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Abstract

This paper analyzes simultaneous ascending auctions of two different items, viewed

as complements by multi-item bidders. The finding is that such auctions overly con-

centrate the goods to a multi-item bidder and never overly diffuse them to single-item

bidders. The main reason is that some bidders strictly want to jump-bid and jump-

bidding allows the game to mimic a package auction, where single-item bidders cannot

fully cooperate among themselves to bid against multi-item bidders. The second reason

is that over-concentration causes resale and there is an equilibrium where a multi-item

bidder becomes the reseller and chooses to under-sell the goods.
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1 Introduction

Simultaneous ascending auctions of heterogeneous items have caught much attention from

researchers ever since the United States government, influenced by economists, started using

these auctions to allocate radio frequencies in early 1990s. Even before that major applica-

tion, economists had taken simultaneous ascending auctions as natural conceptual constructs

to understand decentralized markets. Indeed, when there is no central coordination on the

sales of multiple goods separately owned by different entities, the efficient Vickrey-Clarke-

Groves mechanisms are unlikely to be used, and it is natural to assume that separate initial

owners sell their goods separately. To capture the interactions among different sectors of an

economy without artificially ranking one sector over another, it is natural to assume that

these separate auctions start simultaneously. The open-outcry ascending-bid feature of these

auctions provides a transparent setup to understand the process of price formation.

Researchers have found that simultaneous ascending auctions can achieve efficient out-

comes if the items on sale are mutual substitutes (Gul and Stacchetti [8] and Milgrom [14]).

However, when the items may be complements, these auctions are not found to achieve

efficiency (Gul and Stacchetti [9] and Milgrom [14]), although efficiency can be achieved

by a centralized bidding process (Ausubel [2] and Bikhchandani, de Vries, Schummer and

Vohra [5]). To capture the decentralized nature of competitive markets, we need a theory

of simultaneous ascending auctions of possibly complementary goods without central coor-

dination. Although these auctions are already known to be probably inefficient, researchers

have not found a pattern of the inefficiency. The hurdle is that inefficiency may take various

forms, all parameter-dependent, so it is difficult to make predictions. These auctions are

known to suffer an exposure problem: a bidder may have bought an item at a price above

its standalone value and fail to acquire its complements (e.g., Bykowsky, Cull, and Led-

yard [6], and Milgrom [14]). Worried by this problem, a bidder who considers multiple items

as complements may underbid before he acquires any item and overbid for the rest after

he has acquired some. Then the goods may be over-concentrated to a single bidder while

efficiency requires that the goods go to different bidders, or the goods may be over-diffused

to separate owners while efficiency requires that the goods go to a single bidder. Both kinds

of inefficiency seem to be probable and we may not know which one is dominant without
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knowing specific parameters.

The thesis of this paper is that, once we take into account of the transparent feature

of simultaneous ascending auctions, the prediction of these auctions becomes qualitatively

unambiguous: their inefficiency takes the form of probable over-concentration and never

over-diffusion. The reason is that bidders may signal through jump-bidding, so a bidder

who values multiple items can infer whether he will profitably acquire the entire package

before committing to buying any item. Thus, the exposure problem is eliminated, and the

only remaining source of inefficiency is that bidders who value only single items cannot

fully cooperate with each other to compete against bidders who value multiple items. This

kind of inefficiency is the well-known threshold problem for package auctions, where bids are

contingent on packages of items (e.g., [6] and [14]). That leads to probable over-concentration

and never over-diffusion. Over-concentration creates a strict incentive for resale, but it is

found in this paper that the same kind of inefficiency persists when resale is allowed.

In our model, there are only two items, A and B, and three bidders, a local bidder

who values only A, another who values only B, and a global bidder who values both as

complements. Bidders know who is global and who is local but do not know others’ val-

uations. The primitives are listed in §2. The basic mechanism that bans jump-bidding

and cross-bidding (bidding for an unvalued item) is analyzed in §3. This part is related

to the asymmetric-information analysis of simultaneous auctions in the literature such as

Krishna and Rosenthal [12] (sealed-bid second-price), Rosenthal and Wang [16] (sealed-bid

first-price), and Albano, Germano and Lovo [1] (ascending-bid, two items, and uniformly

distributed values); none of them consider cross- or jump-bidding.

The paper then turns to jump bidding in §4. When a local bidder is the first to drop

out from an item say A, the other two bidders each strictly want to jump-bid for B in order to

determine the winner of B before the global bidder commits to buying A (Lemmas 6 and 8).

Consequently, the global bidder learns whether he can profitably acquire the whole package

before buying any item (Proposition 1). If he finds it unprofitable to continue, the global

bidder withdraws his bids, so the local bidder who is the first to stop making higher bids may

win due to the other local bidder’s high jump-bids. That leads to a local bidder’s free-riding

incentive and consequently a positive probability of over-concentration (Proposition 2). This
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section is slightly related to the jump-bidding literature such as Avery [4] and Gunderson

and Wang [10], which have shown that jump-bidding may reduce the demand from one’s

rival. None of them consider multiple heterogeneous items.

The analysis is then extended to the case where cross-bidding is also allowed (§5).

Cross-bidding needs to be considered because, conditional on the equilibrium in the no-

jump- and no-cross-bidding case (Lemma 1), a local bidder wishes to bid for his unvalued

item in order to prevent the global bidder from becoming more aggressive after winning

that item. Yet in equilibrium cross-bidding mitigates the global bidder’s exposure problem

because his winning an item implies that both local bidders are outbid on that item and so

he will face less intense competition for its complement. Hence there is an equilibrium where

local bidders do not cross-bid (Proposition 3) and the incentive and consequence of jump

bidding remain the same as before. Here we obtain a somewhat surprising result that the

simultaneous ascending auctions can replicate the allocation of any undominated-strategy

equilibrium of an ascending package auction (Proposition 4).

As probable over-concentration leads to a strict incentive for resale, the analysis is also

extended to a model where resale is allowed and any bidder, if winning both items in earlier

auctions, gets to commit to a selling mechanism for possible resale. In §6, an equilibrium

is constructed where the global bidder acts as the middleman and, becoming a monopolist,

over-concentrates the goods in his own hands (Proposition 5).

2 The primitives

There are two items, A and B. There are three bidders: a local bidder α who values only

item A, a local bidder β who values only item B, and a global bidder γ who views both items

as complements. The following table lists their valuations:

∅ A B A & B

local α 0 tα 0 tα

local β 0 0 tβ tβ

global γ 0 0 0 tγ
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For each i ∈ {α, β, γ}, ti is a random variable whose realized value is bidder i’s the private

information and is independently drawn from a distribution Fi, with continuous positive

density fi and support [0, ti]. A bidder’s payoff is equal to his valuation of the package he

acquires minus his total payment.

The solution concept is undominated strategy equilibrium, perfect Bayesian equilibrium

that never uses any action or strategy that is weakly dominated from the standpoint of any

continuation game. Call it equilibrium briefly.

If g(x, y) and h(z) are real functions of variables x, y, and z, let E[g(x, y) | h(z) ≥ 0]

denote the expected value of g(x, y), with the random variables boldfaced in the bracket,

conditional on h(z) ≥ 0. Let 1S(x) denote the indicator function of random variable x that

satisfies condition S. Let z+ := max{z, 0}.

3 A basic analysis of the exposure problem

3.1 The basic mechanism

The two items are auctioned off via separate clock auctions that start simultaneously. Prices

start at zero. For each item k, the price pk for item k rises continuously at an exogenous

positive speed ṗk until k is sold. Bidder α can bid only for item A, bidder β only for B,

and γ can bid for both items. Ties are broken by coin toss.

To be eligible for an item, a bidder needs to participate in its auction from the start.

Once he quits (drops out) from an item, a bidder cannot raise his bid for that item any

more. If a bidder does not quit from an item, we say he continues or stays or remains for

it. The auction of an item ends when all but one bidder has quit the item; immediately

the remaining bidder buys the item at its current price.1 The good cannot be returned for

refund. Bidders’ actions are commonly observed.

1This decentralized closing rule is aligned with this paper’s focus on the decentralized nature of markets.

The simultaneous auctions used by FCC have a centrally coordinated closing rule (Milgrom [14]).
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3.2 The equilibrium

Restricted to bidding only for his valued item, a local bidder finds it dominant to be straight-

forward, i.e., to bid for his desired item up to its true value. This is not so for the global

bidder γ, because he takes into account the exposure problem that he may end with buying

an item at a price above its standalone value and failing to acquire its complement. The

next lemma finds the global bidder’s best reply to local bidders’ dominant strategy.

Lemma 1 For any (pA, pB) ∈ [0, tα]× [0, tβ] and type tγ ∈ [0, tγ], define

vA(tγ, pB) := E
[
(tγ − tβ)+ |tβ ≥ pB

]
; (1)

vB(tγ, pA) := E
[
(tγ − tα)+ |tα ≥ pA

]
. (2)

If cross-bidding and jump-bidding are banned, straightforward bidding is weakly dominant for

each local bidder. Given any current (pA, pB), the best reply from the global bidder γ is:

1. If neither A nor B has had a winner, continue bidding for both items if vA(tγ, pB) > pA

and vB(tγ, pA) > pB, and quit from both auctions if one of the inequalities fails.

2. If item A or B has been won by someone else, quit from both auctions immediately.

3. If item A (or B) has been won by bidder γ, continue bidding for item B (or A) until

its current price pB (or pA) reaches tγ.

Proof Plan 2 in the above strategy is obviously optimal for bidder γ: the price for an item

say A is for sure higher than its standalone value 0, since local bidder α’s value is for sure

positive. Plan 3 in the strategy is also obviously optimal, since the payment for the already

acquired item is sunk. Thus, we need only to examine plan 1.

Consider the event for plan 1, with current prices (pA, pB) and both local bidders

remaining. From the fact that bidder α has not quit, bidder γ learns that α’s value tα

exceeds item A’s current price pA. If bidder γ has bought A, we are in the event for plan 3

and hence he wins item B if tγ − tβ > 0 and loses B if the inequality is reversed. If he does

win B and hence gets both items, bidder γ’s total profit is equal to tγ−tβ−pA since bidder β
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is straightforward. If bidder γ loses B, his total profit is equal to −pA. Thus, when both

local bidders are still active, bidder γ’s expected profit from buying item A at the current

instant is equal to

vA(tγ, pB)− pA, (3)

and analogously his expected profit from buying item B at the current instant is equal to

vB(tγ, pA)− pB. (4)

Note: as type distributions have no atom and no gap, (3) and (4) are continuous and strictly

decreasing functions of (pA, pB) and hence shrink continuously with the time counted by the

clocks in the auction game.

