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Overview of Jana

Specific directions in secure multiparty computation (MPC), order-revealing
encryption, and differential privacy

Application scenarios

Conclusions




Private Data as a Service

Data as a service has proved very popular and useful.

Easy to use

Familiar interfaces

Fast

Reliable (ACID properties)

Privacy and security models can include encryption for data in transit, and in
some cases for data at rest, some also allow computation on encrypted data
(e.g., via order-revealing encryption).

We explore the use and advancement of state-of-the-art privacy tools and methods
to develop a private-data-as-a-service platform with stronger, more flexible privacy.

Coupled with implementation and practical use cases, this lets us explore
engineering issues and practical tradeoffs, and drive new research.



The Jana Platform for Private Data as a Service
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Jana Capabilities

= Functionality
= Generous subset of SQL
= RDBMS ACID properties
= Privacy
= Data-in-transit: public key cryptography
= Data-at-rest: deterministic, random, searchable
= Computation: MPC, or in RDBMS using deterministic & searchable encryption
= Results: differential privacy applied (if needed) while in MPC
= Performance
=  10Ks of records moving to 100Ks, queries in seconds to hours
= Deployment
= Web service with RESTful AP

= Docker appliance



Currently Implemented Subset of SQL

e SELECT, PROTECT, JOIN, UNION, INTERSECT, EXCEPT
e |nteger, String, Boolean, Enum, Fixed-Point, Date
e Nested query support




Underlying Primitives/Mechanisms

= SPDZ for secure multiparty computation [DPSZ12, DKLPSS13]

= possibility of using order-revealing encryption or other deterministic encryption
to make some kinds of queries much faster [AKSX04, BCLOO09]

= distributed generation of geometric noise for differential privacy, similar to
[DKMMNOGB]



Some Research and Integration

Issues and Results

=  Problem: We want symmetric encryption that can be efficiently computed “inside
the MPC.

=  Results: MPC-friendly symmetric encryption [GRRSS16]

= Problem: Want to better understand the privacy implications of using order-
preserving encryption.

= Results: How (in)secure is order-revealing encryption? [DDC16]

= Ongoing work to try to fully characterize tradeoffs and develop best-possible
solutions.

=  Problem: The noise for differential privacy, as well as many functions we might want
to compute make use of non-finite-field operations.

= Goal: MPC-friendly differential privacy

= For noise, currently using variant of [DKMMNOG].



MPC-friendly symmetric

encryption [GRRSS10]

= Goal: design pseudo-random functions (PRFs) that are suitable for use in a secret-
sharing based MPC system.

= le., in which data is shared as elements of a finite field F, of large prime
characteristic.

= Enables efficient protocols to compute relatively complex functions such as
integer comparison, fixed point arithmetic, and linear programming.

= |n contrast, byte/word-oriented operations such as those in AES are hard to
represent.

= Results: GRRSS consider three different candidate PRFs: the Naor-Reingold PRF
INR97], a PRF based on the Legendre symbol [DHIO3], and a specialized block
cipher design called MiIMC [AGRRT16]. No one of them dominates in all situations,
but MIMC performed best for throughput, has lowest pre-processing requirements,
and is best for encrypting/decrypting data into or out of the MPC.

®  Qutcome for Jana:

= We have now included MiMC in the Jana codebase.



MPC-Friendly PRFs and Modes
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MPC-Friendly PRFs and Modes
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Some Research and Integration

Issues and Results

=  Problem: We want symmetric encryption that can be efficiently computed “inside
the MPC.

=  Results: MPC-friendly symmetric encryption [GRRSS16]

= Problem: Want to better understand the privacy implications of using order-
preserving encryption.

= Results: How (in)secure is order-revealing encryption? [DDC16]

= Ongoing work to try to fully characterize tradeoffs and develop best-possible
solutions.

=  Problem: The noise for differential privacy, as well as many functions we might want
to compute make use of non-finite-field operations.

= Goal: MPC-friendly differential privacy

= For noise, currently using variant of [DKMMNOG].



Order-Revealing Encryption (ORE) [AKSX'04,BCLO’09]

Order-Preserving Encryption (OPE): A symmetric encryption
scheme that is deterministic and strictly increasing.

2n
Ex(y)
2m
y / EK(X)
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0 0
message space ciphertext space

« Order-Revealing Encryption is generalized form of OPE. Both enable efficient
computation of range queries on encrypted data.

 ORE/OPE are inherently less secure than standard encryption, subject to chosen-plaintext
attacks.

» Research approach: Construct ORE schemes with best-possible security against passive
attackers who only capture ciphertexts.



DDC16: New Security Issues with ORE

Attacks on ORE with Correlated Columns

Zip

VS.

prior work: attacks single column  DDC work: attacks multiple columns

» Possible to attack multiple columns even when individual columns are

not individually amenable to attack.



