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Talk Outline


■  Overview of Jana


■  Specific directions in secure multiparty computation (MPC), order-revealing 
encryption, and differential privacy


■  Application scenarios


■  Conclusions







Private Data as a Service

■  Data as a service has proved very popular and useful.


■  Easy to use


■  Familiar interfaces


■  Fast


■  Reliable (ACID properties)


■  Privacy and security models can include encryption for data in transit, and in 
some cases for data at rest, some also allow computation on encrypted data 
(e.g., via order-revealing encryption).


■  We explore the use and advancement of state-of-the-art privacy tools and methods 
to develop a private-data-as-a-service platform with stronger, more flexible privacy.





■  Coupled with implementation and practical use cases, this lets us explore 
engineering issues and practical tradeoffs, and drive new research.




The Jana Platform for Private Data as a Service

End to end+

             Not pre-processed functions 


                                         Familiar, expressive: SQL + RDBMS

Easy to use: standard web service




Jana Capabilities

■  Functionality


■  Generous subset of SQL


■  RDBMS ACID properties


■  Privacy


■  Data-in-transit: public key cryptography


■  Data-at-rest: deterministic, random, searchable


■  Computation: MPC, or in RDBMS using deterministic & searchable encryption


■  Results: differential privacy applied (if needed) while in MPC


■  Performance


■  10Ks of records moving to 100Ks, queries in seconds to hours


■  Deployment


■  Web service with RESTful API


■  Docker appliance




Currently Implemented Subset of SQL




•  SELECT, PROTECT, JOIN, UNION, INTERSECT, EXCEPT

•  Integer, String, Boolean, Enum, Fixed-Point, Date

•  Nested query support




Underlying Primitives/Mechanisms





■  SPDZ for secure multiparty computation [DPSZ12, DKLPSS13]





■  possibility of using order-revealing encryption or other deterministic encryption 
to make some kinds of queries much faster [AKSX04, BCLO09]





■  distributed generation of geometric noise for differential privacy, similar to 
[DKMMN06]




Some Research and Integration 
Issues and Results

■  Problem: We want symmetric encryption that can be efficiently computed “inside” 

the MPC.


■  Results: MPC-friendly symmetric encryption [GRRSS16]


■  Problem: Want to better understand the privacy implications of using order-
preserving encryption.


■  Results: How (in)secure is order-revealing encryption? [DDC16]


■  Ongoing work to try to fully characterize tradeoffs and develop best-possible 
solutions.


■  Problem: The noise for differential privacy, as well as many functions we might want 
to compute make use of non-finite-field operations.


■  Goal: MPC-friendly differential privacy


■  For noise, currently using variant of [DKMMN06].




MPC-friendly symmetric 
encryption [GRRSS16]

■  Goal: design pseudo-random functions (PRFs) that are suitable for use in a secret-

sharing based MPC system. 


■  I.e., in which data is shared as elements of a finite field Fp, of large prime 
characteristic.


■  Enables efficient protocols to compute relatively complex functions such as 
integer comparison, fixed point arithmetic, and linear programming.  


■  In contrast, byte/word-oriented operations such as those in AES are hard to 
represent.


■  Results: GRRSS consider three different candidate PRFs: the Naor-Reingold PRF 
[NR97], a PRF based on the Legendre symbol [DHI03], and a specialized block 
cipher design called MiMC [AGRRT16]. No one of them dominates in all situations, 
but MiMC performed best for throughput, has lowest pre-processing requirements, 
and is best for encrypting/decrypting data into or out of the MPC.


■  Outcome for Jana:


■  We have now included MiMC in the Jana codebase.




MPC-Friendly PRFs and Modes


Take-away:	
-  Several	good	op0ons	
-  Choice	for	latency	
depends	on	number	
of	blocks	

Encryp0on	0me	



MPC-Friendly PRFs and Modes


Take-away:	
Throughput	favors	MiMC-based	PRF	and	OTR.	



Some Research and Integration 
Issues and Results

■  Problem: We want symmetric encryption that can be efficiently computed “inside” 

the MPC.


■  Results: MPC-friendly symmetric encryption [GRRSS16]


■  Problem: Want to better understand the privacy implications of using order-
preserving encryption.


■  Results: How (in)secure is order-revealing encryption? [DDC16]


■  Ongoing work to try to fully characterize tradeoffs and develop best-possible 
solutions.


■  Problem: The noise for differential privacy, as well as many functions we might want 
to compute make use of non-finite-field operations.


■  Goal: MPC-friendly differential privacy


■  For noise, currently using variant of [DKMMN06].




Order-Revealing Encryption (ORE) [AKSX’04,BCLO’09]!

Order-Preserving Encryption (OPE): A symmetric encryption !
scheme that is deterministic and strictly increasing.!

•  Order-Revealing Encryption is generalized form of OPE.  Both enable efficient 
computation of range queries on encrypted data.!

•  ORE/OPE are inherently less secure than standard encryption, subject to chosen-plaintext 
attacks.!

•   Research approach: Construct ORE schemes with best-possible security against passive 
attackers who only capture ciphertexts.!

message space! ciphertext space!
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vs.!

