiction)

Fix a maxterm P. Then ∀P ′ (maxterm) P ′ = P \ {x} ∪ {y}
for some x ∈ P, y 6∈ P.
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Cicalese–Milani č Threshold Functions and Game Trees



Separating Structure optimal for the LP (f )

Theorem
For any thr. func. f , there exists sep. str. (w; t) s.t.
∑

wi/t ≤ max{k(f ), l(f )}.

Let f : (w; t) and suppose that
∑

wi/t > max{k(f ), l(f )}

Every maxterm has size l(f ) ≥ k(f )
if not

∑

V wi =
∑

P wi +
∑

V\P wi ≤ (l(f )− 1)t + t ≤ l(f )t
(contradiction)

Every pair of maxterms P1, P2 satisfies |P1 ∩ P2| = l(f )− 1
if not

∑

V wi ≤
∑

P1∩P2
wi +

∑

V\P1
wi +

∑

V\P2
wi ≤

(l(f )− 2)t + 2t = l(f )t
(contradiction)

Fix a maxterm P. Then ∀P ′ (maxterm) P ′ = P \ {x} ∪ {y}
for some x ∈ P, y 6∈ P.
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y
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Theorem
For any thr. func. f , there exists sep. str. (w; t) s.t.
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wi/t > max{k(f ), l(f )

Every maxterm has size l(f ) ≥ k(f )

Every maxterms P1, P2 satisfy |P1 ∩ P2| = l(f )− 1
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x

y1

z

u

P

y2

y2 � y1

z

u

P

x

y1

z

u

P
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Separating Structure optimal for the LP (f )

Theorem
For any thr. func. f , there exists sep. str. (w; t) s.t.
∑

wi/t ≤ max{k(f ), l(f )}.

Fix a maxterm P, we have two cases

1. One variable of P is substitutable

x

y1

z

u

P

y2

y2
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Separating Structure optimal for the LP (f )

Theorem
For any thr. func. f , there exists sep. str. (w; t) s.t.
∑

wi/t ≤ max{k(f ), l(f )}.

Fix a maxterm P, we have two cases

Case 2: Only one variable outside P

x

y1

z

u

P
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Linear algorithm for the opt. Separating Structure

f : given by (w; t)

Verify if f belongs to one of the two above cases
(can be done in linear time).

If so: construct an explicit sep. str. (w′; t ′)

If not: the given sep. str. (w; t) is optimal for LP(f ).

Combined with the LPA framework:
quadratic γ(f )-competitive algorithm for threshold functions
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Cicalese–Milani č Threshold Functions and Game Trees



Linear algorithm for the opt. Separating Structure

f : given by (w; t)

Verify if f belongs to one of the two above cases
(can be done in linear time).

If so: construct an explicit sep. str. (w′; t ′)

If not: the given sep. str. (w; t) is optimal for LP(f ).

Combined with the LPA framework:
quadratic γ(f )-competitive algorithm for threshold functions
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Any separating structure guarantees 2γ(f )

Theorem

Every pair of separating structures (w; t), (w′; t ′) satisfies

max
{

val(w; t)
val(w′; t ′)

,
val(w′; t ′)
val(w; t)

}

≤ 2

τ∗(H) ≤ val(w; t) ≤ χ∗(H) ≤ χ(H) ≤ 2τ∗(H)

This bound is sharp:

(t , t ; t + 1) for t ≥ 1 all define the same f

for t = 1, we get val(w; t) = 1

val(w; t)→ 2 as t →∞

Cicalese–Milani č Threshold Functions and Game Trees



Any separating structure guarantees 2γ(f )

Theorem

Every pair of separating structures (w; t), (w′; t ′) satisfies

max
{

val(w; t)
val(w′; t ′)

,
val(w′; t ′)
val(w; t)

}

≤ 2

τ∗(H) ≤ val(w; t) ≤ χ∗(H) ≤ χ(H) ≤ 2τ∗(H)

This bound is sharp:

(t , t ; t + 1) for t ≥ 1 all define the same f

for t = 1, we get val(w; t) = 1

val(w; t)→ 2 as t →∞

Cicalese–Milani č Threshold Functions and Game Trees



Any separating structure guarantees 2γ(f )

Theorem

Every pair of separating structures (w; t), (w′; t ′) satisfies

max
{

val(w; t)
val(w′; t ′)

