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Aggregated Personal Data … 

… is made publicly available in many forms.  
 

De-identified records  
 (e.g., medical) 

Statistics 
 (e.g., demographic) 

Predictive models 
 (e.g., advertising) 



… but privacy breaches abound 



Differential Privacy 

[Dwork, McSherry, Nissim, Smith TCC 2006, Gödel Prize 2017] 

 
The output of  an algorithm should be insensitive to 
adding or removing a record from the database.  

Think: Whether or not an 
individual is in the database  



Differential Privacy 

•  Property of  the privacy preserving computation. 
– Algorithms can’t be reverse-engineered.  

•  Composition rules help reason about privacy 
leakage across multiple releases. 
– Maximize utility under a privacy budget.  

•  Individual’s privacy risk is bounded despite prior 
knowledge about them from other sources * 



A decade later … 

•  A few important practical deployments … 

•  … but little adoption beyond that. 
– Deployments have needed teams of  experts 
– Supporting technology is not transferrable 
– Virtually no systems/software support 

OnTheMap [ICDE 2008] [CCS 2014] [Apple WWDC 2016] 



This talk 

Theory & 
Algorithms Practice Systems 

No Free Lunch [SIGMOD11] 
Pufferfish [TODS14] 
Blowfish [SIGMOD14,VLDB15] 

LODES [SIGMOD17] 
2020 Census [ongoing] 
IoT [CCS17, ongoing] 

DPBench [SIGMOD16] 
DPComp [SIGMOD16] 
Pythia [SIGMOD17] 
Ektelo [ongoing] 
Private-SQL [ongoing] 



This Talk 

•  Theory to Practice 
– Utility cost of  provable privacy on Census Bureau data 

•  Practice to Systems 
– Ektelo: An operator based framework for describing 

differentially private computations 



Part 1: Theory to Practice 

•  Can traditional algorithms for data release and 
analysis be replaced with provably private 
algorithms while ensuring little loss in utility? 

  Yes we can … on US Census Bureau Data 
 



The utility cost of  provable privacy on 
US Census Bureau data 

•  Current algorithm for data release with no provable guarantees and 
parameters used have to be kept secret 



The utility cost of  provable privacy on 
US Census Bureau data 

≈ ← ← 
US Law:  
Title 13 

Section 9 

Pufferfish 
Privacy 

 Requirements 

DP-like  
Privacy 

Definition  

?? 

Comparable or lower error than current non-private methods 

Noisy  
Employer 
Statistics 
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US Census Bureau’s OnTheMap 

Available at http://onthemap.ces.census.gov/. 

Existing LODES Data as Presented in the OnTheMap Web
Tool

Employment in Lower Manhattan Residences of Workers Employed in
Lower Manhattan

Available at http://onthemap.ces.census.gov/.
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OnTheMap 



Underlying Data: LODES 

Jobs 

Start Date 

End Date 

Worker ID 

Employer ID 

Employer 

Employer ID 

Location 

Ownership 

Industry 

Worker 

Worker ID 

Age 

Sex 

Race/Ethnicity 

Education 

Home Location 



Goal: Release Tabular Summaries 

Counting Queries 
•  Count of  jobs in NYC 
•  Count of  jobs held by workers age 30 who work 

in Boston.  

Marginal Queries 
•  Count of  jobs held by workers age 30 by work 

location (aggregated to county) 



Release of  data about employers and 
employees is regulated by …  

•  Title 13 Section 9 
 

Neither the secretary nor any officer or employee … 
… make any publication whereby the data furnished  

by any particular establishment or individual  
under this title can be identified … 



Current Interpretation 

•  The existence of  a job held by a particular individual 
must not be disclosed.  

•  The existence of  an employer business as well as its 
type (or sector) and location is not confidential.  

•  The data on the operations of  a particular business 
must be protected.  
 

No exact re-identification of  employee records … by an informed attacker.  

Can release exact numbers of  employers 

Informed attackers must have an uncertainty of  up to a  
multiplicative factor (1+�) about the workforce of  an employer 



Can we use differential privacy (DP)? 