Let us prove the optimality of plan 1. At any instant in the event for plan 1, either (a)

both inequalities in plan 1 hold or (b) one of them does not hold. In case (a), by continuity

of (3) and (4) with respect to time, these inequalities continue to hold for a sufficiently short

while. Recall that (3) stands for bidder γ’s expected profit from buying A conditional on not

yet quitting B, and recall the analogous interpretation for (4). Thus, at the current instant

it is dominated to quit from one item and continue with the other. It is also dominated

to quit both items, because doing so gives zero payoff while not doing so ensures a positive

expected payoff. Hence bidder γ continues on both items in this case.

In case (b), one of the inequalities in plan 1 fails. Say vA(tγ, pB) ≤ pA. As (3) is strictly

decreasing in time, bidder γ’s expected profit from buying item A is negative from now on

if he does not quit B. If he quits B, then he also quits A by plan 2. Thus, he quits at least

from A. Then by plan 2 bidder γ quits B at the same time, as plan 1 prescribes. The case

when the other inequality fails is analogous. Hence plan 1 is optimal. �

3.3 Various kinds of inefficiency

Let us examine the allocation induced by the above perfect Bayesian equilibrium. By its

definition (1) and the atomless and gapless type distributions, the function vA(tγ, ·) is con-

tinuous and strictly decreasing; when pB decreases from min{tγ, tβ} to zero, vA(tγ, pB) rises
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from [tγ − tβ]+ to E[tγ − tβ]+ (Figure 1). Thus, in R2, given any tγ ∈ [0, tγ], the ray{
(pA, pB) ∈ [0,∞)2 : pB = (ṗB/ṗA)pA

}
(5)

and the continuous path{
(vA(tγ, pB), pB) : pB ∈ [0, min{tγ, tβ}]

}
∪

{(
pA, min{tγ, tβ}

)
: pA ∈ [0, (tγ − tβ)+]

}
(6)

have exactly one common point, denoted by (p′A(tγ), p
′
B(tγ)) (Figure 1). Analogously, (5)

and the path{
(pA, vB(tγ, pA)) : pA ∈ [0, min{tγ, tα}]

}
∪

{(
min{tγ, tα}, pB

)
: pB ∈ [0, (tγ − tα)+]

}
(7)

have exactly one common point, denoted by (p′′A(tγ), p
′′
B(tγ)) (Figure 1). Note that (5)

represents the ray along which (pA, pB) rises when both auctions are still going on. Hence at

the point (p′A(tγ), p
′
B(tγ)), either bidder γ becomes indifferent between winning and losing A

conditional on staying for B, or the price of B for sure stops rising (p′B(tγ) = tβ). Likewise, at

(p′′A(tγ), p
′′
B(tγ)), either bidder γ becomes indifferent about winning B conditional on staying

for A, or pA for sure stops rising (p′′A(tγ) = tα). Let

p∗A(tγ) := min {p′A(tγ), p
′′
A(tγ)} & p∗B(tγ) := min {p′B(tγ), p

′′
B(tγ)} .

Since the slope of the price ray pB = (ṗB/ṗA)pA is positive,

(p∗A(tγ), p
∗
B(tγ)) = (p′A(tγ), p

′
B(tγ)) or (p∗A(tγ), p

∗
B(tγ)) = (p′′A(tγ), p

′′
B(tγ)). (8)

Note that (p∗A(tγ), p
∗
B(tγ)) is the instant at which global bidder γ quits both items, unless he

has already won an item.

The equilibrium allocation is: If tα > p∗A(tγ) and tβ > p∗B(tγ), item A goes to local

bidder α and item B goes to local β. If tα < p∗A(tγ) and tβ < tγ, both items go to global

bidder γ (plans 1 and 3 of Lemma 1). If tα < p∗A(tγ) and tβ > tγ, item A goes to γ and B

goes to β. If tβ < p∗B(tγ), then γ wins both items if tα < tγ and wins only B and loses A to α

if tα > tγ. Ties occur with zero probability, as type distributions are atomless and functions

vA(·, pB) and vB(·, pA) are continuous.

Lemma 2 If tγ > 0, then p∗A(tγ) > 0 and p∗B(tγ) > 0; if also tγ 6= tα + tβ, then tγ >

p∗A(tγ) + p∗B(tγ).
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pB

pA
O tγ
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vA(tγ , pB) = pA

vB(tγ , pA) = pB
slope = ṗB/ṗA

tβ
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A(tγ)

p′
B(tγ)

p′′
A(tγ)

p′′
B(tγ)

Figure 1: Dark: {A,B} → γ; grey: {A,B} → α or β; white: A → α & B → β.

Proof Since 0 < ṗB/ṗA < ∞, it is obvious that p∗A(tγ) > 0 and p∗B(tγ) > 0 for all tγ > 0.

To prove the rest of the lemma, recall definition (1) and the assumption that the distribution

of tγ has no gap. Then vA(tγ, pB) < tγ − pB unless pB = tβ, and vB(tγ, pA) < tγ − pA unless

pA = tα. Thus, by (8), the desired inequality tγ > p∗A(tγ) + p∗B(tγ) follows unless

(p′A(tγ), p
′
B(tγ)) = (tγ − tβ, tβ) = (tα, tγ − tα) = (p′′A(tγ), p

′′
B(tγ)) ,

which implies tγ = tα + tβ. �

Inefficiency of the equilibrium takes three different forms, each probable. One is over-

diffusion: item A goes to local bidder α and B goes to local β, while efficiency requires that

both items go to the global bidder. This in our equilibrium is the event

tα > p∗A(tγ) & tβ > p∗B(tγ) & tα + tβ < tγ,

which occurs with a positive probability because tγ > p∗A(tγ) + p∗B(tγ) (Lemma 2) and type

distributions have no gap. The second kind of inefficiency is over-concentration: one bidder

wins both items while efficiency requires that they go to different bidders. This in our

equilibrium is the event

[tα < p∗A(tγ) & tβ < tγ & tα + tβ > tγ] or [tβ < p∗B(tγ) & tα < tγ & tα + tβ > tγ] .
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This event occurs with a positive probability because p∗A(tγ) > 0 and p∗B(tγ) > 0 (Lemma 2).

The third kind of inefficiency is incomplete diffusion: the global bidder wins exactly one item

while efficiency requires both items go to local bidders. This is the event

[tα < p∗A(tγ) & tβ > tγ] or [tβ < p∗B(tγ) & tα > tγ] ,

which occurs with a positive probability, again because p∗A(tγ) > 0 and p∗B(tγ) > 0.

Thus, the exposure problem leads to various kinds of inefficient outcomes. Such am-

biguity, however, is only because our analysis so far has not fully exploited the transparent

nature of simultaneous ascending auctions. With actions commonly observed, bidders might

be able to avoid the exposure problem via signaling such as jump-bidding.

4 Jump bidding eliminates the exposure problem

Let us consider the moment when local bidder α is quitting at pA. Now global bidder γ is on

the verge of buying A without knowing how much he will have to pay for its complement B.

Suppose the other local bidder β could credibly reveal his value tβ to bidder γ at this

moment. Then bidder γ would know that the price for item B will be tβ. If his value is less

than pA + tβ, γ’s profit will be negative if he is to buy both items, and he would not be able

to avoid such loss if he buys A now, because he will bid for B up to tγ once he has bought A.

Thus, if tγ < pA + tβ, bidder γ wishes to quit both items immediately and yield the right

for item A to bidder α. Then the global bidder could avoid the exposure problem, and local

bidder β’s winning event could be expanded from {tγ : tβ > tγ} to {tγ : tβ > tγ − pA}. Such

arrangement would need local bidder β to reveal his type credibly. That can be done, as

we will see soon, by a jump bid for item B, i.e., an amount of payment that he promises to

deliver if he wins B right now.

Thus, conditional on the previously assumed simple rule that prices have to rise contin-

uously at exogenous speeds, bidders have a strict incentive to deviate from it. The deviation

would allow them to signal via jump-bidding and to reduce losses by withdrawing one’s bids.

Even if auctioneers do not allow such deviation, bidders’ strict incentive makes it costly to

maintain the prohibition. Thus, we amend the mechanism as follows—
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4.1 A model that allows jump-bidding

At any instant during the auction of any item, an active bidder chooses whether to continue

or jump-bid or stop or withdraw. To continue, the bidder keeps pressing his button for the

item. To jump-bid, the bidder cries out a bid (for this item) higher than its current price

indicated by the clock. A bidder remains active if and only if he continues or jump-bids.

To stop, the bidder releases the button and forever forfeits the right to raise his bid for the

item. In withdrawing, a bidder will never get the good and he may need to compensate the

seller for the difference between his highest bid and the final selling price if this difference is

positive: if some other bidder continues after this bidder withdraws, this difference is zero

and hence the withdrawing bidder pays zero; if all other bidders withdraw immediately after

this bidder withdraws, these bidders each pay an equal share of the difference.

If a bidder say i stops or withdraws or jump-bids in the auction for an item, the price

clock for this item pauses for at most δ seconds for any active bidder to react. The pause

ends if all such bidders have reacted or if δ seconds has passed.

If a bidder say i stops or withdraws at the auction for an item when its current price

is p, during the pause of the price clock for this item, any active bidder can withdraw. If

all remaining bidders withdraw during the pause, the good is sold to bidder i at the price p

if i did not withdraw, and the good is not sold, with withdrawal penalty divided among

all withdrawing bidders, if i did withdraw. If exactly one active bidder does not withdraw

during the pause, the good is sold to this active bidder at price p. If more than one active

bidder does not withdraw in the pause, the price clock resumes from the level p.

If a bidder say i submits a jump bid b for an item, during the pause of the price clock

for this item, every other active bidder decides whether to stop or match b (with a bid equal

to b) or top b (with a higher jump bid). If someone tops b with a higher bid b′, the process

repeats with the new jump bid b′. If someone matches a jump bid and no one tops it, the

pause ends and the price clock resumes from the current highest jump bid. If all but the

jump-bidder stops, the jump bidder buys the item at his most current jump bid.

Note that the above amendments do not require any coordination between auctioneers

of different goods. Hence the model continues to capture the decentralized nature of markets.
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Should central coordination be available, the exposure problem can be eliminated trivially:

when local bidder α drops out, pause the auction of item A until the auction of item B ends

and then let the global bidder decide whether to buy A or not. A main point of the next

subsection is that central coordination is completely unnecessary.

4.2 Jump bidding in the decisive moment

A bidder is called the first dropout if he stops or withdraws from the item(s) for which he

has been bidding while none of other bidders have stopped or withdrawn. If a local bidder

say α, who has been bidding for item A, is the first dropout, the decisive moment refers to

the minute interval after α’s dropout action and before global bidder γ has decided whether

to withdraw from item A or not. If γ does not withdraw from A during this moment, he buys

item A when the pause caused by α’s dropout ends. Since γ’s maximum willingness-to-pay

for item B jumps when he buys item A , local bidder β wants to influence γ’s decision in the

decisive moment through jump bidding for B. Such jump bidding eliminates the exposure

problem for the global bidder:

Proposition 1 Assume that it takes less than half of the maximum time (δ seconds) of a

decisive moment to cry out a bid and register it. At any equilibrium of the simultaneous-

auctions game, if the global bidder wins an item at a positive price, then he wins its comple-

ment and, before buying any of them, he knows the total price for both items.

