
Entropy-Compressed Indexes for
Multidimensional Pattern Matching

Roberto Grossi
University of Pisa, Italy

Ankur Gupta
Duke University, USA

Jeffrey Scott Vitter
Purdue University, USA

Abstract

In this talk, we will discuss the challenges involved in developing a multidimensional gener-
alizations of compressed text indexing structures. These structures depend on some notion
of Burrows-Wheeler transform (BWT) for multiple dimensions, though naive generaliza-
tions do not enable multidimensional pattern matching. We study the 2D case to possibly
highlight combinatorial properties that do not emerge in the 1D case. We also present
related work in 2D pattern matching and indexing.

Introduction

Suffix arrays and suffix trees are ubiquitous data structures at the heart of several text and
string algorithms. They are used in a wide variety of applications, including pattern match-
ing, text and information retrieval, Web searching, and sequence analysis in computational
biology [14]. Compressed suffix arrays [13, 18, 19] and opportunistic FM-indexes [7, 8] rep-
resent new trends in the design of advanced indexes for full-text searching of documents,
in that they support the functionalities of suffix arrays and suffix trees, which are more
powerful than classical inverted files, yet they also overcome the aforementioned space lim-
itations by exploiting, in a novel way, the notion of text compressibility and the techniques
developed for succinct data structures and bounded-universe dictionaries.

Grossi and Vitter [13] developed the compressed suffix array using 2n log |Σ| bits in the
worst case with o(m) searching time. Sadakane [18, 19] related the space bound to the
order-0 empirical entropy H0. Ferragina and Manzini devised the FM-index [7, 8], which
is based on the Burrows-Wheeler transform (BWT) and is the first to encode the index
size with respect to the hth-order empirical entropy Hh of the text. Navarro [17] recently
developed an index requiring 4nHh + o(n) bits, and boasts fast search. Grossi, Gupta, and
Vitter [11] exploited the higher-order entropy Hh of the text to represent a compressed
suffix array in just nHh + O(n log log n/ log|Σ| n) bits. The index is optimal in space, apart
from lower-order terms, achieving asymptotically the empirical entropy of the text (with a
multiplicative constant 1). These data structures also have practical significance, as detailed
in [12].
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An interesting extension, with practical applications related to image matching, is to
develop a data structure that achieves similar space bounds as the 1-D case and the same
time bounds as known multidimensional data structures. Multidimensional data present a
new challenge when trying to capture entropy, as now the critical notion of spatial informa-
tion also enters into play. (In a strict sense, this information was always present, but we can
anticipate more dependence upon spatially linked data.) Stronger notions of compression
are applicable, yet the searches are more complicated. Achieving both, is again, a challenge.

Multidimensional Matching

We define a text matrix T (d) as a hypercube in d dimensions with length n, where each
symbol is drawn from the alphabet Σ = {0, 1, . . . , σ}. For example, T (2) represents an n×n
text matrix, and T (1) = T simply represents a text document with n symbols.

Handling high-order entropy (and other entropy notions) for multidimensional data in
a practical way is difficult. We generalize the notion of hth order entropy as follows. For a

given text T (d), we define H
(d) ash

H
(d) = −Prob[y, x] · log Prob[y|x],h

x∈A(d) y∈Σ

where A(d) is a d-dimensional text matrix with length h.
A common method used to treat data more contextually (and thus, consider spatial

information explicitly) is to linearize the data. Linearization is the task of performing
somewhat of a “map” to the 1-D case (so that the data is again laid out as we are accustomed
to). One technique is described in [15, 16]. Linearization is primarily performed to meet
the constraints put forth by Giancarlo [9, 10] in order to support pattern matching in 2-D.
(These constraints are readily generalized to multidimensions.)

One major goal of ours in multidimensional matching is to improve the space require-
ment, without affecting the search times already achieved in literature. Not considering
space-efficient solutions (which are absent from current literature), the 2-D pattern match-
ing problem is widely studied by Amir, Benson, Farach, and other researchers [2, 4, 6, 5, 3].
In particular, Amir and Benson [1] give compressed matching algorithms for 2-dimensional
cases; however, their pattern matching is not indexing and it needs the scan over entire
compressed text.

Suffix arrays and trees have been generalized to multiple dimensions, and a great deal of
literature is available that describes various incarnations of these data structures [15, 16],
but the vast majority of them discuss just the construction time of these powerful structures.
Little work has been done on space-efficient versions of these structures, nor has any real
emphasis been given to achieving optimal performance. The hurdles are far more basic than
that.

The primary difficulty stems from the fact that there is no clear multidimensional ana-
logue for the Burrows-Wheeler transform (BWT) that still allows for multidimensional
pattern matching. The BWT is critical to achieving high-order entropy in one dimen-
sion [13, 7, 8, 11, 12]; there, each suffix of the text is sorted and can be indexed using a
variety of tricks [7, 8, 11]. Even with just two dimensions, the problem becomes difficult to
solve.

In order to support multidimensional pattern matching, the data should be considered
from a localized view of the data, namely in terms of hypercubes (which in 1-D is simply
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a contiguous sequence of symbols) starting at each position of the text. However, a BWT
cannot be formed explicitly upon such a view, as any such localized view violates the critical
invariant that suffixes must overlap perfectly. Nevertheless, some basic notions have been
explored [9, 10, 15, 16] as a first step in tackling these limitations.

Goals of Study

We hope to make major inroads beyond [15, 16] by developing the crucial notion of a
multidimensional BWT. We study the 2D case to highlight combinatorial properties that
do not appear in the 1D case, as a first step towards developing a general multidimensional
framework. In particular, we are considering a series of novel transformations of the data
that simultaneously allow fast access to the data, ease of compression, and do not violate the
various constraints proposed by [10]. We then hope to apply it to build a multidimensional
suffix array while still retaining the best-known performance bounds (both theoretically
and in practice). In addition, much of the literature only discusses extensions to 2-D. We
hope to develop data structures that operate for any dimension d and address these two
problems:

1. Is there a multidimensional analogue to the Burrows-Wheeler transform captures spa-
tial information and still allows multidimensional pattern matching?

2. Is it possible to achieve a multidimensional suffix array that operates on d-dimensional
data in just ndHh + o(nd) bits with O(polylognd) time?
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