For every output … 

O D2 D1 

Should not be able to distinguish whether O 
was generated by D1 or D2 

 
  Pr[A(D1) = O]    
  Pr[A(D2) = O]                . 

For every pair of  
Neighboring Tables 

  <  ε       (ε>0) log 



Neighboring tables for LODES? 

•  Tables that differ in … 
– one employee? 
– one employer?  
– something else?  

•  And how does DP (and its variants) compare to 
the current interpretation of  the law?  
– Who is the attacker? Is he/she informed? 
– What is secret and what is not? 



The Pufferfish Framework 

•  What is being kept secret?  
A set of  Discriminative Pairs (mutually exclusive pairs of  
secrets) 

•  Who are the adversaries? 
A set of  Data evolution scenarios (adversary priors) 

•  What is privacy guarantee?  
Adversary can’t tell apart a pair of  secrets any better by 
observing the output of  the computation.  

[TODS 14]




Pufferfish Privacy Guarantee 

Prior odds of   
s vs s’ 

Posterior odds 
of   s vs s’ 



Advantages of  Pufferfish 

•  Gives a deeper understanding of  the protections 
afforded by existing privacy definitions 
– Differential privacy is an instantiation 

•  Privacy defined more generally in terms of  
customizable secrets rather than records  

•  We can tailor the set of  discriminative pairs, and the 
adversarial scenarios to specific applications 
–  Fine grained knobs for tuning the privacy-utility tradeoff   



Customized Privacy for LODES 

•  Discriminative Secrets:  
–  (w works at E, or w works at E’ ) 
–  (w works at E, w does not work) 
–  (|E| = x, |E | = y),   for all x <y <(1+�)x 
– … 

•  Data evolution scenarios: 
– All priors where employee records are independent 

of  each other.   



Example of  a formal privacy 
requirement 

releases through composition rules. We model the requirements
based on the Pufferfish privacy framework [34, 35].
Informed Attacker: National statistical agencies are concerned
about two kinds of attackers – uninformed and informed. Unin-
formed attackers can access the output of the algorithm A, but may
not possess detailed background knowledge about specific individ-
uals and establishments in the data. Informed attackers are more
powerful. They possess specific knowledge about individual em-
ployees or employers, or statistics about those in the dataset. Ex-
amples of such attackers include a group of employees who would
like to determine a private attribute of their co-worker, or one (or
more) employer(s) attempting to learn detailed statistics about a
competing employer. Our goal is to ensure the confidentiality of
employer and employee characteristics from such attackers.

We assume the adversary knows the set of all establishments (say
E), and their public attributes (location, industry code and owner-
ship). The attacker also knows the universe of all workers U . Each
worker w 2 U has a set of private attributes A

1

. . . A
k

(like age and
sex). We add another attribute with domain E [ ? that represents
whether w works in one of the establishments in E , or not.

For each employee w, the attacker’s belief is defined as ⇡
w

, a
probability distribution over all the values in T = (E [ ?) ⇥
A

1

⇥ A
2

⇥ . . . ⇥ A
k

. ✓ =

Q
w2U

⇡
w

represents the adversary’s
belief about all employees in the universe U . That is, the adver-
sary possesses no knowledge correlating employees. We denote
by ⇥ = {✓}, the set of all possible adversarial beliefs that as-
sume no correlations between employees and between employers.
Nevertheless, ⇥ includes informed attackers who may know ex-
act information about all but one employee, and those who know
exact information about all but one employer. We note that ⇥ con-
tains very strong attackers. Algorithms that can provably protect
against such attackers while ensuring error comparable to current
SDL techniques would underscore the possibility that provable pri-
vacy could be achieved at low utility cost.