This proposition follows from Lemmas 6 and 8 that will be proved in this subsection.

To prove these lemmas, we shall analyze the continuation game after a local bidder say α

becomes the first dropout from item A. We shall see that this continuation game turns into

a very fast English auction for item B that completes within the decisive moment. During

this English auction, the active local bidder β’s maximum willingness-to-pay (MWTP) for

item B is simply his value tβ, but the global bidder γ’s MWTP for item B is less than γ’s

value tγ, since he can withdraw from A during the decisive moment.

Lemma 3 If a local bidder say α is the first dropout when the current price for item A is pA,
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then, during the decisive moment, local bidder β’s MWTP for item B is

wβ := w̃β(tβ) := tβ, (9)

and global bidder γ’s MWTP for item B is

wγ := w̃γ(tγ, pA, λ) := tγ − λpA, (10)

where

λ :=

 1 if α’s action is “stop”

1/2 if α’s action is “withdraw”.

Proof Consider the case where bidder α’s dropout action is “stop”. Then α cannot raise his

bid for A any more, so bidder γ can buy A at its current price pA by the action “continue”.

Thus, if γ buys item B at some price pB during the decisive moment, he will buy A at the

end of the moment and get a total profit tγ − pA − pB. As α’s action is not “withdraw”,

bidder γ can also ensure a zero payoff by withdrawing from A, for then item A will be sold

to bidder α at its current price and so γ does not need to pay any withdrawal penalty.

Hence bidder γ buys item B in the decisive moment if and only if pB is less than tγ − pA, as

claimed. The case where bidder α’s dropout action is “withdraw” is similar: if he buys B in

the decisive moment, his payoff is tγ − pA − pB; else (via withdrawing from A) his payoff is

−pA/2, since he needs to pay half of the bid pA that bidder α and he both withdraw. Then

bidder γ buys B in the decisive moment if and only if its price is less than tγ − pA/2.

Lemma 4 If a local bidder say α is the first dropout when the current price for item A is pA,

then, at any continuation equilibrium on whose path the winner of item B is determined

during the decisive moment, item B goes to the bidder whose MWTP during the decisive

moment for B is higher.

Proof This is similar to the dominance solvability argument of second-price auctions, except

that the continuation game after α’s dropout may involve signaling through open outcries.

Given any continuation equilibrium e, let Wi(e, h) denote the posterior support of bidder i’s

(i = β, γ) MWTP conditional on current history h. Let pB denote the current price of B.

Then obviously it is weakly dominated for bidder i to stop or withdraw from item B when

wi > max {pB, inf W−i(e, h)} .
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It is also weakly dominated for bidder i to submit a bid above wi, because a winner has to

pay his own (jump) bid during the decisive moment. Therefore, coupled with the rational

expectations w−i ≥ inf W−i(e, h) at any equilibrium, the lemma follows.

Lemma 5 If a local bidder α is the first dropout when the current price for item A is pA,

then, at any continuation equilibrium on whose path the winner of item B is determined in

the decisive moment, each remaining bidder’s expected payment (viewed at the start of the

decisive moment) conditional on winning B is uniquely determined: if bidder i’s (i ∈ {β, γ}
and −i is this set minus i) MWTP during the decisive moment is wi (Lemma 3) and if h

denotes the history up to the start of this moment, bidder i’s expected payment is equal to

Pi(wi) := E [w−i | w−i ≤ wi; h] . (11)

Proof At any such continuation equilibrium, the allocation is uniquely determined by

Lemma 4. As bidders’ payoff functions are in the standard quasilinear form (recalling (10)),

the payoff-equivalence theorem in auction theory implies this lemma.

Lemma 6 Suppose, conditional on any event that a local bidder for an item k is the first

dropout when its price is positive, there exists a continuation equilibrium on whose path the

winner of the other item is determined during the decisive moment. Then, at any equilibrium

of the simultaneous-auctions game, whenever a local bidder is the first dropout when prices

are positive, the winner(s) of both items are determined in the same decisive moment.

Proof Without loss of generality, let bidder α be the first dropout when pA > 0. It suffices

to show that each of bidders β and γ strictly prefers having the winner of B determined

during the decisive moment to after the moment. This suffices because: (i) an active bidder,

through jump-bidding, can unilaterally initiate the process of determining the winner of B

in the decisive moment; (ii) once initiated, this process keeps going unless an active bidder

chooses not to top his rival’s bid or unless the decisive moment ends; and (iii) the process

can be completed during the decisive moment due to the lemma’s assumed existence of the

desired continuation equilibrium.
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Let us demonstrate such preference for bidder β. If the winner of B is determined

during the decisive moment, β’s winning event is {tγ : w̃γ(tγ, pA, λ) < tβ} and his payment

conditional on winning is (11) (Lemmas 4 and 5). If the winner of B is not determined

in the decisive moment, bidder γ buys A after the moment (if γ withdraws from A during

the moment then he would also have dropped out from B, thereby determining the winner

of B) and then will bid for B up to his value tγ; hence β’s winning event is {tγ : tγ < tβ}
and his payment conditional on winning is E[tγ | tγ < tβ]. Since pA > 0, w̃γ(tγ, pA, λ) < tγ

(Eq. (10)), hence bidder β’s expected payoff in the former case is higher.

Let us show such preference for bidder γ for the case where bidder α’s dropout action is

“withdraw” (the case where α’s action is “stop” is simpler). If the winner of B is determined

in the decisive moment, bidder γ’s payoff is either tγ − pA − tβ if γ wins B (if he wins B

then he buys A) or −pA/2 if γ loses B (if he loses B then he withdraws from A, paying half

of the withdrawal penalty); i.e., γ’s payoff is (tγ − tβ − pA/2)+ − pA/2. If the winner of B

is determined after the decisive moment, bidder γ’s payoff is (tγ − tβ)+ − pA/2 − pA/2. As

pA > 0, (tγ − tβ − pA/2)+ − pA/2 ≥ (tγ − tβ)+ − pA/2− pA/2 for all possible tβ and strictly

so for some tβ. Hence bidder γ has our desired preference.

Lemma 7 For each i = β, γ, the function Pi defined in (11) is weakly increasing; further-

more, given any history h up to the instant when α becomes the first dropout, for every xi

in the range of Pi and for almost every possible w−i (relative to the posterior given h),

inf P−1
i (xi) ≥ w−i or supP−1

i (xi) ≤ w−i. (12)

Proof By definition (11), the function Pi is weakly increasing. It is not necessarily strictly

increasing only because the posterior distribution of w−i conditional on history h may have

gaps: By (11), Pi(wi) = Pi(w
′
i) if and only if this distribution has zero weight strictly

between wi and w′
i; i.e., for any xi in the range of Pi, the event “w−i belongs to the interior

of P−1
i (xi)” has zero probability. Hence (12) is true almost surely conditional on h.

Before proving Proposition 1, we need to construct a continuation equilibrium that

determines the winner of B within the decisive moment. Here is the idea of the construction.

As already shown, once bidder α becomes the first dropout (from A), the other two bidders
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are both willing to speed up the auction for item B. Hence one of them immediately cries

out a jump bid that fully reveals his MWTP. If this revealed value exceeds the other bidder’s

MWTP, the latter immediately drops out; else the latter tops the former with a bid equal

to this revealed value, which makes the former immediately drop out. Thus, on equilibrium

path, the winner of B is determined with at most two jump bids. This is physically feasible

as long as crying out a jump bid takes sufficiently less time than the δ-second pause. To

ensure incentive compatibility, we construct a bidder’s jump bid as the expected value of his

rival’s MWTP conditional on the rival’s defeat. In expectation, a bidder cannot do better

than bidding this amount: in the English auction, he cannot do better than achieving the

Vickrey outcome where he wins if and only if his MWTP is higher than his rival’s and he

pays the rival’s MWTP if he wins.2 By Lemma 7, the bid amount constructed in this fashion

fully reveals a jump-bidder’s private information almost surely.

Lemma 8 If a local bidder say α is the first dropout when the current price for item A

is pA > 0, and if crying out a bid takes less than half of the maximum time (δ seconds) of

the decisive moment, then there exists a continuation equilibrium on whose path the winner

of item B is determined during the decisive moment.

Proof Let h denote the history up to the start of the decisive moment, and let Wi(h) be

the support of bidder i’s MWTP at the start of this moment conditional on h. We construct

a continuation equilibrium:

a. Bidder β with MWTP wβ := tβ: if wβ ≤ pB, immediately withdraw; if wβ > pB,

immediately make a jump bid for B equal to Pβ(wβ) defined by (11).

b. Bidder γ with MWTP wγ given by (10): If bidder β has withdrawn, buy both items

immediately. If β has made a jump bid xβ for B:

i. If xβ belongs to the range Pβ(Wβ(h)) of Pβ:

• if wγ > inf P−1
β (xβ), top xβ with a jump bid equal to

P̃γ(wγ | xβ) := E
[
wβ | wβ ≤ wγ;wβ ∈ P−1

β (xβ); h
]
; (13)

2The bidders have no unilateral incentive to collude by dropping out simultaneously: Since dropout is

irrevocable, a colluder cannot retaliate the other colluder for deviation.
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• else withdraw from both items.

ii. If xβ 6∈ Pβ(Wβ(h)), which is off-path, then update P−1
β (xβ) := {(xβ + wγ)/2} and

then follow the previous plan (i) with h removed.

c. If bidder γ responds to β’s jump bid with a bid xγ, bidder β replies by following plans (i)

and (ii) in the previous item, with the substitutions Wβ(h) → Wγ(h), P−1
β (xβ) →

P̃−1
γ (xγ | xβ), P̃γ(wγ | xβ) → P̃β(wβ | xβ, xγ), wβ → wγ, wγ → wβ, and xβ → xγ.

d. If bidder β does not act immediately at the start of the decisive moment, bidder γ

immediately acts by following plans (a)–(c) with the roles of β and γ switched.

On the path of this proposed equilibrium, almost surely the winner of item B is de-

termined before the decisive moment ends: Once bidder β has cried out his initial jump

bid xβ (in less than δ/2 seconds), almost surely inf P−1
β (xβ) ≥ wγ or supP−1

β (xβ) ≤ wγ

((12)). In the first case, γ withdraws immediately (plan b-i). In the second case, γ replies

(in less than δ/2 seconds) with a jump bid P̃γ(wγ | xβ) according to Eq. (13); seeing this bid,

bidder β learns that supP−1
β (xβ) ≤ wγ; as wβ ≤ supP−1

β (xβ), bidder β drops out (plan c).

Thus, as long as bidder γ postpones his decision on item A to the end of the δ-second pause,

the winner of B is determined within the decisive moment.

