
Scalable and private media 
consumption with Popcorn

Trinabh Gupta
The University of Texas at Austin



90 
minutes/day The Godfather

give me The Godfather

database of request 
trace, movie ratings, 
etc.

User media consumption has increased …

… leading to large centralized datasets …
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… subject to risks such as server hacks, accidental disclosures, etc.





How can we build a Netflix-like system that

a) provably hides media diet,

b) has low dollar cost, and

c) is compatible with commercial media 
streaming?



Private Information Retrieval (PIR) provably 

hides requests but …

wants

The Godfather The Godfather [hidden] 

give me [hidden]

• Each request must touch the entire library. 

• There is a tension between overhead and content protection.

• PIR assumes fixed-size objects, but media sizes vary.



Its per-request dollar cost is 3.87x times 
that of a non-private baseline.

Popcorn tailors PIR for media to meet our three 
requirements. 
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Rest of this talk

• Background on PIR.

• Challenges of using PIR (in detail).

• Design (tailoring of PIR) and evaluation of Popcorn.
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Computational PIR (CPIR) from 
10,000 feet

Client

M1

M2

M3

M4

M5

01111001…....

010111000….

10101011……

11100000……

0011000.…….

• one server

• instead of XORs, expensive server-side 
cryptographic operations



Given these, how can we build a system that controls 
content and is low cost?

cheap operations (XORs)

but process entire library 

per request

CPIR

expensive operations and

process entire library per

request

ITPIR

assumes fixed-size objects assumes fixed-size objects

content can disseminate in 
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content disseminates 

in a controlled manner

Challenges of using PIR
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Popcorn composes ITPIR and CPIR to get 
desirable properties from both
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cheap operations (XORs)

but process entire library 

per request
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Challenges of using PIR



Reply = M1      M3      M4      M5

Observation:  Very similar disk I/O for each request!

Benefits of batching:

• Disk I/O transfers are amortized.

• CPU cycles are reduced as matrix multiplication algorithms 

exploit cache locality.

Popcorn batches requests to amortize the 
overhead of ITPIR
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time

client A client B client C

Straw man: Group requests that arrive 
during an epoch

epoch

client A
wait for 

server to 

form batch

start handling 

A, B, C

client A’s playback buffer   

client perceived delay = epoch + epsilon

first chunk 

of movie

Client’s view:



time

client A client B client C

Straw man: Group requests that arrive 
during an epoch

epoch start handling 

A, B, C

Small batch, small delay Large batch, large delay

Issue: Hard to get both small delay and large batch

Server’s choices:



t = times at which a client needs movie chunks

Popcorn exploits streaming to form large 
batches with small startup delay

t = 0

chunks of a movie

t =

t = 2

= time it takes 

to consume a 

single chunk

Observation: Client needs only the first chunk immediately.

t

t

t
t = 3t
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ITPIR CPIR Popcorn
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disseminate in an 
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content disseminates 

in a controlled 

manner

content disseminates 

in a controlled 

manner

cheap operations 

but process entire 

library per request

expensive operations,

process entire 

library per request

cheap operations,

process entire 

library per batch

assumes fixed-size 

objects

assumes fixed-size 
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Popcorn exploits compression to 
address fixed-size requirement

Length

Pad

• Small variations in bitrate have limited impact on user satisfaction 
[SIGCOMM 11, LANC 11, CCNC 12].

• 85% of movies close to the average size.

Length of Oavg



Outline

Background on PIR.

Design (tailoring of PIR) of Popcorn.

• Evaluation of Popcorn.

Popcorn



Experiment method
Baselines:

• Non-private system (Apache server)

• State-of-the-art CPIR [XPIR PETS16]

• State-of-the-art ITPIR [Percy++]

• ITPIR++: ITPIR extended with the straw man batching scheme

Netflix-like library: 8000 movies, 90 minutes, 4Mbps

Workload: 10K clients arrive within 90 minutes according to a 

Poisson process

Estimate per-request dollar cost using Amazon’s pricing model
• CPU: $0.0076/hour

• Disk I/O bandwidth: $0.042/Gbps-hour

• Network: $0.006/GB



System # of 

CPUs

Disk I/O 

(Gbps)

Network

(relative to 

non-private)

$ relative 

to non-

private

Non-private 0 0 1x 1x

CPIR 11.6 64 5x 265x

Popcorn

(delay 15s) 

0.74 0.23 2x 3.87x

ITPIR 3.1 64 2x 256x

ITPIR++

(delay 15s)

0.65 3 2x 14x



Popcorn is private and affordable but …

• Assumes that the ITPIR servers do not collude.

• Incurs costs that are linear in the size of the library.

• Does not support recommendations, aggregate 

view statistics.

Solution: Use prior work [Canny S&P ’02,  Toubiana et al. NDSS 

‘10]



Related work

• Improving performance of PIR. 
• Distributing work [FC13, TDSC12], cheaper crypto [PETS16,  ESORICS14, 

ISC10, TKDE13, WEWoRC07], bucketing [DBSec10, PETS10 ], batching [FC15, 

JoC04], secure co-processors [PET03, FAST13, NDSS08, IBM Systems Journal01]

• Protecting library content in ITPIR [RANDOM98, S&P07, WPES13]

• Handling variable-sized objects [CCSW14, NDSS13]

• Prior PIR implementations [Percy++, PETS16, CCSW14]

• Video-on-demand [MMCN95]



Take-away points from Popcorn

• It is possible to build a private, functional, and low-
cost media delivery system …

• … by tailoring PIR to media delivery.

• The per-request cost in Popcorn is 3.87x that of a 
non-private baseline.