We distinguish a subset of attackers ⇥
weak

⇢ ⇥ as weak attack-
ers. Weak attackers have no prior knowledge over worker attributes
– i.e., all workers are the same in their eyes. The weak attacker may
still have the same detailed knowledge about establishments as our
general attacker. We capture a weak adversary by requiring that the
prior for each worker ⇡

w

be a product of ⇡
(1,e)

(worker indepen-
dent prior over establishments), and ⇡

(2,w)

(a uniform prior over
all worker attributes). We use these definitions to define a weaker
privacy notion.
What should we protect? We now specify which properties of the
data we need to protect against such adversaries.

1. No re-identification of individuals: We would like to ensure
that adversaries do not learn too much additional information about
any single employee in the dataset when an algorithm A operates
on the dataset D. In particular, they should not be able to determine
(i) whether or not an employee is in or out of the dataset (? versus
not), (ii) whether or not an employee works at a specific (type of)
employer (E versus E�E, where E ✓ E), and (iii) whether or not
the employee has certain characteristics (e.g., Hispanic with age
greater than 35).

We formalize this as follows. For any pair of values a, b 2 T , we
require that the ratio of the adversary’s posterior odds (after seeing
the output A(D)) that a worker record takes the value w = a vs
w = b to the adversary’s prior odds that w = a vs w = b be
bounded at a known level. That is, we want to bound the Bayes
factor: the ratio of the posterior odds to the prior odds, and this
bound is the privacy-loss budget.

DEFINITION 4.1 (EMPLOYEE PRIVACY REQUIREMENT).
For randomized algorithm A, if for some ✏ 2 (0,1), and for every

employee w 2 U , for every adversary ✓ 2 ⇥, for every a, b 2 T
such that Pr

✓

[w = a] > 0 and Pr
✓

[w = b] > 0, and for every
output ! 2 range(A):

log

✓
Pr

✓,A

[w = a|A(D) = !]

Pr
✓,A

[w = b|A(D) = !]

�
Pr

✓

[w = a]

Pr
✓

[w = b]

◆
 ✏ (3)

Then the algorithm A protects employees against informed attack-
ers at privacy-loss level ✏.

Definition 4.1 bounds the logarithm of the maximum Bayes fac-
tor an informed attacker can achieve. This implies, as a conse-
quence of the general bound on privacy loss, that an informed at-
tacker can’t learn any property of a worker record with probability
1 after seeing the output of the algorithms unless the attacker al-
ready knew that fact, as reflected in his prior odds.

2. No precise inference of establishment size: An informed
attacker should not infer the total employment of a single esta-
blishment to within a multiplicative factor of ↵. We do not require
stronger privacy of the form “presence of an establishment must not
be inferred,” since (a) the existence of an employer establishment is
considered public knowledge, (b) the data are an enumeration of all
employer establishments, and (c) whether or not an establishment
is big or small is well known. This requirement balances the legal
need for protecting the operations of a business with widespread
knowledge of approximate employment sizes of establishments.

We can formalize the employer-size privacy requirement as fol-
lows. For any establishment e, let |e| denote the random variable
representing the number of workers employed at e. We define the
requirement for both informed and weak adversaries.

DEFINITION 4.2 (EMPLOYER SIZE REQUIREMENT). Let e
be any establishment in E . A randomized algorithm A protects
establishment size against an informed attacker at privacy level
(✏,↵) if, for every informed attacker ✓ 2 ⇥, for every pair of num-
bers x, y, and for every output of the algorithm ! 2 range(A),
����log

✓
Pr

✓,A

[|e| = x|A(D) = !]

Pr
✓,A

[|e| = y|A(D) = !]

�
Pr

✓

[|e| = x]

Pr
✓

[|e| = y]

◆����  ✏ (4)

whenever x  y  d(1+↵)xe and Pr
✓

[w = x], P r
✓

[w = y] > 0.
We say that an algorithm weakly protects establishments against an
informed attacker if the condition above holds for all ✓ 2 ⇥

weak

.

As in Definition 4.1, this definition bounds the maximum Bayes
factor the informed attacker can learn within the universe of allow-
able data tables. Unlike the case of individuals, Definition 4.2 does
allow an adversary to learn about the gross size of an employer
establishment.