Before checking the equilibrium conditions, let us prove the following claims for each

bidder i ∈ {β, γ} during the decisive moment, given rival −i’s strategy.

1. If the other bidder −i’s MWTP w−i has been fully revealed to i, then bidder i’s best

reply is: bid w−i if wi > w−i and withdraw if wi ≤ w−i.

2. Suppose w−i has not been fully revealed to i. Then bidder i knows: if he bids now and

if rival −i’s immediate response is a bid x−i instead of dropout, then the bid x−i fully

reveals w−i.

3. If w−i has not been fully revealed to i, then bidder i knows: if he bids now, if rival −i’s

immediate response is a bid instead of dropout, and if bidder i eventually wins B during

the decisive moment, then wi ≥ w−i and bidder i’s payment for B is w−i.
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Proof of claim 1: Bidding above w−i is obviously dominated. If his bid bi is below w−i,

then bi is outside the range of i’s bids (Eqs. (11) and (13)), hence the other bidder −i will

follow plan b.ii and hence will cry out a bid strictly between bi and w−i, so that bidder i

cannot win immediately. Hence bidding below w−i does not make i better off and it makes i

worse off if the decisive moment ends (Lemma 6).

Proof of claim 2: Let W−i denote the nondegenerate support of rival −i’s MWTP

at an instant during the decisive moment. Then the set W−i is commonly known at this

instant; otherwise, the set contains bidder i’s private information and hence, by plans b.i

and b.ii in the proposed equilibrium, the set is singleton (the midpoint between i’s MWTP

and −i’s most current bid) and hence degenerate. With equilibrium expectation about

rival −i, bidder i knows: if i bids an amount xi greater than or equal to the expected value

of w−i conditional on W−i, then rival −i will immediately quit (similar to the second case in

the previous paragraph on the equilibrium path). Thus, bidder i knows that if −i does not

quit immediately then xi has to be less than this expected value, which is commonly known

as W−i is so, then xi has to be outside the commonly known range of i’s bid function. By

updating rule b.ii in the proposed equilibrium, rival −i’s posterior is “wi = (xi + w−i)/2.”

If −i does not immediately quit after i bids xi, then (xi +w−i)/2 < w−i and −i will respond

by bidding (xi + w−i)/2, which fully reveals w−i to bidder i, as claimed.

Proof of claim 3: In the future event that rival −i does not quit after bidder i’s current

bid and bidder i still can win during the decisive moment, claim 2 implies that w−i will be

fully revealed to bidder i before i makes the winning bid. Then claim 1 implies claim 3 since

bidder i knows he himself will best reply at that future event.

With the claims proved above, let us verify the equilibrium condition for each bidder i ∈
{β, γ}. Consider any instant during the decisive moment. If the other bidder−i’s MWTP has

been fully revealed, then the best reply described in claim 1 is exactly the action prescribed

by plans b.i and b.ii in the proposed equilibrium. Hence suppose that −i’s MWTP has not

been fully revealed. Let P̃i(· | h′) denote the bid function for bidder i conditional on the

history h′ up to the current instant (e.g., Eq. (13)). For any ŵi in the posterior support of

i’s MWTP given h′, let

[ŵi] := P̃−1
i

(
P̃i(ŵi | h′)

∣∣∣ h′
)

.
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Let [ŵi] ≥ w−i denote the event that every element in [ŵi] is greater than or equal to w−i.

We shall show that it is optimal for bidder i to bid according to function P̃i(· | h′). Bidding

outside the range of the bid function is dominated, by a reasoning similar to the proof

of claim 1. Bidding within the range of P̃i(· | h′) is equivalent to picking a ŵi from the

current support of wi and announcing that his MWTP belongs to [ŵi] and promising to pay

P̃i(ŵi | h′) if he wins immediately. Let ui(ŵi, wi) denote bidder i’s expected payoff from

this action, conditional on current history h′ and his true MWTP wi. We prove next that,

given wi, ui(ŵi, wi) is maximized when ŵi = wi.

If ŵi < wi, then item B goes to i if and only if: (i) either the other bidder −i drops

out immediately, i.e., [ŵi] ≥ w−i by (12), or (ii) bidder −i does not drop out immediately

but does so in a later round before the decisive moment ends; by (12) and claim 3, case (ii)

is contained by the event {w−i : [ŵi] < w−i ≤ wi}. Thus,

ui(ŵi, wi) ≤ E
[
1[ŵi]≥w−i

(w−i)
(
wi − P̃i(ŵi | h′)

)
+ 1[ŵi]<w−i≤wi

(w−i)(wi −w−i)
+
∣∣∣ h′

]
= E

[
1ŵi≥w−i

(w−i)
(
wi − P̃i(ŵi | h′)

)
+ 1ŵi<w−i≤wi

(w−i)(wi −w−i)
+
∣∣∣ h′

]
= wiE

[
1wi≥w−i

(w−i) | h′
]
− E

[
w−i1wi≥w−i

(w−i) | h′
]

= ui(wi, wi),

where the first equality uses (12) and the second uses (13). Thus, bidder i cannot gain from

under-reporting his type.

If ŵi ≥ wi, then item B goes to i if and only if the other bidder −i immediately drops

out after i has jump-bid P̃i(ŵi | h′). (By claim 3, if i cannot outbid −i with ŵi now, he cannot

outbid −i with his lower true value wi afterwards.) This winning event is {w−i : ŵi ≥ w−i}
by (12). Thus,

ui(ŵi, wi) =
(
wi − P̃i(ŵi | h′)

)
E

[
1ŵi≥w−i

(w−i) | h′
]

= wiE
[
1ŵi>w−i

(w−i) | h′
]
− E

[
(w−i) 1ŵi≥w−i

(w−i) | h′
]

= (wi − ŵi)E
[
1ŵi≥w−i

(w−i) | h′
]
+

∫ ŵi

pB

E
[
1zi≥w−i

(w−i) | h′
]
dzi,

where the second equality uses (12) and the third uses integration by parts. As the probability

E
[
1ŵi≥w−i

(w−i) | h′
]

is weakly increasing in ŵi, the above equation implies that picking ŵi =

wi maximizes ui(·, wi) (Myerson [15, Lemma 2]). Thus, bidder i cannot gain from over-

reporting. It follows that the bid P̃i(ŵi | h′) is bidder i’s best reply, as desired.
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Proof of Proposition 1 Suppose global bidder γ wins an item. Then he cannot be the

first dropout; otherwise, he would have withdrawn from both items. Hence bidder α or β

is the first dropout. Without loss of generality, let α be the first dropout when the current

price for item A is pA. By Lemmas 6 and 8, item B is won by either β or γ during the

decisive moment. If β wins B, bidder γ withdraws from A in this moment, so the conclusion

of this proposition is vacuously true; if γ wins B at some price pB, he buys A at the price pA,

which has been frozen since α’s dropout. Hence bidder γ knows the total price pA +pB when

he buys any of the items, and the conclusion of this proposition is again true. �

Corollary 1 If it takes less than half of the maximum time of the decisive moment to submit

a bid, then “withdraw” is weakly dominated by “stop” for a local bidder when he becomes the

first dropout and when the price is positive and less than or equal to the bidder’s value.

Proof Without loss of generality, let α be the first dropout when the current price for item A

is pA. By Lemmas 6 and 8, item B is won by either β or γ during the decisive moment. If

global bidder γ wins B, then he continues on A, so “stop” and “withdraw” both yield zero

payoff for bidder α. If γ loses B, then he withdraws from A, so bidder α gets a nonnegative

payoff from “stop” and gets a negative payoff (penalty −pA/2) from “withdraw”.

4.3 Jump bidding leads to over-concentration

Proposition 1 implies that the global bidder knows whether he can profitably acquire both

items before he commits to buying one of them. Hence he faces no exposure problem and

is effectively bidding for the entire package {A, B}, so he would not underbid. The local

bidders, in contrast, do not always bid up to their true values: A local bidder who drops out

may win his desired item because the other local bidder submits a jump bid that may force

the global bidder to quit during the decisive moment. Hence a local bidder wishes to free ride

the other. This threshold problem is exactly the same as the classic public goods problem

with private information. By the uniqueness of the equilibrium allocation in the continuation

game after a local bidder becomes the first dropout (Proposition 1), this threshold problem

cannot be eliminated no matter how bidders signal to each other.
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Let ≺ denote an allocation, with tγ ≺ (tα, tβ) denoting the event “bidder α wins A

or bidder β wins B.” Given an equilibrium-feasible allocation ≺ and for each local bidder i,

let Pi(ti,≺) denote the expected value of i’s equilibrium payment, viewed at the start of the

game, given his type ti. The next lemma is a reinterpretation of the impossibility of efficient

provision of public goods (Krishna and Perry [11, §8.2]), with the cost of public goods being

the global bidder’s value that local bidders’ combined bid needs to top.

Lemma 9 If the global bidder always truthfully reports his value tγ, then it is impossible to

have an equilibrium-feasible allocation ≺ that is almost surely ex post efficient and

E [Pα(tα,≺) + Pβ(tβ,≺)] ≥ E
[
tγ1tγ≺(tα,tβ)(tγ, tα, tβ)

]
. (14)

Proof From the quasilinear utility functions, the equilibrium condition, and the efficiency

of allocation ≺, one can prove, with standard mechanism-design techniques, that

Pi(ti,≺) ≤ E
[
(tγ − t−i)10<tγ−t−i<ti(tγ, t−i)

]
for each local bidder i (−i denotes the other local bidder). Then, denoting 1S := 1S(tγ, tα, tβ),

E [Pα(tα,≺) + Pβ(tβ,≺)]

≤ E
[[

(tγ − tα)+ + (tγ − tβ)+
]
1tγ<tα+tβ

]
= E

(
1tγ<tα+tβ

) tγ −

 (tα + tβ − tγ)1tγ>max{tα,tβ} + tα1tβ>tγ>tα

+tβ1tα>tγ>tβ
+ tγ1tγ<min{tα,tβ}


< E

[
tγ1tγ<tα+tβ

]
.

This contradicts (14), since tγ ≺ (tα, tβ) ⇔ tγ < tα + tβ by the efficiency of allocation ≺.

Proposition 2 If jump-bidding is allowed, then, in any equilibrium of the simultaneous-

auctions game, the allocation is over-concentrated with a positive probability and is never

over-diffused.

Proof Take any equilibrium specified by the hypothesis and let ≺ denote its allocation.

By Proposition 1, the global bidder does not quit until the total price of both items has

reached his value or until he knows the total price will reach his value. Hence it suffices to
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show that there is a positive probability with which some local bidder’s equilibrium dropout

price is less than his value. Suppose that this probability were zero, then if local bidder

say α is the first dropout then pA = tα almost surely. It follows from Lemma 4 that the

equilibrium allocation is ex post efficient almost surely. By Lemma 9, we will have a desired

contradiction if (14) holds.