DDC16: New Security Issues with ORE

Attacks on ORE with Correlated Columns

Attacks on ORE with Non-Uniform Data

» First analysis of practical ORE when data are not uniform.
» Some practical ORE constructions reveal far more information

on real data than on random data.



DDC16: New Security Issues with ORE

Attacks on ORE with Correlated Columns

Attacks on ORE with Non-Uniform Data

Experiments on geolocation and time stamps.




DDC16: New Security Issues with ORE

Attacks on ORE with Correlated Columns

Attacks on ORE with Non-Uniform Data

Experiments on geolocation and time stamps.

Meta-Conclusion: Need to cryptanalyze definitions/models for
secure-but-leaky ORE in practice.



Case Study: California Road Intersections
Plaintexts |deal Leakage

Data: Latitude/longitude of 21,000 road intersections, each encoded in 27 bits.

If bounding box is known: Can guess 30% of points to within 50km



Inferring More Bits from MSDB Leakage

Most significant differing bit leakage on California dataset:

01x0101001101101]1xxXXXXXXXX Visualized with “x — 05"
01x00010010100x]10xxxxxxxxXxX
01x001100001100] %xxxxxxXXXXXX
10x0011010x0011]1xxXXXXXXXXX
01x001010101111xxx0xxxXXXXX
10x010110001010x10xXxxXxxXXXXXXX
01x0100110001x]1xxXxXXXXXXXXXX

Guessing algorithm:
1) For each x, try replacing with 0/1
2) Take guess that minimizes total
pairwise distance between points.




Results From Inference Algorithm

» ran the attack on dataset sizes 200 and 2000.
» attack guesses more than 50% of points to within 0.5km

» even though explicit MSDB leakage did not reveal any point to within 400km
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Order-revealing Encryption Conclusions

1. Correlation causes information leakage, even for ideal ORE.
2. Leaky ORE may be much leakier than previously thought.

3. We should consider other primitives and different approaches for
database protection (and cryptanalyze them).



Some Research and Integration

Issues and Results
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Problem: We want symmetric encryption that can be efficiently computed “inside
the MPC.

= Results: MPC-friendly symmetric encryption [GRRSS16]

Problem: Want to better understand the privacy implications of using order-
preserving encryption.

= Results: How (in)secure is order-revealing encryption? [DDC16]

= Ongoing work to try to fully characterize tradeoffs and develop best-possible
solutions.

Problem: The noise for differential privacy, as well as many functions we might want
to compute make use of non-finite-field operations.

= Goal: MPC-friendly differential privacy

= For noise, currently using variant of [DKMMNOG].



Differential Privacy in SPDZ

= Support for typical aggregates: count, sum, average

=  Computed in SPDZ in order to maintain privacy
= We need MPC-friendly DP mechanisms.

= We currently are using a geometric distribution to generate noise in SPDZ
(approximating Laplace noise), similar to [DKMMNOG]

= Extended query language to support
= SELECT ... DP_COUNT(<w>, <column>) ... FROM ... WHERE ...
= ..and DP_SUM, DP_AVERAGE too
= Interface allows a querier to specify required accuracy.

= Then applies as much noise (privacy) as possible to aggregate <column>
values within <w> of the actual answer with 95% confidence.



Privacy vs. Performance

Runtime (s)
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Privacy Budgeting

= For now, the Jana implementation simply tracks how much privacy budget has
been expended, and can return this information on request.

= We envision support for more complex modes of operation, including discarding
data (for privacy reasons, or other reasons but with beneficial privacy implications).

= As far as the question of “what values of epsilon are safe”, this is application-
dependent, as well as dependent on risk tolerance of involved stakeholders. But
developing general guidelines is likely a community effort (akin to recommending
key sizes in cryptography).



Differential Privacy Conclusions

= (Generating appropriately distributed noise is expensive in secret-sharing-based
MPC, even for straightforward additive noise mechanisms.

= More work is needed to support users to develop appropriate policies.
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PRIME Enterprise Platform

Objective: Enable informed cross-enterprise information sharing that
achieves coordination goals while satisfying privacy objectives
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Info Sharing for Coalitions in the Pacific
US Pacific Fleet (PACFLT), US Pacific Command (PACOM)

“Information sharing is one of our biggest challenges”

- PACOM Science Advisor
Coalition Composition Data Characteristics
* From large multinational groups to limited * Distributed storage; access gated by
partnerships different providers
— Inter-service, inter-agency, international * Large volumes, possibly streaming

—NGOs, OGOs, corporations * Much unstructured data
* From close allies to adversaries — text, imagery, PowerPoint

* Relationships can change abruptly

Privacy Tradeoff

Benefits of Sharing Risks of Sharing

© 2017 SRl International. All Rights Reserved. Confidential SRI Inter'1atio'1a|®




Enterprise Privacy Models

Cross Enterprise
* Independent organizations with no/limited trust;
addressing some common goals
* Ad hoc, federated data access model

Within Enterprise

S —_—

* Trusted partners within a single X

_ o . . . ‘ LAND 550 i .
over-arching organization; ﬂ@ﬁv—*& o

regulations restrict sharing
* Fixed, federated data access model

Trusted Broker

* Mostly untrusted but with a common trusted party
* Centralized data model, with access controlled by trusted party
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Brandeis Enterprise Demo
Humanitarian Assistance/Disaster Relief (HADR)
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Operational Threads

Privacy-aware
COPs Display continuously updating AOR info under control of

privacy policies. Support basic coordination queries.