3. No precise inference of establishment shape: An informed
attacker cannot precisely infer the composition of a single esta-
blishment’s workforce (e.g., the fraction of males who have a bach-
elor’s degree or the fraction with Hispanic ethnicity). We call the
distribution of an establishment’s workforce based on worker char-
acteristics its shape. One can think of this requirement as protect-
ing the distribution of characteristics of the workforce, whereas the
previous requirement protected the magnitude of each character-
istic. We believe this shape requirement implements the legally
mandated confidentiality of an establishment’s operating charac-
teristics. The definition bounds the maximum Bayes factor that
the informed adversary can learn within the set of allowable inputs.

DEFINITION 4.3 (EMPLOYER SHAPE REQUIREMENT). Let e
be any establishment in E . Let eX denote the subset of employees
working at e who have values in X ⇢ A

1

⇥ . . .⇥ A
k

. A random-
ized algorithm A protects establishment shape against an informed



Customized Privacy for LODES 

•  Provides a differential privacy type privacy 
guarantee for all employees 
– Algorithm output is insensitive to addition or removal of  

one employee 

•  Appropriate privacy for establishments 
– Can learn whether an establishment is large or small, but 

not exact workforce counts.  

•  Satisfies sequential composition 



What is the utility cost? 

•  Sample constructed from 3 states in US 
– 10.9 million jobs and 527,000 establishments 

•  Q1: Marginal counts over all establishment 
characteristics 
– 33,000 counts are being released.  

•  Utility Cost:  error (new alg.)/error (current alg.) 
  



Utility Cost 
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Figure 1: Average L
1

error ratio of releasing employment count for Census place by NAICS sector (industry) by ownership marginal
compared to the current system.
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Figure 2: Spearman correlation between tested model and input noise infusion on the count of employment ranked for Census place
by NAICS sector (industry) by ownership.
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Figure 3: Average L
1

error ratio of releasing single queries of employment in the Census place by NAICS sector (industry) by
ownership by sex by education marginal, compared to the current system.

Privacy (�) 

Utility  
Cost 

Three different algorithms 



Utility Cost 

•  For �≥ 1, and �≤ 5% 
utility cost is at most a 
factor of  3.  

•  Can design a DP 
algorithm that protects 
both employer and 
employee secrets. 
 
It has uniformly high 
cost for all epsilon 
values. 
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Summary: Theory to Practice 

•  Can traditional algorithms for data release and 
analysis be replaced with provably private 
algorithms while ensuring little loss in utility? 

•  Yes we can … on US Census Bureau Data 
– Can release tabular summaries with comparable or better 

utility than current techniques!  



Takeaways 



Challenge 1: Policy to Math 

?? 



Challenge 2: Privacy for Relational Data 

•  Constraints  
–  Keys 
–  Foreign Keys 
–  Inclusion dependencies 
–  Functional 

Dependencies 

Jobs 

Start Date 

End Date 

Worker ID 

Employer ID 

Employer 

Employer ID 

Location 

Ownership 

Industry 

Worker 

Worker ID 

Age 

Sex 

Education 

•  Privacy for each entity 

•  Redefine neighbors 

Xi He 



Challenge 3: Algorithm Design 

 
… without exception ad hoc, cumbersome, and 

difficult to use – they could really only be used by 
people having highly specialized technical skills … 
 

E. F. Codd on the state of   
databases in early 1970s  



Part 2: Practice to Systems 

•  Can provably private data analysis algorithms 
with state-of-the-art utility be achieved by DP-
non-experts? 

   
 



Systems Vision 

 
Given a task specified in a high level language,  

and a privacy budget* 
 

synthesize an algorithm to complete the task  
with (near-)optimal accuracy, 

and with differential privacy guarantees.  



Systems Vision 

 
Given a relational schema, a set of  SQL queries, 

and a privacy budget* 
 

synthesize an algorithm to answer these queries 
with (near-)optimal accuracy, 

and with differential privacy guarantees.  