To prove (14), note that the event tγ ≺ (tα, tβ) means: global bidder γ either (i) quits

before winning any item or (ii) quits after winning one but not both. In case (i), he quits

only if pA +pB ≥ tγ currently or a local bidder say α quits at pA and the other local bidder β

outbids γ in the jump-bidding subgame. The inequality pA + pB ≥ tγ automatically holds in

the first subcase and it holds in the second subcase by Lemma 4 and Corollary 1 (the first

dropout stops rather than withdraws, so wγ = tγ − pA). In case (ii), having bought an item,

γ bids for the other up to his value tγ, hence the winning local bidder’s payment is equal

to tγ. Again pA + pB ≥ tγ holds. Hence (14) follows, as desired.

5 Partial extension to cross-bidding

Cross-bidding means bidding for an item which always has zero value for the bidder, e.g.,

bidder α bidding for B or β bidding for A. The previous sections assume that cross-bidding

is not allowed. That assumption, at lease when jump-bidding is banned, is not innocuous,

because a local bidder may wish to cross-bid: In the equilibrium in Lemma 1, before winning

any item, the global bidder’s highest total bid for both items is less than his valuation of the

whole package (tγ > p∗A(tγ)+ p∗B(tγ) in Lemma 2). But once he has won an item, his highest

bid for its complement jumps to his valuation of both items (plan 3 in Lemma 1). Hence

a local bidder say α wishes to bid for the zero-value item B in order to prevent the global

bidder from becoming aggressive after winning B when local bidder β quits.

5.1 When jump bidding is banned

The model in this subsection is the same as the basic mechanism in §3.1 except that cross-

bidding is allowed. It turns out that the equilibrium in Lemma 1 remains valid on path:
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Despite local bidders’ intention, cross-bidding mitigates the global bidder’s exposure problem

and hence makes him less willing to quit before the local bidders. Knowing this, each local

bidder would rather not cross-bid. However, there is possibly another equilibrium where

cross-bidding does occur: After a local bidder has quit, the other local bidder may stay

cross-bidding and implicitly threaten to quit only one item at a time. Then the exposure

problem may come back to suppress the global player’s bid if he updates beliefs in a certain

way. If this effect dominates the previous mitigating effect, local bidders prefer cross-bidding.

Lemma 10 If cross-bidding is allowed and jump-bidding is not, and if local bidders have to

cross-bid, then listed below are the only two undominated strategies for local bidder α, and

the case for local bidder β is symmetric by switching the roles A↔B and α ↔ β.

a. Keep bidding for both items until—

i. if the global bidder quits before others, then quit B and continues A; or

ii. if pA ≥ tα, then quit both items immediately; or

iii. if the other local bidder β has quit B and pA+pB ≥ tα, quit both items immediately;

iv. if having quit A somehow, quit B immediately.

b. Follow the same plan as in (a) except that (a-iii) is changed to

iii* if the other local bidder β has quit B and pA + pB ≥ tα, then immediately quit B

and stay for A until pA ≥ tα.

Proof For local bidder α, plans (a-i), (a-ii), and (a-iv) are obviously dominant. We need

only to consider the case for plans (a-iii) and (a-iii*), when α is alone against γ (as β has

quit B, by iterated truncation of dominated actions he has quit A):

When pA + pB < tα, it is obviously dominated to quit both items or to quit A and

continue B. Quitting B and staying for A is also weakly dominated: doing so yields a payoff

(tα − tγ)
+ for bidder α, since bidder γ, after winning B, will bid for A up to his value tγ.

In contrast, if α stays for both until the total price reaches tα, he gets a payoff (tα − t̂γ)
+,

where t̂γ is the level of the total price at which γ quits. Obviously, t̂γ ≤ tγ; moreover, t̂γ < tγ
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if bidder γ is worried by the exposure problem when α is cross-bidding: γ may think it

probable that α will quit B and stay for A up to tα and hence γ may quit before the total

price reaches tγ. Thus, it is weakly dominated for α to quit any item at this point.

If pA + pB ≥ tα, it is dominated to continue both items or to continue B and quit A.

Hence α either quits both items or quits B and stays for A. They are indifferent to α: quitting

both items yields zero payoff; quitting B and staying for A also yields zero payoff, because

the fact that γ has not quit implies tγ ≥ pA + pB and hence tγ ≥ tα; having won B, bidder γ

will bid up to tγ and hence α’s payoff, whether he wins or not, will be zero. Hence (a-iii)

and (a-iii*) are the only undominated plans when α is alone against γ.

Lemma 11 If local bidders cross-bid and play strategy (a) in Lemma 10, global bidder γ has

a unique best reply and it is—

c-i. if one local bidder has quit both items and the other local bidder is cross-bidding, bid

for both items until their total price reaches tγ and then immediately quit both;

c-ii. if both local bidders are staying for at least an item, follow the strategy in Lemma 1

with this revision: if α is cross-bidding, replace vB(tγ, pA) in plan 1 by tγ − pA; if β is

cross-bidding, replace vA(tγ, pB) in plan 1 by tγ − pB.

Proof Note: if a local bidder is cross-bidding and plays strategy (a), he quits both items

simultaneously if he quits an item before global bidder γ quits. Hence plan (c-i) is opitmal.

To demonstrate (c-ii), let (pA, pB) be the current prices when both local bidders are

bidding for something. First, suppose that both local bidders have been cross-bidding up to

now. If γ wins item B now, bidder β must be quitting A and bidder α must be quitting both

items right now (both following strategy (a)), hence γ immediately wins item A and gets a

profit tγ − pA − pB. Thus, conditional on staying for A, bidder γ stays for B if and only if

tγ−pA > pB. By the same argument, conditional on staying for B, γ stays for A if and only if

tγ − pB > pA. Hence his dropout strategy when both locals are cross-bidding is precisely the

strategy in Lemma 1 with the substitutions vB(tγ, pA) → tγ − pA and vA(tγ, pB) → tγ − pB.
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Next suppose that, currently, local bidder α is cross-bidding and β is not. By the

same reasoning in the previous paragraph, winning item B now implies a profit tγ − pA− pB

for γ and hence vB(tγ, pA) in plan 1 is replaced by tγ − pA. In contrast, since β is bidding

only for B, almost surely β stays for B after bidder γ has won A. Hence γ’s expected profit

from buying A at the current instant is equal to vA(tγ, pB)− pA, as in Lemma 1. Hence his

dropout strategy in this case is precisely the strategy in Lemma 1 with the only substitution

vB(tγ, pA) → tγ − pA. The case where only β is cross-bidding is symmetric. The only other

case where neither local bidder is cross-bidding is identical to the case in Lemma 1.

To find the global bidder’s best reply to strategy (b), define the following for any

(pA, pB) ∈ [0, tα]× [0, tβ] and tγ ∈ (0, tγ]:

ṽA(tγ, pA, pB) := E [(tγ − tβ)+ | pB ≤ tβ ≤ pA + pB] ; (15)

ṽB(tγ, pA, pB) := E [(tγ − tα)+ | pA ≤ tα ≤ pA + pB] ; (16)

x′(tγ) := sup
{
x ∈

[
0, min

{
tα/ṗA, tβ/ṗB, tγ/(ṗA + ṗB)

}]
: ṽA(tγ, xṗA, xṗB) > xṗA

}
; (17)

x′′(tγ) := sup
{
x ∈

[
0, min

{
tα/ṗA, tβ/ṗB, tγ/(ṗA + ṗB)

}]
: ṽB(tγ, xṗA, xṗB) > xṗB

}
; (18)

x∗(tγ) := min{x′(tγ), x′′(tγ)}. (19)

Lemma 12 For any fixed positive speeds ṗA and ṗB of the prices, and for any tγ ∈ (0, tγ], the

cutoffs x′(tγ) and x′′(tγ) defined above exist and are each unique and less than tγ/(ṗA + ṗB);

moreover, for all x ∈
[
0, min

{
tα/ṗA, tβ/ṗB, tγ/(ṗA + ṗB)

}]
, ṽA(tγ, xṗA, xṗB) < xṗA if x >

x′(tγ), and ṽB(tγ, xṗA, xṗB) < xṗB if x > x′′(tγ).

Proof We shall prove the lemma for the case of ṽA(tγ, xṗA, xṗB) and x′(tγ); the case of

ṽB(tγ, xṗA, xṗB) and x′′(tγ) is analogous. By (15) and (16), ṽA(tγ, 0, 0) = ṽB(tγ, 0, 0) > 0 if

tγ > 0, hence x′(tγ) defined in (17) exists. As Fβ has no gap, (15) implies[
pA > 0 & pB < tγ & pB < tβ

]
=⇒ ṽA(tγ, pA, pB) < tγ − pB.

Hence ṽA(tγ, xṗA, xṗB) < xṗA for all x ∈
[
0, min

{
tα/ṗA, tβ/ṗB, tγ/(ṗA + ṗB)

}]
that are

sufficiently close to tγ/(ṗA + ṗB). Thus, x′(tγ) < tγ/(ṗA + ṗB), as claimed. To complete the

proof, we only need to show that ṽA(tγ, xṗA, xṗB) is strictly decreasing in x when x ranges

in
[
0, min

{
tα/ṗA, tβ/ṗB, tγ/(ṗA + ṗB)

}]
. With x in this interval,

ṽA(tγ, xṗA, xṗB) = tγ − E [tβ | xṗB ≤ tβ ≤ xṗA + xṗB] .
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Hence we need only to prove that E [tβ | xṗB ≤ tβ ≤ xṗA + xṗB] is strictly increasing in x

when x ranges in this interval. When xṗA + xṗB ≥ tβ, E [tβ | xṗB ≤ tβ ≤ xṗA + xṗB] is

obviously strictly increasing in x. Hence the proof is complete if

d

dx
(E [tβ | xṗB ≤ tβ ≤ xṗA + xṗB]) > 0

when x ∈ (0, min{tγ, tβ}/(ṗA + ṗB)): This derivative is equal to a positive term times

[(ṗA + ṗB)2xfβ((ṗA + ṗB)x)− (ṗB)2xfβ(ṗBx)] [Fβ((ṗA + ṗB)x)− Fβ(ṗBx)]

− [(ṗA + ṗB)fβ((ṗA + ṗB)x)− ṗBfβ(ṗBx)]
∫ (ṗA+ṗB)x

ṗBx
tβdFβ(tβ).

(20)

By the mean value theorem, the above integral is equal to

(ṗB + ξ)x [Fβ((ṗA + ṗB)x)− Fβ(ṗBx)]

for some ξ ∈ [0, ṗA]. Thus, (20) is equal to

x [Fβ((ṗA + ṗB)x)− Fβ(ṗBx)] [(ṗA − ξ)(ṗA + ṗB)fβ((ṗA + ṗB)x) + ξṗBfβ(ṗBx)] ,

which is positive, as desired.