Protect: ship info (capabilities, tracks, contents), sensor sources

Pandemic
Predict progression of disease and take steps to counter it.
Protect: Pll, disease spread, disease characteristics
Aid Distribution Allocate and distribute resources (food, water, medicine) from
”Hl_l_l”” n ships in AOR to areas that require relief.
Il
o M Protect: resource availability, ship capabilities, ship positions

© 2017 SRl International. All Rights Reserved. Confidential SRI Internationar




Jana Pandemic Schema & Query Characteristics

= Private columns (highlighted) in Jana pandemic schema, require encryption & MPC

overhead
Table Column Type Jana bytes Pub bytes SQL bytes Priv/Pub PrivOps |Query0 Query 1 Query 2 Query 3 Query 4 Query 4
COUNT(*) COUNT(*) COUNT(*) Specific Data  [Outer Inner
community 426 42 34
community_id int 200 8 4 private equality  [JOIN1 JOIN1/JOIN3 JOIN1 JOIN1 JOIN1/JOIN3  [JOIN1/JOIN3
community_name string 10 10 10 public SELECT/GROUP1 |SELECT/GROUP1 |SELECT/GROUP1 |SELECT
latitude Lat 8 8 8 public SELECT/GROUP2 |SELECT/GROUP2 |SELECT/GROUP2
longitude Lon 8 8 8 public SELECT/GROUP3 |SELECT/GROUP3 [SELECT/GROUP3
nation_id int 200 8 4 private equality
nation 224 32 28
nation_id int 200 8 4 private equality JOIN3/JOIN4 JOIN2
nation_name string 8 8 8 public SELECT
latitude Lat 8 8 8 public
longitude Lon 8 8 8 public
person 13000 56 44
person_id int 200 8 4 private equality  [JOIN2 JOIN2 JOIN2 JOIN3 SELECT/JOIN2 > |< SELECT/JOIN2
lastname string 6000 8 8 private SELECT SELECT
firstname string 6000 8 8 private SELECT SELECT
birthdate Date 200 8 8 private order SELECT SELECT
gender string 200 8 8 private equality SELECT
residence int 200 8 4 private equality JOIN1 JOIN1 JOIN1 JOIN1 JOIN1 JOIN1
citizenship int 200 8 4 private equality JOIN3 JOIN2
person2diseaseriskfactor 208 16 8
riskfactor_id int 8 8 4 public
person_id int 200 8 4 private equality JOIN3
person2diseasestate 600 24 16
diseasestate string 200 8 4 private equality SELECT/GROUP4 |SELECT/GROUP4 |SELECT/GROUP4 |SELECT/WHERE |SELECT/WHERE | WHERE
person_id int 200 8 4 private equality JOIN2 JOIN2 JOIN2 JOIN2 JOIN2
transitiondate Date 200 8 8 private order WHERE WHERE WHERE WHERE WHERE WHERE
policyauthority 28 28 24
authority_id int 8 8 4 public JOING JOINS
authority string 20 20 20 public WHERE WHERE JOIN4/WHERE |JOIN4/WHERE
policyauthority2community 208 16 8
authority_id int 8 8 4 public JOINA JOING JOING
community_id int 200 8 4 private equality JOIN3 JOIN3 JOIN3
policyauthority2nation 208 16 8
authority_id int 8 8 4 public JOINS
nation_id int 200 8 4 private equality JOING

© 2017 SRl International. All Rights Reserved. Confidential
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Jana Data Insertion Timings

Jana Insert Timings
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Jana Query Timings

5 Queries were tested initially, based on the pandemic scenario

= Queries 0-2 are aggregations and use MPC emulation regardless of the Jana settings

= Queries 3 & 4 are specific data requests and use Jana’s newer SPDZ based MPC for enhanced privacy

= SPDZ off (emulated) is shown in dashed lines for comparison

Query 4 is a much more stressing use case

Again, highly linear scalability performance implies big data handling possible

= Nearly twice as many joins on private columns as the other queries

« Contains an inner query joined with the outer on a private key column (O(N2) operation)

Need to more carefully consider use of private DB keys vs privacy implications
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Jana is proving a useful platform for exploring the feasibility, scalability, flexibility,
privacy, and limits of various privacy tools and methods.

We will continue to explore privacy/efficiency tradeoffs while also seeking to improve
the actual tradeoffs incurred by Jana and exploring other use cases.

More work is needed to fully develop the Jana vision.
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