State of  the art 

•  Systems that answer SQL queries are far from 
optimal in terms of  utility.   
– Answer one query at a time  

•  Sophisticated algorithms that achieve near-
optimal error for specialized query types 
– Linear queries on “single” tables 
– Certain queries on graphs 



Challenges for a non-expert 

•  Need to cast problems in terms of  specialized queries.  

•  Algorithms assume special representations of  data 
–  Possibly exponential size in the input 

•  No standard implementations of  algorithms 

•  Algorithms achieving best utility can depend on the 
dataset and privacy parameters used 



System-P Vision 

Gerome  
Miklau 

Michael 
Hay 



Linear queries 

•  1-dimensional range queries: intervals  
•  Marginals / data cube queries / contingency tables: 

aggregate over excluded dimensions.  
•  k-dimensional range queries: axis-aligned rectangles  
•  Predicate counting queries: only 0 or 1 coefficients  
•  Linear counting queries: arbitrary coefficients  

linear counting queries

predicate counting queries

k-dim ranges

Queries and workloads

• 1-dimensional range queries: intervals

• Marginals / data cube queries / contingency tables: aggregate over 
excluded dimensions.

• k-dimensional range queries: axis-aligned rectangles

• Predicate counting queries: only 0 or 1 coefficients

• Linear counting queries: arbitrary coefficients

1-dim ranges marginals



Census Summary File (SF-1) 

6-22    Data Dictionary

U.S. Census Bureau, 2010 Census Summary File 1

Table 
number Table contents

Data 
dictionary 
reference 

name
Seg- 

ment
Max 
size

POPULATION SUBJECTS SUMMARIZED TO THE BLOCK LEVEL—Con. 

File 03—File Linking Fields (comma delimited). These fields link File 03 with the geographic header.

Field name

Data 
dictionary 
reference 

name
Max 
size

Data 
type

File Identification FILEID 6 A/N
State/U.S. Abbreviation (USPS) STUSAB 2 A
Characteristic Iteration CHARITER 3 A/N
Characteristic Iteration File Sequence Number CIFSN 2 A/N
Logical Record Number LOGRECNO 7 N

P3. RACE [8]
Universe: Total population
Total: P0030001 03 9

White alone P0030002 03 9
Black or African American alone P0030003 03 9
American Indian and Alaska Native alone P0030004 03 9
Asian alone P0030005 03 9
Native Hawaiian and Other Pacific Islander alone P0030006 03 9
Some Other Race alone P0030007 03 9
Two or More Races P0030008 03 9

P4. HISPANIC OR LATINO ORIGIN [3]
Universe: Total population
Total: P0040001 03 9

Not Hispanic or Latino P0040002 03 9
Hispanic or Latino P0040003 03 9

P5. HISPANIC OR LATINO ORIGIN BY RACE [17]
Universe: Total population
Total: P0050001 03 9

Not Hispanic or Latino: P0050002 03 9
White alone P0050003 03 9
Black or African American alone P0050004 03 9
American Indian and Alaska Native alone P0050005 03 9
Asian alone P0050006 03 9
Native Hawaiian and Other Pacific Islander alone P0050007 03 9
Some Other Race alone P0050008 03 9
Two or More Races P0050009 03 9

Hispanic or Latino: P0050010 03 9
White alone P0050011 03 9
Black or African American alone P0050012 03 9
American Indian and Alaska Native alone P0050013 03 9
Asian alone P0050014 03 9
Native Hawaiian and Other Pacific Islander alone P0050015 03 9
Some Other Race alone P0050016 03 9
Two or More Races P0050017 03 9

TABLE (MATRIX) SECTION—Con.

6-40    Data Dictionary

U.S. Census Bureau, 2010 Census Summary File 1

Table 
number Table contents

Data 
dictionary 
reference 

name
Seg- 

ment
Max 
size

POPULATION SUBJECTS SUMMARIZED TO THE BLOCK LEVEL—Con. 