Lemma 13 If local bidders cross-bid and play strategy (b) in Lemma 10, global bidder γ has

a unique best reply and it is—

d. If an item has had a winner, global bidder γ follows plans 2 and 3 in Lemma 1. If

neither item has had a winner, γ’s strategy is:

i. if α has not quit A and β has not quit B, stay for both items until instant x∗(tγ)

(i.e., when (pA, pB) = (x∗(tγ)ṗA, x∗(tγ)ṗB)) and quit at that instant;

ii. if α has quit A (and hence B) and if β stays for both items, continue for both

items if tγ > 2pA + pB and quit both items if the inequality does not hold;

iii. if β has quit B (and hence A) and if α stays for both items, continue for both

items if tγ > pA + 2pB and quit both items if the inequality does not hold.

Proof The actions prescribed by strategy (b) are obviously dominant except when neither

item has had a winner. Hence consider such an instant with current prices (pA, pB):
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First, suppose α has not quit A and β has not quit B. If global bidder γ wins A

right now, then right now local bidder β must be quitting A and hence pA + pB ≥ tβ by

strategy (b-iii*); however, almost surely β stays for A at this moment, for otherwise plans (b-

iii*) and (b-ii) would imply that pB = tβ, which is a zero-probability event conditional on

the fact that the other local bidder α quits at this moment (pA = tα). In other words, if he

wins A now, global bidder γ learns that pB ≤ tβ ≤ pA + pB; hence his expected profit from

buying A now is equal to ṽA(tγ, pA, pB)−pA. By the same argument, his expected profit from

buying B now is equal to ṽB(tγ, pA, pB)− pB. By Lemma 12, as prices ascend, the expected

profit from buying A at the current prices stays positive up to a unique instant x′(tγ) (unless

a local bidder has quit already) and then stays negative forever. Thus, conditional on staying

for B, bidder γ stays for A up to this instant and then immediately quits at least A. By the

same reasoning, conditional on staying for A, bidder γ stays for B up to the instant x′′(tγ)

(defined in (18)) and then immediately quits at least B. Thus, by the last two paragraphs in

the proof of Lemma 1, with the substitutions vA → ṽA and vB → ṽB, it is uniquely optimal

for γ to stay for both items up to the instant x∗(tγ) (defined in (19)) and then immediately

quit both items. Hence (d-i) is uniquely optimal given strategy (b).

Suppose α has quit A (and hence B) and β stays for both items. If γ wins A right

now, he learns from strategy (b-iii*) that tβ = pA + pB and hence his profit is equal to

tγ − pA − tβ = tγ − 2pA − pB. With prices ascending, this instantaneous profit is decreasing.

Thus, it is uniquely optimal for bidder γ to follow plan (d-ii), i.e., bid for both items up to

the instant where tγ = 2pA +pB and then immediately quit both. As plan (d-iii) is analogous

to (d-ii), we have completed the proof.

Proposition 3 If cross-bidding is allowed and jump-bidding is not, then:

i. there exists a perfect Bayesian equilibrium (PBE) where cross-bidding does not occur

on path: each local bidder bids only for his valued item up to its value and does not

cross-bid; if no one is cross-bidding, global bidder γ follows the strategy (plans 1–3) in

Lemma 1; if someone is cross-bidding, γ expects the cross-bidder to play strategy (a)

in Lemma 10 and γ plays strategy (c) in Lemma 11;

ii. in any PBE where both local bidders cross-bid on path, they play strategy (b) in Lemma 10
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and the global bidder plays strategy (d) in Lemma 13.

Proof Claim (ii) follows directly from Lemmas 10 and 13. By Lemmas 10 and 11, claim (i)

is true if we prove two claims: First, local bidders’ strategy (a) best replies global bidder γ’s

strategy (c); second, given γ’s strategy (c), cross-bidding is suboptimal fro local bidders.

First, we show that (a) best replies (c). By Lemmas 10, it suffices to show that a

cross-bidder does not have a profitable deviation from strategy (a-iii). A deviation from (a-

iii) means: when a local bidder say α is alone competing with γ for both items, instead of

staying for both items until their total price reaches tα and then quitting both simultaneously,

bidder α quits at least one of them now. For the deviation to be undominated, α quits B and

stays for A. The fact that bidder γ has been staying up to now, with current prices (pA, pB),

tells bidder α that tγ > pA+pB. Thus, there exists a sufficiently ε > 0 such that γ’s expected

profit from buying B right now, conditional on the posterior belief “tα ∈ [pA, pA + ε],” is

positive. Expecting bidder γ to take this posterior belief conditional on α’s deviation, α

expects that γ will not quit B when α deviates by quitting B and staying for A. After

winning B, γ will bid for A up to tγ. Thus, α’s deviation yields a profit (tα − tγ)
+, which

is equal to his profit from following (a-iii), as bidder γ bids for both items until their total

price reaches tγ (plan (c-i)).

Given (a) and (c), let us find γ’s dropout point, the first instant where he quits both

items when each local bidder is bidding for some item. If both local bidders cross-bid, then

by (c-ii) γ continues for both items if tγ > pA + pB and else quits both, so γ’s dropout point

is the unique intersection between the line pA + pB = tγ and the price path pB = (ṗB/ṗA)pA;

denote this point by (po
A(tγ), p

o
B(tγ)). If α cross-bids and β does not, then γ continues for

both items if vA(tγ, pB) > pA and tγ > pA + pB (note that the first inequality implies the

second) and else quits both, hence his dropout point is (p′A(tγ), p
′
B(tγ)) (intersection of (5)

and (6)). If α does not cross-bid and β does, γ continuous for both items if vB(tγ, pA) > pB

(and hence tγ > pA + pB) and else quits both, hence his dropout point is (p′′A(tγ), p
′′
B(tγ))

(intersection of (5) and (7)). If neither local bidders cross-bid, then γ’s dropout point is the

same as in Lemma 1, (p∗A(tγ), p
∗
B(tγ)). Note: (p′′A(tγ), p

′′
B(tγ)) < (po

A(tγ), p
o
B(tγ)) unless the

two points coincide, and (p∗A(tγ), p
∗
B(tγ)) < (p′A(tγ), p

′
B(tγ)) unless they coincide.
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Finally, we show that, given (a) and (c), cross-bidding is weakly dominated by not

cross-bidding for a local bidder say α. First consider the case where bidder β cross-bids. If

(p′′A(tγ), p
′′
B(tγ)) = (po

A(tγ), p
o
B(tγ)), α is indifferent about cross-bidding, because his winning

event and payment are unaffected. Suppose the two points do not coincide. When tβ ≤
p′′B(tγ), bidder α is again indifferent: whether α cross-bids or not, β quits before γ and

then γ will bid up to tγ, so α’s winning event is tα > tγ and he pays tγ if he wins. When

p′′B(tγ) < tβ ≤ po
B(tγ), bidder α is better-off not cross-bid than cross-bid: if α cross-bids, β

quits before γ, and so α’s winning event is tα > tγ and he pays tγ if he wins; if α does not

cross-bid, γ quits before β, so α’s winning event is tα > p′′A(tγ) and he pays p′′A(tγ) if he wins.

Since tγ > p′′A(tγ), cross-bidding is worse off. When tβ > po
B(tγ), bidder α again prefers not

cross-bidding: γ’s maximum bid for A is po
A(tγ) if α cross-bids and is a less amount p′′A(tγ)

if α does not cross-bid. Thus, bidder α prefers not cross-bidding to cross-bidding when

bidder β cross-bids. The case when bidder β does not cross-bid is similar: by switching from

cross-bidding to not cross-bidding, α moves γ’s dropout point from (p′A(tγ), p
′
B(tγ)) down to

(p∗A(tγ), p
∗
B(tγ)); as in the previous case, this increases α’s winning probability and decreases

his payment if he wins. Thus, cross-bidding is suboptimal for a local bidder.

The existence of a cross-bidding equilibrium, which is unique according to Proposi-

tion 3-ii, may depend on the parameters, since a local bidder does not necessarily prefer

cross-bidding at the start of the auctions. That is because, in the subgame where they do

cross-bid, the global bidder’s dropout point when both locals are active is higher than his

dropout point in the subgame where local bidders do not cross-bid. This follows from the

fact that ṽA(tγ, xṗA, xṗB) > vA(tγ, xṗB) and ṽB(tγ, xṗA, xṗB) > vB(tγ, xṗA) for all instants x

when both auctions are still ongoing. Intuitively, since local bidder β is cross-bidding A,

the global bidder γ’s winning A implies both locals are quitting A, so β’s value is not that

high and hence γ’s future competition with β for item B will not be that severe. On the

other hand, this mitigating effect from cross-bidding may be counterbalanced by the other

effect when one local bidder has quit and the other is cross-bidding. Then the global bidder

is worried by the exposure problem and would quit before the total price reaches his value.

We may not know which effect is dominant without knowing the specific type-distributions.

In contrast, the equilibrium in Proposition 3-i is relatively parameter-independent. In

its off-path subgame where local bidders cross-bid, cross-bidding completely eliminates the
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global bidder’s exposure problem. Hence cross-bidding increases the global bidder’s maxi-

mum bids. Knowing this, local bidders would rather not cross-bid. As this equilibrium is

on-path identical to the equilibrium in Lemma 1 when cross-bidding is banned, the equilib-

rium allocation is the same. All three kinds of inefficiency are probable: over-concentration,

over-diffusion, and incomplete diffusion.

5.2 When jump bidding is allowed

Let us amend the model in the previous subsection with the protocol in §4.1 to allow jump

bidding.

5.2.1 The incentive of jump bidding

If a local bidder has not been cross-bidding, then he cannot switch to cross-bidding later,

as to be eligible for an item he needs to participate in its auction from the start. Thus, as

in Lemma 6, this bidder strictly wants to jump-bid when the other local bidder is the first

dropout (from both items); once the local bidder has initiated a jump-bidding process, it

will determine the winner within the decisive moment.

A cross-bidder’s jump-bidding incentive is more complicated. Say local bidder α is the

first dropout with current prices (pA, pB) and local bidder β has been cross-bidding up to

now. If by now pA + pB ≥ tβ, then β must quit A immediately and stay for B (the fact

that β has not quit by now implies tβ > pB); hence it is dominant for him to jump-bid, as

in Lemma 6. However, if pA + pB < tβ still holds, bidder β does not need to quit A now and

does not necessarily want to jump-bid: If he is expected to play strategy (b) in Lemma 10,

bidder β can make no jump bid and stay cross-bidding, then global bidder γ quits before

the total price reaches tγ (Lemma 13-d-ii). In doing so, bidder β gains from suppressing his

rival’s maximum bid but loses the chance to couple his bid with the quitting local bidder α’s

bid. Thus, when parameters permit, bidder β may choose not to jump-bid.

However, if a cross-bidder is expected to play strategy (a) in Lemma 10 when he is

alone competing with the global bidder, the global bidder’s maximum bid is not suppressed
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by cross-bidding (Lemma 11); hence a local bidder would play strategy (a) if he did cross-bid

and he finds it suboptimal to cross-bid (Proposition 3-i). Thus, he jump-bids when the other

local bidder quits. The next subsections will formalize this observation.