First Name Last Name Zip D.O.B 

6d9737 a22844 686065 5ad287 

9d8ea6 753996 48eb42 abd94c 

10eca7 b6b59c 26861e 405702 

d99ff8 a2e2a0 01c36e 0abd94 

DDC work: attacks multiple columns!

Zip 

686065 

48eb42 

26861e 

01c36e 

prior work: attacks single column!

Attacks on ORE with Correlated Columns

17 

‣ Possible to attack multiple columns even when individual columns are !
not individually amenable to attack.!

DDC16: New Security Issues with ORE 



DDC16: New Security Issues with ORE 

Attacks on ORE with Correlated Columns

Attacks on ORE with Non-Uniform Data

‣  First analysis of practical ORE when data are not uniform.!
‣  Some practical ORE constructions reveal far more information !

on real data than on random data.!

18 



DDC16: New Security Issues with ORE 

Attacks on ORE with Correlated Columns

Attacks on ORE with Non-Uniform Data

19 

Experiments on geolocation and time stamps.!



DDC16: New Security Issues with ORE 

Attacks on ORE with Correlated Columns

Attacks on ORE with Non-Uniform Data

20 

Meta-Conclusion:  Need to cryptanalyze definitions/models for !
secure-but-leaky ORE in practice.!

Experiments on geolocation and time stamps.!



Plaintexts! Ideal Leakage!
Case Study:  California Road Intersections 

Data: Latitude/longitude of 21,000 road intersections, each encoded in 27 bits.!

21 
If bounding box is known: Can guess 30% of points to within 50km!



Inferring More Bits from MSDB Leakage 

01x01010011011011xxxxxxxxxx
01x00010010100x10xxxxxxxxxx
01x0011000011001xxxxxxxxxxx
10x0011010x00111xxxxxxxxxxx
01x001010101111xxx0xxxxxxxx
10x010110001010x10xxxxxxxxx
01x0100110001x1xxxxxxxxxxxx
…

Most significant differing bit leakage on California dataset:

Guessing algorithm:
1) For each x, try replacing with 0/1!
2) Take guess that minimizes total 

pairwise distance between points.!

Visualized with “x ⟼ 0.5”:

22 



Results From Inference Algorithm 

‣  ran the attack on dataset sizes 200 and 2000.!

‣  attack guesses more than 50% of points to within 0.5km!

‣  even though explicit MSDB leakage did not reveal any point to within 400km!

23 



Order-revealing Encryption Conclusions 

1.  Correlation causes information leakage, even for ideal ORE.!

2.  Leaky ORE may be much leakier than previously thought.!

3.  We should consider other primitives and different approaches for !
database protection (and cryptanalyze them).!

24 
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Some Research and Integration 
Issues and Results


■  Problem: We want symmetric encryption that can be efficiently computed “inside” 
the MPC.


■  Results: MPC-friendly symmetric encryption [GRRSS16]


■  Problem: Want to better understand the privacy implications of using order-
preserving encryption.


■  Results: How (in)secure is order-revealing encryption? [DDC16]


■  Ongoing work to try to fully characterize tradeoffs and develop best-possible 
solutions.


■  Problem: The noise for differential privacy, as well as many functions we might want 
to compute make use of non-finite-field operations.


■  Goal: MPC-friendly differential privacy


■  For noise, currently using variant of [DKMMN06].
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Differential Privacy in SPDZ

■  Support for typical aggregates: count, sum, average


■  Computed in SPDZ in order to maintain privacy


■  We need MPC-friendly DP mechanisms.


■  We currently are using a geometric distribution to generate noise in SPDZ 
(approximating Laplace noise), similar to [DKMMN06]


■  Extended query language to support


■  SELECT … DP_COUNT(<w>, <column>) … FROM … WHERE …


■  …and DP_SUM, DP_AVERAGE too


■  Interface allows a querier to specify required accuracy.


■  Then applies as much noise (privacy) as possible to aggregate <column> 
values within <w> of the actual answer with 95% confidence.
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Privacy vs. Performance


w	

w	



© Galois, Inc. 2017


Privacy Budgeting


■  For now, the Jana implementation simply tracks how much privacy budget has 
been expended, and can return this information on request.


■  We envision support for more complex modes of operation, including discarding 
data (for privacy reasons, or other reasons but with beneficial privacy implications).





■  As far as the question of “what values of epsilon are safe”, this is application-
dependent, as well as dependent on risk tolerance of involved stakeholders. But 
developing general guidelines is likely a community effort (akin to recommending 
key sizes in cryptography).
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Differential Privacy Conclusions


■  Generating appropriately distributed noise is expensive in secret-sharing-based 
MPC, even for straightforward additive noise mechanisms.





■  More work is needed to support users to develop appropriate policies.  