P19. HOUSEHOLD SIZE BY HOUSEHOLD TYPE BY PRESENCE OF 
OWN CHILDREN [19]

Universe: Households
Total: P0190001 05 9

1-person household: P0190002 05 9
Male householder P0190003 05 9
Female householder P0190004 05 9

2-or-more-person household: P0190005 05 9
Family households: P0190006 05 9

Husband-wife family: P0190007 05 9
With own children under 18 years P0190008 05 9
No own children under 18 years P0190009 05 9

Other family: P0190010 05 9
Male householder, no wife present: P0190011 05 9

With own children under 18 years P0190012 05 9
No own children under 18 years P0190013 05 9

Female householder, no husband present: P0190014 05 9
With own children under 18 years P0190015 05 9
No own children under 18 years P0190016 05 9

Nonfamily households: P0190017 05 9
Male householder P0190018 05 9
Female householder P0190019 05 9

Note: A household that has at least one member of the household related to the householder 
by birth, marriage, or adoption is a “Family household.” Same-sex couple households are 
included in the family households category if there is at least one additional person related 
to the householder by birth or adoption. Same-sex couple households with no relatives of the 
householder present are tabulated in nonfamily households. Responses of “same-sex spouse” 
were edited during processing to “unmarried partner.” “Nonfamily households” consist of people 
living alone and households which do not have any members related to the householder. 

P20. HOUSEHOLDS BY PRESENCE OF PEOPLE UNDER 18 YEARS 
BY HOUSEHOLD TYPE BY AGE OF PEOPLE UNDER 
18 YEARS [34]

Universe: Households
Total:  P0200001 05 9

Households with one or more people under 18 years: P0200002 05 9
Family households: P0200003 05 9

Husband-wife family: P0200004 05 9
Under 6 years only P0200005 05 9
Under 6 years and 6 to 17 years P0200006 05 9
6 to 17 years only P0200007 05 9

Other family: P0200008 05 9
 Male householder, no wife present: P0200009 05 9

Under 6 years only P0200010 05 9
Under 6 years and 6 to 17 years P0200011 05 9
6 to 17 years only P0200012 05 9

TABLE (MATRIX) SECTION—Con.
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P26. HOUSEHOLDS BY PRESENCE OF PEOPLE 75 YEARS AND 
OVER, HOUSEHOLD SIZE, AND HOUSEHOLD TYPE [11]

Universe: Households
Total: P0260001 05 9

Households with one or more people 75 years and over: P0260002 05 9
1-person household P0260003 05 9
2-or-more-person household: P0260004 05 9

Family households P0260005 05 9
Nonfamily households P0260006 05 9

Households with no people 75 years and over: P0260007 05 9
1-person household P0260008 05 9
2-or-more-person household: P0260009 05 9

Family households P0260010 05 9
Nonfamily households P0260011 05 9

Note: A household that has at least one member of the household related to the householder 
by birth, marriage, or adoption is a “Family household.” Same-sex couple households are 
included in the family households category if there is at least one additional person related 
to the householder by birth or adoption. Same-sex couple households with no relatives of the 
householder present are tabulated in nonfamily households. Responses of “same-sex spouse” 
were edited during processing to “unmarried partner.” “Nonfamily households” consist of people 
living alone and households which do not have any members related to the householder. 

P27. HOUSEHOLDS BY PRESENCE OF NONRELATIVES [3]
Universe: Households
Total: P0270001 05 9

Households with one or more nonrelatives P0270002 05 9
Households with no nonrelatives P0270003 05 9

Note: Nonrelatives include any household member not related to the householder by birth, 
marriage, or adoption. This includes unmarried partners. Responses of “same-sex spouse” were 
edited during processing to “unmarried partner.” 

P28. HOUSEHOLD TYPE BY HOUSEHOLD SIZE [16]
Universe: Households
Total: P0280001 05 9

Family households: P0280002 05 9
2-person household P0280003 05 9
3-person household P0280004 05 9
4-person household P0280005 05 9
5-person household P0280006 05 9
6-person household P0280007 05 9
7-or-more-person household P0280008 05 9

Nonfamily households: P0280009 05 9
1-person household P0280010 05 9
2-person household P0280011 05 9
3-person household P0280012 05 9

TABLE (MATRIX) SECTION—Con.
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File 03—File Linking Fields (comma delimited). These fields link File 03 with the geographic header.