5.2.2 An ascending package auction

If there is an equilibrium where jump-bidding always occurs when a local bidder becomes the

first dropout, then the analysis in §4.2 suggests that the equilibrium turns the simultaneous

auctions into an auction where the global bidder bids for the entire package {A, B}. Hence

we consider a simple model of such package auctions next:

The price speeds ṗA and ṗB are exogenously given. Local bidder α bids only for

package {A}, β only for {B}, and global bidder γ bids only for {A, B}. The price for a

package starts at zero and rises continuously, with jump-bidding banned, until all but one

bidder for the package have quit.

1. If no one has quit, the price pA (or pB) for package {A} (or {B}) rises at speed ṗA

(or ṗB), and the price pAB for {A, B} rises at speed ṗA + ṗB.

2. If global bidder γ quits before local bidders α and β, item A is sold to bidder α at the

current price pA, and B is sold to β at the current price pB. (Note that pA + pB is

equal to bidder γ’s dropout price pAB.)

3. If bidder α quits at price pA before bidders β and γ, stop raising pA, and raise pB

and pAB at the same speed.

a. If subsequently bidder β quits at price pB before the global bidder γ, sell both

items to γ at a total price equal to pA + pB.

b. If subsequently bidder γ quits at price pAB before local bidder β, sell item B to

bidder β at its current price pB, and sell A to bidder α at his dropout price pA.

(Note that pAB = pA + pB.)

4. If bidder β quits at price pB before bidders α and γ, do the same thing as in provision 3

by switching between A and B and between α and β.
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5. If bidders α and β quit simultaneously before global bidder γ, γ wins.

In this package auction, the global bidder’s weakly dominant strategy is to bid for the

entire package until pAB = tγ, since the game to him is an English auction of a single bundle

{A, B}. Once a local bidder say α has quit at pA, local bidder β finds it dominant to bid for

item B up to its true value; if he wins, β buys B at price tγ − pA (as γ bids up to tγ) and α

buys A at his dropout price pA. The case where local bidder β quits first is symmetric.

A dropout price means the price for a local bidder’s valued item at which the bidder

quits immediately unless someone has already quit. An (undominated-strategy) equilibrium

in the package auction corresponds to a pair (sα, sβ) of dropout strategies such that (i) si

tells local bidder i what his dropout price is given his type and the current state of the game

and (ii) sα best replies sβ and vice versa, with the global bidder being straightforward.

5.2.3 Simultaneous auctions mimic the package auction

Concerned about the exposure problem of simultaneous auctions, researchers have consid-

ered replacing them by a package auction to allocate possibly complementary goods. The

discussion has been going on for almost a decade3 and is still unsettled, because a package

auction has the shortcomings of threshold problem and combinatorial complexity. Adding

to this discussion, the next proposition says that, at least in our simplistic model, there is

no loss of generality to simply use simultaneous ascending auctions.4

Proposition 4 For any equilibrium of the package auction defined in §5.2.2, there is a

3The discussion dates back to at least as early as January 1995, when a version of Bykowsky, Cull, and

Ledyard [6] was drafted. A recent paper leading this discussion is Ausubel and Milgrom [3].
4A caveat of this surprising message is that our model of package auctions does not allow global bidder γ

to jump-bid. Hence the model might preclude a possible equilibrium where γ makes a jump bid for bundle

{A,B} without specifying the jump on each item; that may impose an additional threshold problem on

the local bidders, who have to divide the jump between themselves if they do not want to lose right away.

This additional problem might not be replicable in simultaneous auctions, because bidder γ in simultaneous

auctions has to submit bids for each item and hence his jump is automatically divided between the local

bidders. This caveat, however, does not undermine the normative implication of our message, because this

possible additional threshold problem would make package auctions even more inefficient.
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perfect Bayesian equilibrium in the simultaneous auctions, which allow jump- and cross-

biddng, that generates the same allocation.

Proof Pick any equilibrium of the package auction. As noted in §5.2.2, the equilibrium

corresponds to a pair (sα, sβ) of local bidders’ dropout strategies that best reply each other,

with the global bidder straightforward. We shall prove that the following constitutes a

perfect Bayesian equilibrium of the simultaneous auctions:

â. Whether local bidders cross-bid or not, global bidder γ stays for both items until their

total price reaches his value or a local bidder jump-bids.

b̂. A local bidder i does not cross-bid and keeps bidding for his valued item until someone

else quits or his dropout price prescribed by si has been reached; his dropout action is

“stop” rather than “withdraw”.

ĉ. If a local bidder deviates to cross-bidding, he plays strategy (a) in Lemma 10.

d̂. If a local bidder becomes the first dropout, then the other local bidder and γ play the

jump-bidding subgame according to the equilibrium in Lemma 8.

We claim that, when a local bidder say α becomes the first dropout, if global bidder γ

does not withdraw in the decisive moment, the other local bidder β’s winning event for B

is {tγ : tβ > tγ} and his winning payment is tγ in expectation, whether he cross-bids or

not. The case where he is not cross-bidding is obvious, for then global bidder γ will win A

at the end of the decisive moment and bid for B until pB = tγ. In the case where β does

cross-bid, his strategy (ĉ) best replies strategy (â), due to the second paragraph in the proof

of Proposition 3; thus, with β cross-bidding, it is optimal for γ to stay for both items until

pA + pB = tγ. Hence the claim follows.

Thus, when a local bidder say α becomes the first dropout, the other local bider gets

the same payoff if the winner of B is not determined during the decisive moment, whether

he is cross-bidding or not. Thus, the conclusion of Lemma 6 holds if strategies (â) and (ĉ)

are expected: bidders β and γ each prefer ending the auction for B within the decisive

moment. This has four immediate implications: First, the actions prescribed in (d̂) are best
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replies. Second, global bidder γ never has to buy one item without knowing the price of

its complement; hence he always bids until pA + pB = tγ, and strategy (â) is his best reply.

Third, with the global bidder always straightforward, a local bidder is indifferent about

cross-bidding and hence not cross-bidding is a best reply. Fourth, any pair of dropout prices

determines the same allocation outcome in simultaneous auctions as in the package auction

analyzed in §5.2.2.

The fourth implication listed above implies that the simultaneous-auctions game, con-

ditional on strategies (â), (ĉ), and (d̂), is strategically equivalent to the package auction.

As the dropout strategies (sα, sβ) constitute an equilibrium in the package auction, they

best reply each in the simultaneous auctions, given (â), (ĉ), and (d̂). Thus, strategies (â)–

(d̂) constitute an equilibrium, and its allocation is the same as the one generated by the

equilibrium (sα, sβ) of the package auction.

Note that any equilibrium of the package auction leads to probable over-concentration

but never over-diffusion; this follows from Lemma 9, as (14) obviously holds due to the

global bidder’s straightforward behavior. Thus, Proposition 4 implies that the simultaneous-

auctions game allowing jump- and cross-bidding has an over-concentrating equilibrium, as

long as equilibrium exists in the package auction.5

6 Extension to resale

We have seen so far that equilibrium allocations of simultaneous auctions are inefficient with

a positive probability. Thus, with the same type of arguments in Zhèng [17], we know that

resale after the simultaneous auctions, if allowed, must occur with a positive probability.

Even if resale is declared illegal, the strict incentive for resale makes the prohibition costly.

5When bidders’ types and bids are continuous variables, existence of equilibrium in the package auction is

an open nontrivial question. The complexity comes from the fact that a local bidder’s payoff is discontinuous

in his dropout price and the discontinuity contains both a drop and a jump: if local bidder α is quitting at

instant x, local bidder β gets zero payoff if he also quits at x (both losing to the global bidder); whereas, β

gets positive payoffs if he quits slightly before instant x (then α will bid up to tα) or quits slightly after x

(then β will bid up to tβ). We of course can ensure existence of equilibrium by assuming that types and bids

are finite discrete and bearing the cost of messy calculations due to positive probabilities of ties.
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Let us extend the model to incorporate resale. The main idea is to allow winners

in an auction to select any selling mechanism for possible resale and give winners in his

mechanism the same option. That might sound odd at first glance, because it treats the

initial auctions exogenously and resale auctions endogenously. However, this formulation

is actually most natural. Recall that the goal here is to understand the performance of

a given mechanism, simultaneous ascending auctions. Hence it is appropriate to hold this

initial auction mechanism as exogenous. Assuming exogenous resale mechanisms, in contrast,

would be inappropriate, because renegotiation can take many forms, and we do not know a

priori which specific format will be prevalent. It is therefore natural to let resale mechanisms

emerge as optimal actions chosen by some players. To reflect the friction in bargaining,

we use the standard mechanism-design formulation: allow one player to select a mechanism

and commit to it by letting it operated by a neutral trustworthy mediator and, to be even-

handed, preserve the privacy of the other players’ types unless they are willingly revealed by

the players themselves.

6.1 The auction-resale game

There are N periods, with no discounting, and N is an exogenous large number. (The exoge-

nous N is to ensure that the equilibrium concept is well formed, as explained in Zhèng [17]).

In period one, the items are auctioned off via simultaneous ascending auctions, which may

allow or ban cross-bidding or jump-bidding. In period two, resale among bidders is allowed.

If a bidder has won all items in period one, he can pick any mechanism (defined in the next

paragraph) and commit to it for possible resale. (“No sale no matter what” is counted as

one such mechanism.) If items are sold to different bidders, one of the winners is randomly

selected to pick a resale mechanism; if no other winner vetoes it, the mechanism is imple-

mented; else the mechanism is not implemented and every winner commits to a resale price

for the item he currently owns. The probability with which a winner is selected to pick

a resale mechanism is proportional to the number of items he currently owns. If a resale

mechanism results in no-sale or if period N is reached, the game ends; else in the next period

a winner is chosen to pick a resale mechanism, as in the current period.

A selling mechanism for player i (who is the current seller) is a mapping from the profile
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of types across players other than i to a payment arrangement and a lottery that assigns the

items to the players (including i). The lottery is called allocation outcome from i’s viewpoint.

6.2 Myerson auctions

If a seller could costlessly prohibit resale after the operation of his mechanism, then his

mechanism becomes the endgame and his mechanism is incentive feasible if truth-telling is

a Bayesian Nash equilibrium in this endgame. The Myerson auction for player i maximizes

player i’s expected profit among all incentive feasible selling mechanisms for i under the

assumption that player i can costlessly prohibit resale after the operation of his mechanism.

Given a type-profile, the virtual utility of an allocation outcome from player i’s standpoint

is defined to be the ex post gain of trade generated by this outcome minus∑
j 6∈i

1− Fj(tj)

fj(tj)
,

where index j ranges through all players but i who are involved in the trade specified by the

allocation outcome, and tj is the realized type of such a player j. For instance, if player γ

sells item A to player α and B to β, the virtual utility from γ’s viewpoint is equal to

tα + tβ − tγ −
1− Fα(tα)

fα(tα)
− 1− Fβ(tβ)

fβ(tβ)
. (21)

The next lemma, due to Levin [13], characterizes Myerson auctions in our multiple-

object environment. It is proved by extending the standard optimal auctions technique and

using the assumption that each bidder’s type is one-dimensional.

