Formal Verification of Differentially
Private Mechanisms

Marco Gaboardi
University at Buffalo, SUNY

Goal of formal verification:
building programs that are
correct.

Why correctness matters!

\

‘, AN & '
\ .

\' 0

s,

N -&._‘

~
w
-
s

-
>
.
.

Hnigh Caphial Grows

\I\[\’v il \\“"\/\/\ YN
\

"/

T — s

Why correctness matters!

An example:
DARPA HACMS (High Assurance Cyber Military Systems)

Hack-Proof Drones Possible with
HACMS Technology

Infosec
Institute

What does ““correct’” mean!

In traditional program verification, a program is
correct if it respects the specification:

® What is computed (functional aspects)

® How it is computed (non-functional aspects).

What does correct mean for

differentially private applications!?

Specification

Privacy

Abstract!?
or
Concrete!

Desiderata: building private,
accurate, and efficient
implementations that are secure
and resilient to attacks.

Byproduct

Systems that can help with the
design of differentially private
data analysis.

Qutline

Few words on program verification,

Challenges in the verification of differential
privacy,

Verification methods developed so far,

Looking forward.

A 10 thousand ft view on program
verification...

Proofs vs Formal Proofs

P
— Verification
é ‘ Tool

Verification tools

expert providec
annotations

verification ' ' (semi)-decision procedures
(SMT solvers, ITP)

An example

Consider a simple program squaring a given number m:

WHILE Y # X DO
2 ::= 2 + X;;
Y :2:=Y + 1

END
{ 2 = m*m }

An example

A proof of correctness can be given as follows:

f X=m} ->>

£ 0 = 0*m A X
Y ::= 03

£ 0 = Y¥Y*m A X
Z ::= 0;;

WHILE Y = X DO
d Z = Y*m A

X

g 2+X = (¥+1)*m

zZ + X;

Y + 1
£ 2 = Y*m A

{§ Z = (¥Y+1)*m

X

A

Il
=
e

k

~(Y # X) } ->>

—————

A lot of techniques
to make this
approach automated

Questions that program
verification can help with

Are our algorithms bug-free!

Do implementations respect the algorithms!?
Is the system architecture bug-free?

Is the code efficient!?

Is the actual machine code correct?

Do the optimization preserve correctness!

Is the full stack attack-resistant!?

Some successful stories - |

® CompCert - a fully verified C compiler,

® Sel4, CertiKOS - formal verification of OS
kernel

® A formal proof of the Odd order theorem,

® A formal proof of Kepler conjecture.

Years of work from very specialized researchers!

Some successful stories - |l

® Automated verification for Integrated Circuit
Design.

® Automated verification for Floating point
computations,

® Automated verification of Boeing flight control -
Astree,

® Automated verification of Facebook code - Infer.

The years of work go in the design of the techniques!

Verification trade-offs

required
expertise

expressivity
granularity
of the analysis

How things can go wrong
in Differential Privacy....

The challenges of differential

privacy

(Given £.0 20, a mechanism M:db 2O is
(€,0)-differentially private iff
Vb, bz :db differing in one record and vSCO:

Pr[M(bi)e S] < exp(€) : Pr[M(b2)e S] + O

J

® Relational reasoning,
® Probabilistic reasoning,

® Quantitative reasoning

Example |:the sparse vector case

Algorithm 1 An instantiation of the SVT proposed in this paper.

Algorithm 2 SVT in Dwork and Roth 2014 [8].

Input: D,Q,A,T="T1,T5,--- ,c.
I: e1=¢€/2, p=Lap(A/er)

2: e2 =€—¢€1, count=0

3: for ecach query ¢; € Q do

4: v; = Lap (2cA/ez)

5: if qZ(D) +v; > T + P then

6: Outputa; = T

7: count = count + 1, Abort if count > c.
8: else

9: Output a; = L

Input: D,Q,A,T,c.

1: e1 =€¢/2, p=_Lap(cA/er)
2: e2=€— €1, count=0

3: for each query ¢; € Q do

4: v, = Lap (2cA/e1)

5: lqu(D)—l—l/z > T+pthen

6: Output a; = T, p = Lap (cA/e2)

7: count = count + 1, Abort if count > c.
8: else

9: Output a; = L

Algorithm 3 SVT in Roth’s 2011 Lecture Notes [15].

Algorithm 4 SVT in Lee and Clifton 2014 [13].