Field name

Data 
dictionary 
reference 

name
Max 
size

Data 
type

File Identification FILEID 6 A/N
State/U.S. Abbreviation (USPS) STUSAB 2 A
Characteristic Iteration CHARITER 3 A/N
Characteristic Iteration File Sequence Number CIFSN 2 A/N
Logical Record Number LOGRECNO 7 N

P3. RACE [8]
Universe: Total population
Total: P0030001 03 9

White alone P0030002 03 9
Black or African American alone P0030003 03 9
American Indian and Alaska Native alone P0030004 03 9
Asian alone P0030005 03 9
Native Hawaiian and Other Pacific Islander alone P0030006 03 9
Some Other Race alone P0030007 03 9
Two or More Races P0030008 03 9

P4. HISPANIC OR LATINO ORIGIN [3]
Universe: Total population
Total: P0040001 03 9

Not Hispanic or Latino P0040002 03 9
Hispanic or Latino P0040003 03 9

P5. HISPANIC OR LATINO ORIGIN BY RACE [17]
Universe: Total population
Total: P0050001 03 9

Not Hispanic or Latino: P0050002 03 9
White alone P0050003 03 9
Black or African American alone P0050004 03 9
American Indian and Alaska Native alone P0050005 03 9
Asian alone P0050006 03 9
Native Hawaiian and Other Pacific Islander alone P0050007 03 9
Some Other Race alone P0050008 03 9
Two or More Races P0050009 03 9

Hispanic or Latino: P0050010 03 9
White alone P0050011 03 9
Black or African American alone P0050012 03 9
American Indian and Alaska Native alone P0050013 03 9
Asian alone P0050014 03 9
Native Hawaiian and Other Pacific Islander alone P0050015 03 9
Some Other Race alone P0050016 03 9
Two or More Races P0050017 03 9

TABLE (MATRIX) SECTION—Con.

A large fraction of  SF-1 are  
linear queries on persons
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But the story is more nuanced … 



Obstacle to adoption 

•  Practical performance of  privacy algorithms is 
opaque to users. 

•  Literature has conflicting evidence on best 
algorithms 

•  Privacy non-experts default to the simplest algorithms 
like Laplace Mechanism. 



DPBench 

•  A benchmark study of  algorithms for answering 
linear counting queries in low dimensions 
– 15 published algorithms evaluated under 
– ~8,000 distinct experimental configurations 
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Key Finding: No algorithm to rule them all 

Error of  algorithm A divided 
by error of  best algorithm 
for given dataset averaged 

over 54 datasets 



Key Finding: No algorithm to rule them all 

DAWA has ~4x more error 
than an oracle that somehow 
selects the best algorithm for 

each dataset 



Visualizing the state of  the art 

Yan Chen 
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DPBench/DPComp 

•  Identifies the state-of-the art for low-
dimensional counting queries …  

•   … but, algorithm design for a new task is still a 
challenge 



Toward algorithm synthesis 
D = ProtectedDataSource(source_uri)

D = D.filter(lambda row: row.sex == 'M' 

             and row.age//10 == 3)

    .map(lambda row: row.salary)

x = D.vectorize(n=10**6)   



Wpre = PrefixMeasurement(len(x))



R = DomainReductionDawa(x, epsilon/2) 

x = x.reduce(R)

Wpre = Wpre.reduce(R)



M = GreedyHierarchyMeasurement(Wpre)     

y = x.VectorLaplace(M, epsilon/2)

x_hat = LeastSquares(M, y)



return dot_product(Wpre, x_hat)


This algorithm computes CDF  
of  salaries for males in 30s 



Toward algorithm synthesis 
D = ProtectedDataSource(source_uri)