Lemma 14 Suppose that the hazard rate fi/(1 − Fi) for every player i (i = α, β, γ) is

weakly increasing. Then in any Myerson auction for player i, for almost every type-profile,

the allocation outcome maximizes the virtual utility from i’s standpoint among all allocation

outcomes from i’s standpoint.
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6.3 Endogenous separation between primary and resale markets

Since a bidder’s action in period one will be used to update information about him, it is

obvious that a bidder who expects a positive probability of buying an item at resale has an

incentive to conceal his true value by shading his bids in period one. One type of bid shading

that facilitates tractability is not to bid in period one at all. This strategy is a best reply

if the bidder expects some other bidder to bid for all items no matter how high the prices

become. Although such bidding behavior also constitutes an equilibrium in the case where

resale is prohibited, it is weakly dominated there. In contrast, when resale is allowed, such

bidding behavior is not weakly dominated. That is because a high bidder can consistently

believe that his resale revenue can cover his payments for the items, and the bidders who shy

away in period one can consistently believe that entering a bid in period one can only result

in being charged a higher price at resale. (This is similar to the point made by Garratt and

Tröger [7] for a single-good model.)

Next we construct a perfect Bayesian equilibrium of the auction-resale game where the

global bidder wins all items in period one and then offers them for resale. Although there

may be other equilibria where players other than the global bidder act as the reseller, the

equilibrium constructed here is a more plausible focal point: Before bidders learn to exploit

resale opportunities, the goods are over-concentrated to the global bidder, as shown in pre-

vious sections; hence it seems more plausible that the global bidder assumes the middleman

role when the players learn about resale.

Lemma 15 There is no loss of generality to assume that a Myerson auction for the global

player γ has the property that item A never goes to bidder β and B never goes to α.

Proof Selling A to β, global player γ receives at most zero revenue. Instead, keeping A

to himself, γ’s payoff is either zero (if γ does not keep item B) or almost surely positive

(if γ also keeps B). Hence γ cannot decrease his payoff by keeping item A to himself instead

of selling it bidder β. Symmetrically, γ cannot decrease his payoff by keeping B instead of

selling it to α. The lemma then follows from the definition of Myerson auction.
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Proposition 5 If the hazard rate fi/(1 − Fi) for every local bidder i ∈ {α, β} is weakly

increasing, then there is a perfect Bayesian equilibrium where the global bidder γ wins both

items in period one and offers resale to local bidders via the Myerson auction from his

standpoint, and there is no further resale after the operation of γ’s mechanism.

Proof We shall show that the following constitutes a perfect Bayesian equilibrium:

a. In period one, the global bidder continues bidding until he wins both items, and local

bidders do not participate in the auctions.

b. If no one deviates in period one, the global bidder in period two offers the items for

possible resale via the Myerson auction from his viewpoint, based on the prior beliefs

and subject to the property in Lemma 15; if a local bidder wins an item, he chooses

not to resell it.

c. If a local bidder deviates to bidding in period one and quits item k at price pk, the

global bidder’s resale mechanism in period two is the Myerson auction based on the

posterior that the deviant bidder’s type is at least as large as pk (and again subject to

the property in Lemma 15).

To verify this equilibrium, we need only to prove four claims: First, a local bidder who wins

in the Myerson auction finds it optimal to not offer the item for further resale. Second,

expecting no further resale, a local bidder finds it optimal to be truthful in the Myerson

auction. Third, the Myerson auction is optimal for the global player conditional on his

winning both items in period one. Fourth, given the resale mechanisms specified in (b)

and (c), a local bidder finds it optimal not to bid in period one.

If the first claim is true, the second one follows: as the winners in the Myerson auction

choose no-resale, the Myerson auction is the last stage of the auction-resale game, so truth-

telling in the Myerson auction is optimal for each local bidder, as this auction is incentive

feasible when it is the endgame. If the first and second claims are true, the third one follows,

since the Myerson auction by definition maximizes the global player’s expected profits among

all incentive feasible mechanisms under the assumption the global player can costlessly ban
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resale. The fourth claim is obvious: by definition of the Myerson auction, if the infimum of

the support of a bidder’s type is higher, he cannot pay less.

Thus, it suffices to prove the first claim. After the Myerson auction, due to its property

found in Lemma 15, local bidder α does not get item B and β does not get A. Suppose

bidder α gets item A. He cannot profit from selling A to bidder β, who does not value A.

Nor can he profit from selling back to player γ, since the fact that γ sells A to α via the

Myerson auction implies that the virtual utility tα−(1−Fα(tα))/fα(tα)− tγ ≥ 0 (Lemma 14;

note that the formula for virtual utilities is the same in cases (b) and (c)); as 1−Fi(ti)
fi(ti)

≥ 0, we

have tα ≥ tγ. Can α profit from coordinating with bidder β, in case that β wins B, to resell

both items back to player γ? No because this trade leads to no surplus: the fact that the

Myerson auction gives the two items to the local bidders implies that the virtual utility (21)

is nonnegative and hence tα + tβ ≥ tγ. Hence bidder α chooses to not resell A. The other

local bidder’s no-resale incentive is symmetric. This proves the desired claim.

Corollary 2 At the equilibrium in Proposition 5, the final allocation is over-concentrated

with a positive probability and is never over-diffused.

Proof Since that equilibrium implements the Myerson auction from the global bidder’s

viewpoint, the equilibrium final allocation is determined by the virtual-utility algorithm

characterized in Lemma 14. Since 1−Fi(ti)
fi(ti)

> 0 for almost all types, the virtual utility (21) of

selling A to α and B to β is less than the social surplus tα + tβ− tγ of this trade. Thus, if this

trade eventually takes place, then its social surplus is positive; but even if its social surplus is

positive, the virtual utility of the trade might still be negative and so the trade need not take

place. Hence the final allocation is never over-diffused and is probably over-concentrated.

The conclusion of Corollary 2 is true even without the optimal-resale-mechanism as-

sumption, i.e., even if a reseller is not free to select any resale mechanism. As long as his

mechanism is individually rational for the reseller from his standpoints both before and after

the operation of his mechanism, the global player γ never resells item A to bidder β and

never B to α (as in Lemma 15), and he never resells both items while the total revenue is

less than his own value. Thus, as in the last paragraph in the proof of Proposition 5, there

will be no further resale after γ’s resale mechanism. As a monopolist at resale, γ would
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under-sell the goods if he has some policy instruments such as reserve prices. What the

optimal-resale-mechanism assumption buys for us is a prediction of the final outcome of the

game that can be directly calculated from the prior distributions.

6.4 Extension to more bidders

Let us extend Propositon 5 to the case where there are nk copies of the k-bidder, with

k = α, β, γ. For each k ∈ {α, β, γ}, assume that all the k-bidders value the same item and

their values are independently drawn from the same distribution Fk.

Corollary 3 Assume monotone hazard rate as in Propositon 5 and assume that, for each

k ∈ {α, β, γ}, the values of all the k-bidders are independently drawn from the same dis-

tribution Fk. There is a perfect Bayesian equilibrium where all global bidders participate in

period-one auctions and all other bidders do not, the global bidder with the highest type wins

both items in period one and offers resale to local bidders via the Myerson auction from his

standpoint, and there is no further resale after the operation of his mechanism.

Proof In period one, when another global bidder is staying, a global bidder’s maximum

bid is equal to his realized type plus the maximum expected profit that he can obtain during

the resale stage; he keeps bidding for both items until pA + pB reaches his maximum bid.

If all but one global bidder have quit, the remaining global bidder will continue bidding

forever should there be remaining local bidders. One can prove that the maximum bid is

strictly increasing in the gloabl bidder’s type by mimicking the envelope theorem argument

in the proof of Proposition 2 in Zhèng [17] (from the start of that proof down to its second

displayed equation). Hence the winner in period-1 is the one whose type is highest among

all global bidders, so he suffers no loss to not include the other global bidders (γ-bidders) as

potential buyers in his resale mechanism.

As in Propositon 5, we complete the proof by showing that a local bidder who wins

in the global player’s Myerson auction finds it optimal to not offer the item for further

resale. For each k ∈ {α, β, γ}, let k∗ denote the bidder who has the highest type among the

k-bidders. Since bidders of the same kind have the same distribution and hence the same
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strictly increasing virtual utility function, only bidders α∗ and β∗ have chances to win in

the Myerson auction. By Lemma 14, we may assume without loss of generality that α∗ does

not get item B and β∗ does not get A. Suppose bidder α∗ gets item A. He cannot profit

from selling A to other α-bidders, who value A less, or to β- or γ-bidders with γ 6= γ∗, who

do not value A alone. As in the proof of Proposition 5, nor can α∗ profit from selling A

back to its previous owner γ∗. The only case left is where the two winning local bidders,

α∗ and β∗, could resell both items to a single γ-bidder. But this trade generates no surplus

either, because tα∗ + tβ∗ ≥ tγ∗ as in the proof of Propositon 5, and tγ∗ ≥ tγ′ for any global

bidder γ′ who lost the period-one auctions to bidder γ∗. The case of β∗ is symmetric. �

Most results in the paper can be extended to this model. For example, the jump-

bidding equilibrium of Lemma 8 becomes: when the last α-bidder is quitting A, all the

remaining β-bidders jump-bid for B and each remaining γ-bidder either responds with a

jump bid or quits. Item B is won by a β- or γ-bidder with the highest value of his kind.

7 Concluding remarks

In the literature, simultaneous auctions were thought to have a tendency of over-diffusing

complementary goods to different bidders. To mitigate this problem, researchers have con-

sidered replacing simultaneous auctions by a package auction despite the latter’s tendency

to over-concentrate complementary goods to a global bidder. In contrast, the main find-

ing in this paper is that the dominant feature of simultaneous ascending auctions is over-

concentration and not over-diffusion. Specifically, if jump bidding is allowed, the simultane-

ous auctions can mimic whatever equilibrium outcome a package auction has, which tends

to over-concentrate the goods to a single bidder. We also find that over-concentration is a

robust feature when resale is allowed, since we have constructed an equilibrium where only

the global bidders participate in the initial auctions and then the winner among them offers

resale to the local bidders. As a monopolist at resale, the winner under-sells the goods, hence

the over-concentration problem remains.

It should be emphasized that jump-biddng and resale, which our prediction is based

on, are compelling constructs. As we have seen in this paper, even if the simultaneous
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ascending auctions prohibit or have no rule about jump-bidding and resale, bidders have a

strict incentive to signal among one another via available communication channels and to

trade with one another after the initial auctions. That leads to jump-bidding and resale.
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