Input: D, Q,A,T,c.

l: e1 =¢/2, p=Lap(A/er),
2: e2=€—¢€1, count=0

3: for ecach query ¢; € Q do

4: v; = Lap (cA/e2)

5: if ¢;(D) +v; > T + p then

6: Output a; = ¢;(D) + v;

7. count = count + 1, Abort if count > c.
8: else

9: Output a; = L

Input: D, Q,A,T,c.

l: e1 =€¢/4, p=Lap(A/er)
2: e2=€¢—¢€1, count=0

3: for each query ¢; € @ do

4: v, = Lap (A/e2)

5: if g;(D) + v; > T + p then

6: Outputa; = T

7. count = count + 1, Abort if count > c.
8: else

9: Output a; = L

Algorithm 5 SVT in Stoddard et al. 2014 [18].

Algorithm 6 SVT in Chen et al. 2015 [1].

Input: D, Q,A,T.

1: e1 =¢€¢/2, p=Lap(A/er)
2: €2 =€— €1

3: for cach query ¢; € Q do

4. v =0

5: if ¢;(D) +v; > T + p then
6: Outputa; = T

7.

8: else

9: Output a; = L

Imput: D,Q, A, T="T1,T5,---.
l: e1 =¢/2, p=Lap(A/er)

2: e =€— €1

3: for each query ¢; € @ do

4. v, = Lap (A/e2)

5: if qz(D) +v; >T; + P then
6: Outputa; = T

7:

8: else

9: Output a; = L

Min Lyu, Dong Su, Ninghui Li:
Understanding the Sparse Vector Technique for Differential Privacy. PVLDB (2017)

Example 2: the rounding case

On Significarce of tke Least Significant Bits For Differential Privacy

lya Mironw

Alsiront

Wo describe & mew Lype of viloerabibty jrosest) many implessertations of dilfecertially poivate
mechanisns. In partculas, all four 2aHlicly avaiakle geocsal purpose systears for diferentially private
Ol ions are suscordible 1o onr sttt

The vulneralilily s hawed or regulurities of Boating-poist lmpaeneniatioes of the privacy. preserving
Laplazian nechinimm. Unlke its nathematical alstiaction, (he textbook sanglizg orcoedure results in ¢
pomus distribat oo over doubde-precidon sumbers that aliows sne to beeach differertinl peimcy wity Jast
2 few cpwrim intn the machasicn

Wo prowswe o mitgsting stratogy and prove thar i satidles differcntial prvey wnder some wi

w <o wailabb impleneststion of Toatig point arithoetic

1 Introduction

Theline of work om privaey of statietical databaccs otarting with ceavinal paporo by Dwork ot ol [DND, Dol

® Attack based on irregularities of floating point
implementations of the Laplace mechanism,

® A solution: snapping mechanism

® How about other mechanisms?

llya Mironov:
On significance of the least significant bits for differential privacy. ACM CCS 2012

Example 3: the floating point case

On Subnormal Floating Point and Abnormal Timing

Miare Andirysco ! Duvid Koblbrermer! Keson Mowazry,! Fargit Jlede, Surin Lener, and Hoviy Shechoun
Hepartment of Cornalor Science i Fagmerrmg
University of California San Diego
La Jolks, Califr e, USA

Abitract —We identify o teming dhans:l in the flcatieg poial
instructions of modern x86 prcoessors: (he ranning tince of
Hoaing py ot addition and mulliplisaion oslructions can sury
hy two orders of magniinds depeading oo their opersnis
We develop 2 deachmmurk measuring the tm'ng varfablilcy of
Noading podnt operations and meport v iGs nesulis, We use
Noating puist daly Gimig variabilily (0 Jonesstrate practic
cal artacks oo the security of the Firelon browser [versions
23 threngh 27) and the Fues differentinlly privots dotabase
Finally, we iniliale the study of mitigations te Foaling peinl
data timing channds with 1:bfixed:imefivedpaink, a3
new Rxed-polal, constamt-tirse meath Rbrary.

Viodern fleating podnt standsnds snd implemerialiang are
spksticated, complex, and sehoe, 8 fact that has a1 been

antee; of Web browsers. From release 23 (wasn the
recuestAnimationfrane AP wes acded), the Fircleo
hrowser hax allowed JavaScript <o mesesune des umning tirne
of SVG Alters apoliad tn Webh conent throsgh CSS Hao
Stone saowed that timing venctors anisirg frem a deta
depencenk buaach in one filker, DeMorphivloyy, vould be
exploired ¢ persoem history sniffing o revesl the coney:
of cross-ongn ilrames (49 . Ae show kst doatng pan
data uming ckarncls in the computyion of Alters [withou
any datx-dependent branches) coable similar attachs, Our
amaek applizz to Firefox versiors 23 thrm gr 27 inclidirg
the "Extended Support Release™ of Firelox 24, ‘ahich formed

® Timing attack based on x86 difference of
addition/multiplication running time difference,

® A solution:a constant time library.

Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, Hovav Shacham:
On Subnormal Floating Point and Abnormal Timing. IEEE Symposium on Security and Privacy 2015

What we have so far...

A 10 thousand ft view on program
verification

= I expert providec
annotations

verification ' ' (semi)-decision procedures
(SMT solvers, ITP)

Verification tools

® They handle well logical formulas, numerical
formulas and their combination,

® They offer limited support for probabilistic
reasoning.

Compositional Reasoning
about the Privacy Budget

Sequential Composition
Let M; be ¢;-differentially private (1 < i < k).
Then M(z) = (M (2),..., My(z)) is 35, €.

We can reason about the privacy budget,

If we have basic components for privacy we can just
focus on counting,

It requires a limited reasoning about probabilities,

Implemented in different tools, e.g.
PINQ(McSherry’10), Airavat (Roy’10), etc.

Compositional reasoning about
sensitivity

GS(f) = max |f(v) — (')

VAU
® [t allows to decompose the
analysis/construction of a DP program,
® [t requires a limited reasoning about probabilities,
® Similar reasoning as basic composition.
® |mplemented using type-checking in Fuzz (Reed&Pierce’l0),

® Recently extended to AdaptiveFuzz (Winograd-cort&co’l 7).

Reasoning about DP
via Approximate Probabilistic

Generalize pointwise-observations to other relations allowing
more general relational reasoning,

More involved reasoning about divergences,

Formal proof of the correctness of sparse vector,
Implemented in EasyCrypt and HOARe? (Barthe&al’ | 3, |5)
Recently extended to zCDP, RDP (Sato&al’ | 7)

New, fully automated version (Albarghouthi&Hsu’17)

Semi-automated DP proofs using
Randomness Assighments

A
// \ R /'/\\\
AN CAHHN
d ' N Pl \‘\

| * injective map *
producing the
same output

® Permits to build more flexible reasoning about correspondences
between the programs, and the privacy budget,

® requires few annotations and can be combined with other tools
making it almost automated,

® the proof of sparse vector only requires 2 lines of annotations,

® implemented in LightDP (Zhang&Kifer’17)

Other works

Bisimulation based methods (Tschantz&al - Xu&al)
Fuzz with distributed code (Eigner&Maffei)
Satisfiability modulo counting (Friedrikson&Jha)
Bayesian Inference (BFGGHYS)

Accuracy bounds (BGGHS)

Continuous models (Sato)
zCDP (BGHYS)

Many other systems.

Looking forward...

Abstract!?
or
Concrete!

Basic Mechanism Implementation

® We aim at verifying end-to-end a basic, realistic
mechanism (from the algorithm to the code),

® We focus on a mechanism for the local model of
differential privacy (simpler mechanisms, practically
relevant),

® We are looking at mechanisms that have good privacy-
utility tradeoff, and are efficient,

® We focus first on a machine independent approach, and
add consider more concrete models later.

Private Heavy Ritter

We focus on algorithms for the heavy hitter problem:

practically relevant and a availability of several different
algorithmes,

We are implementing the TreeHist algorithm by

Bassily&al’ | 7 which provides a good accuracy and is
efficient.

The privacy guarantee is obtained through a simple
randomized response mechanism,

It makes non trivial transformations both on the client
and server side.

Our approach

. Foundational
» Cryptography Framework Recently used
Petcher&Morrisett’ | 5 for HMAC

Formal Logic
based on coupling

200 20 2 o

C source program
h 4 ¥
- — N OpenSSL,
Verifiable C |t (Preol)ThS
language & program logic : analysis : J— —

f \ _t(.)?lg 7

VST retargetable

Coq g Separation Logic
proof assistant vy ¥ ¥ ¥

-~ ™

COMPCERT
verified C compiler
_ (fromINRIA))
- ¥ ¥ v

verified machine language program

Appel&al

Expected Outcomes

® Many months of work!

® |ncreasing the confidence on the correctness of the
mechanism implementation,

® Development of techniques for proving correct
basic mechanisms from the local model.

Thanks