D = D.filter(lambda row: row.sex == 'M' 

             and row.age//10 == 3)

    .map(lambda row: row.salary)

x = D.vectorize(n=10**6)   



Wpre = PrefixMeasurement(len(x))



R = DomainReductionDawa(x, epsilon/2) 

x = x.reduce(R)

Wpre = Wpre.reduce(R)



M = GreedyHierarchyMeasurement(Wpre)     

y = x.VectorLaplace(M, epsilon/2)

x_hat = LeastSquares(M, y)



return dot_product(Wpre, x_hat)


Preprocessing &  
Input creation 

DP Logic 



Algorithms to plans 
D = ProtectedDataSource(source_uri)

D = D.filter(lambda row: row.sex == 'M' 

             and row.age//10 == 3)

    .map(lambda row: row.salary)

x = D.vectorize(n=10**6)   



Wpre = PrefixMeasurement(len(x))



R = DomainReductionDawa(x, epsilon/2) 

x = x.reduce(R)

Wpre = Wpre.reduce(R)



M = GreedyHierarchyMeasurement(Wpre)     



y = x.VectorLaplace(M, epsilon/2)



x_hat = LeastSquares(M, y)



return dot_product(Wpre, x_hat)


Data transformation 

Data Reduction 

Query Selection 

Private Measurement 

Inference 



DAWA [VLDB 2014]  
D = ProtectedDataSource(source_uri)

D = D.filter(lambda row: row.sex == 'M' 

             and row.age//10 == 3)

    .map(lambda row: row.salary)

x = D.vectorize(n=10**6)   



Wpre = PrefixMeasurement(len(x))



R = DomainReductionDawa(x, epsilon/2) 

x = x.reduce(R)

Wpre = Wpre.reduce(R)



M = GreedyHierarchyMeasurement(Wpre)     



y = x.VectorLaplace(M, epsilon/2)



x_hat = LeastSquares(M, y)



return dot_product(Wpre, x_hat)


Data Reduction 

Query Selection 

Private Measurement 

Inference 



AHP [SDM 2014]  
D = ProtectedDataSource(source_uri)

D = D.filter(lambda row: row.sex == 'M' 

             and row.age//10 == 3)

    .map(lambda row: row.salary)

x = D.vectorize(n=10**6)   



Wpre = PrefixMeasurement(len(x))



R = ClusterAHP(x.VectorLaplace(Identity(len(x)), epsilon/2)) 

x = x.reduce(R)

Wpre = Wpre.reduce(R)



M = Identity(len(x))     



y = x.VectorLaplace(M, epsilon/2)



x_hat = LeastSquares(M, y)



return dot_product(Wpre, x_hat)


Data Reduction 

Query Selection 

Private Measurement 

Inference 



Operator classes and instances 

•  Private operators change 
the database, but have no 
output 

•  Private à Public 
operators release 
differentially private 
answers 

•  Public operators are 
postprocessing 



Ektelo 

•  A system for describing differentially private algorithms as plans 
composed of  vetted operator implementations 
–  Currently supports algorithms that answer sets of  linear queries 

•  Any ektelo plan satisfies differential privacy 
•  Can express many state of  the art algorithms 
•  Can create new algorithms by composing operator 

implementations 
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DP Algorithms in Ektelo 

DPBench  
Algorithms 

New 
Algorithms 



�ktelo 

•  Code reuse 
– Unified 18 implementations of  the Laplace mechanism 

in DPBench algorithms 

•  Improved operator implementations 
–  10x runtime improvement by using a general purpose 

inference method 

•  Plan rewrite rules 
–  5x runtime improvement and 3x accuracy improvement 

•  New algorithms by composing operators 
–  10x accuracy improvement over the state-of-the-art 



Summary 

•  Goal: Empower non-experts to analyze sensitive data 
with provably private algorithms while ensuring little 
loss in utility. 

•  Needs a shift from theory to systems oriented research 

•  Number of  interesting theoretical and systems research 
challenges in the context of  relational databases yet to 
be solved to make DP practical. 
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