© Galois, Inc. 2017


Talk Outline


■  Overview of Jana


■  Specific directions in secure multiparty computation (MPC), order-revealing 
encryption, and differential privacy


■  Application scenarios


■  Conclusions







©	2017	SRI	Interna0onal.		All	Rights	Reserved.	Confiden0al				

Privacy-preserving	Informa3on	Media3on	
for	Enterprises	(PRIME)	
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PRIME	Enterprise	Pla`orm	

Objec3ve:		Enable	informed	cross-enterprise	informa0on	sharing	that	
achieves	coordina0on	goals	while	sa0sfying	privacy	objec0ves	
	
	



©	2017	SRI	Interna0onal.		All	Rights	Reserved.	Confiden0al			

Info	Sharing	for	Coali0ons	in	the	Pacific	
US	Pacific	Fleet	(PACFLT),	US	Pacific	Command	(PACOM)	

Coali3on	Composi3on	

•  From	large	mul0na0onal	groups	to	limited	
partnerships	
–  Inter-service,	inter-agency,	interna0onal	
– NGOs,	OGOs,	corpora0ons	

•  From	close	allies	to	adversaries	
•  Rela0onships	can	change	abruptly	

Privacy	Tradeoff	

Benefits	of	Sharing	 Risks	of	Sharing	

“Informa3on	sharing	is	one	of	our	biggest	challenges”	
	-	PACOM	Science	Advisor	

Data	Characteris3cs	

•  Distributed	storage;	access	gated	by	
different	providers	

•  Large	volumes,	possibly	streaming	
• Much	unstructured	data		

– text,	imagery,	PowerPoint	
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Enterprise	Privacy	Models	

Trusted	Broker	

Within	Enterprise	

Cross	Enterprise	
•  Independent	organiza0ons	with	no/limited	trust;	
addressing	some	common	goals	

•  Ad	hoc,	federated	data	access	model	

• Trusted	partners	within	a	single	
over-arching	organiza0on;								
regula0ons	restrict	sharing	

• Fixed,	federated	data	access	model	

• Mostly	untrusted	but	with	a	common	trusted	party	
• Centralized	data	model,	with	access	controlled	by	trusted	party	
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Brandeis	Enterprise	Demo	
Humanitarian	Assistance/Disaster	Relief	(HADR)	
	

35	
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Opera0onal	Threads	

Display	con0nuously	upda0ng	AOR	info	under	control	of	
privacy	policies.		Support	basic	coordina0on	queries.	

Protect:	ship	info	(capabili0es,	tracks,	contents),	sensor	sources	

Predict	progression	of	disease	and	take	steps	to	counter	it.		

Protect:	PII,	disease	spread,	disease	characteris0cs	

Allocate	and	distribute	resources	(food,	water,	medicine)	from	
ships	in	AOR	to	areas	that	require	relief.		

Protect:	resource	availability,	ship	capabili0es,	ship	posi0ons	

Privacy-aware	
COPs	

Pandemic	

Aid	Distribu3on	
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Jana	Pandemic	Schema	&	Query	Characteris0cs	
§  Private	columns	(highlighted)	in	Jana	pandemic	schema,	require	encryp0on	&	MPC	
overhead	

§  Mapped	to	the	SELECT,	WHERE,	and	JOIN	clauses	of	the	ini0al	5	test	queries	
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Jana	Data	Inser0on	Timings	

§  Inser0on	0me	varia0ons	with	data	
schema	privacy	sejngs	

§  Solid	lines	using	base	private	schema	
§  Dashed	line	is	person	table	with	public	
name	fields	(70%	size	reduc0on)	

§  Doled	lines	using	all	public	schema	

§  Linear	insert	scalability	with	DB	size	
implies	handling	big	data	possible	

§  Constant	insert	0me/byte	implies	no	scale	
overhead	

§  Insert	varia0ons	among	tables	appear	due	to	
private	data	size	&	handling	

§  Person	table	has	largest	records	(X100),	
slowest	0mes/byte	

§  Addi0onal	inves0ga0ons	are	needed	to	
beler	understand	these	factors	
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Jana	Query	Timings	
§  5	Queries	were	tested	ini0ally,	based	on	the	pandemic	scenario	

§  Queries	0-2	are	aggrega0ons	and	use	MPC	emula0on	regardless	of	the	Jana	sejngs	
§  Queries	3	&	4	are	specific	data	requests	and	use	Jana’s	newer	SPDZ	based	MPC	for	enhanced	privacy	

§  SPDZ	off	(emulated)	is	shown	in	dashed	lines	for	comparison	

§  Again,	highly	linear	scalability	performance	implies	big	data	handling	possible	

§  Query	4	is	a	much	more	stressing	use	case		
§  Nearly	twice	as	many	joins	on	private	columns	as	the	other	queries	
§  Contains	an	inner	query	joined	with	the	outer	on	a	private	key	column	(O(N2)	opera0on)	

§  Need	to	more	carefully	consider	use	of	private	DB	keys	vs	privacy	implica0ons	
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Conclusions


■  Jana is proving a useful platform for exploring the feasibility, scalability, flexibility, 
privacy, and limits of various privacy tools and methods.


■  We will continue to explore privacy/efficiency tradeoffs while also seeking to improve 
the actual tradeoffs incurred by Jana and exploring other use cases.


■  More work is needed to fully develop the Jana vision.
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