,
val(w′; t ′)
val(w; t)

}

≤ 2

τ∗(H) ≤ val(w; t) ≤ χ∗(H) ≤ χ(H) ≤ 2τ∗(H)

This bound is sharp:

(t , t ; t + 1) for t ≥ 1 all define the same f

for t = 1, we get val(w; t) = 1

val(w; t)→ 2 as t →∞

Cicalese–Milani č Threshold Functions and Game Trees



Any separating structure guarantees 2γ(f )
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,
val(w′; t ′)
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Extended threshold tree functions

x3

x1

x2

x8

(1, 2, 2, 3; 5)

(1, 1; 2)

x11x10

x5x4
x9

(1, 1; 2)
(1, 1; 2)

(1, 1; 1)

(3, 2, 2, 1; 6)

x7

x6

Threshold tree functions: w = (1, . . . , 1) at every node
Extended threshold tree functions: no such restriction
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Extended threshold tree functions
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Extended threshold tree functions
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11 0

1

1

10

Threshold tree functions: w = (1, . . . , 1) at every node
Extended threshold tree functions: no such restriction
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Relation to threshold functions
and threshold tree functions

This class properly contains the classes of threshold functions
and threshold tree functions:

Threshold tree functions

Extended threshold tree functions

Threshold functions

x1x2 ∨ x3x4
(2,2,3,1;5)
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Pseudo-polynomial algorithm based on LPA

LPA(f : function)

While the value of f is unknown

Select a feasible solution s() of LP(f )

Read the variable u which minimizes c(x)/s(x)
(cost/impact)

c(x) = c(x)− s(x)c(u)/s(u)

f ← restriction of f after reading u

End While
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Constructing s

Ti

ki, li, ci, di

si

g : (w1, . . . , wr; t)

T

si : the solution to the LPTi

ki , li : maximum size of a minterm (maxterm) in Ti

ci , di ≥ 1

Cicalese–Milani č Threshold Functions and Game Trees



Constructing s

Ti

ki, li, ci, di

si

g : (w1, . . . , wr; t)

T

s(x) =
zi · si(x)

δ

δ > 0: scaling factor
z: a nontrivial solution of HLPg
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Constructing s (main steps)

1. compute k(T ) and l(T ): dynamic programming,
using (w; t), the ki ’s and the the li ’s

2. compute a solution z 6= 0 to the following system HLPg:

HLPg
∑

ciki zi ≤ k(T ) ·
∑

P cizi ∀maxterm P of g,
∑

di lizi ≤ l(T ) ·
∑

P dizi ∀minterm P of g,
zi ≥ 0 ∀ i = 1, . . . , r

dynamic prog. algorithm for the separation problem
(linearly many knapsack problems)

3. compute s:

s(x) =
zi · si(x)

δ
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Generalization

The algorithm can be generalized to work for any tree function
whose node connectives are monotone Boolean functions.

G: a class of functions closed under restrictions

Suppose that all functions at the nodes belong to G.

The complexity of the algo depends on the complexity of:

Finding a cheapest minterm (maxterm) of a given g ∈ G.

Computing a restriction of a given g ∈ G.

Testing whether g ≡ 0 (g ≡ 1) for a given g ∈ G.
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The HLPf for studying function evaluation

f : a monotone Boolean function over {x1, . . . , xn}
Consider the homogeneous linear system HLPf :

HLPf
∑

zi ≤ k(f ) ·
∑

P zi ∀maxterm P of f ,
∑

zi ≤ l(f ) ·
∑

P zi ∀minterm P of f ,
zi ≥ 0 ∀ i = 1, . . . , n

always has a nontrivial solution

Corollary:

For every monotone Boolean function f :

There exists a γ(f )-competitive implementation of
the LPA.

γ(f ) = max{k(f ), l(f )}.
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Some Open Questions

Can threshold functions be optimally evaluated in linear
time?

Is the extremal competitive ratio always integer?

Find the extremal comp. ratio of general Boolean functions.

Is there a polynomial algorithm with optimal extremal
comp. ratio for evaluating monotone Boolean functions
(given by an oracle/by the list of minterms)?
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Cicalese–Milani č Threshold Functions and Game Trees



The end

THANK YOU
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